Python
DASC / CSE 5300

Module Il R

Built-in Data User-Defined Data
Suructures. Structures

Sharma Chakravarthy

Information Technology Laboratory (IT Lab) ﬁ * l l
Computer Science and Engineering Department
The University of Texas at Arlington, Arlington, TX 76019 = f_ E == (= ‘, L=]
Email: sharmac@cse.uta.edu EEEEY = ’T’““" | ““"“‘"“" =
URL: http://itlab.uta.edu/sharma
4/13/2022 © your name 3

A'x;;;w;:gm In Module Il H‘ A'x;mm H

» | will cover the following with examples so you can
practice further on your own

Tree Data Structure
(special case of a Graph)

= Trees and Sets
= Stack, Queue

A’i«‘»‘srww Tree Data structure H_:

Tree is a non-linear data structure

A tree is a graph with a root and nodes (a graph is

not necessarily a tree)

Root does not have a parent

All other nodes (children) have a unique parent

Number of children for a node determines the

branching factor or fan-out of a tree (binary, n-ary)

Nodes in a tree can be organized into levels

= Root is at level (distance) 0

= nodes with distance 1 from root are level 1

= Nodes with distance 2 from root are in level 2 and so
on

» Given the fan-out and # of total leaf nodes, the

height (or max level) of the tree can be determined

YV VVV VY

» Can be done in multiple ways

Binary Tree Traversals

® Pre-order preorder Traversal

imorder 3 Vil fon

= post-order 3 Right

pre, in, and !

Post always ¥ a(®) (G
Refers to the

root

Node visit order
ABDEFCGHJLMKO

Tree examples

2|/ O)

\ / \ root |
=\ (&) (7) parent
(e) (s) N N of ™~ internal —child of
/ l node
DEORORORCOROIO]

Binary Tree;

complete binary tree

Leaf nodes: 8; height 3

Fan-out 2 (binary)

height = 10g 5.0 # total leaf nodes Fqor g binary tree

Npax =20+ 21+ 22+ | +20h =21 _1

max

Or h = logy(Nmax +1) -1

4/13/2022 © Sharma Chakravarthy 6

Binary Tree Traversals

> Can be done in multiple ways A sp Ef ¢ 6 HJ LMK O

. -
Pre-order PreOrder Traversal
~ 1. Visit root
= |n-order 2. Visit Left

3. Right
= Post-order ¥

InOrder Traversal i
1. Visit left

2. Visit root
3. Visit right

DBFEAGCLJMHOK

A,\mmmm

» Can be done in multiple ways A sp Ef ¢ ¢ H J LMK O

Binary Tree Traversals

= Pre-order PreOrder Traversal
1. Visit root
= |n-order 32%:::‘&&

= Post-order

PostOrder Traversal
1. Visit left

2. Visit right
3. Visit root

Node visit order
DFEBGLMJOKHCA

Pre:. ABDEFCGHJLMKO
Inn DBFEAGCLJMHOK
Post DFEBGLMJOKHCA

A Python Implementation

» Not supported natively in Python (in most PLs)
» But it is quite straightforward to implement it.

class Node(object):

def __init__(self, data):
self.data = data
self.children =[]

def add_child(self, obj):
self.children.append(obj)

n = Node(5)

p = Node(6) [<__main__Node object at 0x789590f7e10>, <__main__.Node object at 0x7f895cb63890>]
q = Node(7)

n.add_child(p) 6

n.add_child(q) 7

print(n.children)
for cin n.children:

print (c.data) 5
print(n.data)

A,\mmmm

» Items stored for lookup are usually not stored
randomly in a (binary) tree

» They are stored in sorted order
= Left tree has items < root value
= Right tree has items > root value
» This reduces a O(N) search to lon,N search

» “Divide and conquer” algorithms use binary
search

» Heap sort (or tournament sort) uses trees as
heaps with specific properties

» Array representation can also be used for trees

Binary Search H

A,\mmn‘w

class Tree(object):
def __init__(self, name, left_subtree = None, right_subtree = None):
self._name = name
self._left_subtree = left_subtree
self._right_subtree = right_subtree

Python Implementation

def inorder(tree):

if tree is not None:
inorder(tree._left_subtree)
print tree._name
inorder(tree._right_subtree)

HW: complete postOrder and
preOrder traversals

a=Tree('a") c
b =Tree('b') b
c=Tree('c', a, b)

inorder(c)

A,\mmm

» Can be used for searching for items in a tree in a
systematic way

» You can also do depth first and breadth first
(level order) traversals for searches

Utility of Tree Traversals

= Used in many algorithms (remember shortest
path)

> You can consider tree traversals as variants of
depth first traversal

» Level order as a variant of breadth first traversal
» Monte Carlo search
= Based on random sampling of the search space

Am‘mm

» You can define the three traversals on a non-
binary or n-ary tree

Traversals on non-binary trees

» Instead of left and right, you have to determine
which subtrees are considered as left an which
are right

» Beyond that, the algorithm is same

Y

Can implement as a recursive algorithm
» Or use a stack for backtracking

Awm#w B and B+ trees
» Binary trees are not good for storing and
searching large number of objects

> Binary trees are usually built top down and
hence are susceptible to extremely unbalanced
trees

» B and B+ trees were developed in the 1970’s for
avoiding the above
= Built bottom up instead of top down

= Balanced, meaning the length of the path from
root to any leaf node is the same

= Dynamically adjusts neight (grows and shrinks)
= Used in Database management systems (DBMSs)

Am‘mm

» Trie or prefix tree is an application where n-ary
trees are used

Traversals on non-binary trees

= Words can be stored for easy lookup

= Compact, as prefixes are stored only ones

= Can be used for autocompletion

= Look up O(m) where mis
The length of search string

7S

o~
g

o ?\@
: N

()
5

2] Sets (2) 2]
» Set builder notation or set comprehension (in
Python)
= Teens ={x | 20 < x> 12} “|” stands for “such that”
= Evens ={x | niseven}
= Primes={p | pis prime} is this set finite?
Sets » A set, by definition, does not have duplicates
» A set which allows duplicates is called a multi set or
a bag
» You can have sets inside sets (element of a set can
be a set) only in a frozenset in Python
» Ordinary Set elements have to be immutable in
Python
» Asetis not ordered (not a sequence)
Ax,‘mam Sets H Axwwm Sets (3) H

> In mathematics, a set is a collection of elements

= Elements need not be homogeneous (of the same
type)

= {“john”, “coba 149", 55, 3.5} is a set
= A set with no elements is an empty set
= Aset with a single element is a singleton set
= A set can be finite or infinite (mathematically)

» Set theory has provided foundations for all
branches of mathematics since 1950’s

> Russel’s paradox: set of all sets that do not contain
themselves cannot exist
= j.e, {x | xis a set and x <> x) cannot exist!
= Remember set comprehension in Python?

>

>

Sets form the basis for Relational algebra and
sQL

Sets also form the basis of the Relational Model
(will study in Module I11)

Set operations

= Membership (€)
= Subset and superset property (proper and
improper subsets)
- {1, 2} isa proper subset of {1, 2, 3} and
- {1, 2, 3}is an improper subset of {1, 2, 3}
Venn diagrams can be used to understand set
operations

A’k;’;‘:ma#m Sets (4)
» Sets form the basis for Relational algebra and
sQL
» Sets also form the basis of the Relational Model
(will study in Module Il1)

» Set operations

A

= Membership
= Subset and superset property (proper and
improper subsets)
-{1, 2} isa proper subset of {1, 2, 3} and
-{1, 2, 3}is an improper subset of {1, 2, 3}
» Venn diagrams can be used to understand set
operations

21

A'x.‘;;tmam Sets Operations

» Difference (A—B)
= A-B#B- A (commutativity does not hold)
= A-(B-C)#(A-B)-C
"A-A=0
"A-D=A

» Relative Complement
= With respect to a finite set

= A\B=A-B
= A\BzB\AforAzB
" A\A=O

A’k.‘;’;‘:;“w‘a#m

» Union (AU B)
= AUB=BUA (commutativity)
= AU (BUC)=(AUB)U C (Associativity)
= AUA=A
=AUP=A

» Intersection (A N B)
= AN B=Bn A (commutativity)
= An(BnC)=(AnB)n C(Associativity)
" ANnA=A
"ANd=0

» AsubsetBifandonlyif AUB=B

Sets Operations

22

A'x.‘;;tmam Sets Operations
» Cartesian product (x)
= Cartesian product of two sets creates a new set by
associating each element of first set with every
element of the second set
= {1, 2} x {red, white, green}is {(1, red), (1, white),
(1, green), (2, red), (2, white), (2, green)}
= We will see the use of this in the join operation of
saL
» Cardinality
= Of s set is the number of elements in it, denoted
by | |
= |{a, b, c}|is3

A Python Sets

> {} or set() function can be used to create sets

» To create an empty set use set(), not {} which
creates an empty dictionary!

» X=set(<iter>) where <iter> is any iterable (e.g.,
list, tuple, string) that generates a list of objects
to be included in the set.

” u nowurn

= set([“my”, “name”, “is”,

” o« nowsn a

set {“my”, “name”, “is”,

sharma”]) creates the
sharma”}

”

= Set(“abracadabra”) creates the set {“a”, “b”, “r”,
“w gy

e

AAR.:WWN‘.

» Modifying sets
= A.update(B[, C...]) or
= A |=B[|C..] #update with union
= Similarly for intersection and other operators
= .add(<elem>) # <elem> is a single immutable object
= .remove(<elem>)
= _pop() removes a random element
» Frozen sets

= Python provides this as an immutable set which is
otherwise a set

= frosenset(<iter>)
= Useful when you need a set that is immutable

» HW: Use set comprehension to create Cartesian
product

Python Sets

e

AAR:,’WW&N.

» Operations

Python Sets

= | is union operation; also A.union(B)
= & is intersection; also A.intersection(B)
= - is difference; also A.difference(B)

= A.isdisjoint(B) return True if A and B have no
elements in common or An Bis ®

= .issubset() improper subset

= A< Breturn True if A is a proper subset of B
= issuperset()

= A>B

e

Questions/comments

For more information visit:
http://itlab.uta.edu

Spring 2019 = W

CSE 6331

