CSE 4331/5331 - Fall 2025 (All Sections)

DBMS Models and implementation
Instructor: Sharma Chakravarthy
Project Il: Implementation of a Transaction Manager

Made available on: 09/20/2025

Complete Project Due on: 10/23/2025 (11:59 PM)

Submit by: Canvas (1 zipped folder containing all the files/sub-folders)
Weight: 15% of total

Total Points: 100

This project implements a transaction manager that manages concurrency control using
locking. You will implement the strict two-phase locking (S2PL) protocol with shared
locks for read and exclusive locks for write. The transaction manager handles locking
and releasing of objects. Lock escalation (Upgrading) is not considered in this project.
This is a stand-alone project using C/C++ and does not use Minibase. Portions of the
skeletal code are given so you can focus on the important and interesting aspects of Tx
management.

Read the project description carefully and identify what you need to do before
proceeding with the project. Ask questions at the beginning of each class to get clarity.
Once you had a chance to look at the description, we will provide additional details and
answer questions. | will devote first few minutes at the beginning of each class for
questions and clarifications on the project.

l. Problem Statement:

Your project’s run time environment consists of a main thread that handles the input,
initializes the necessary data structures and a pool of mutex and condition variables to
ensure that operations belonging to the same transaction are executed in proper order
(zgt_test.C). The main thread creates a transaction manager object (there is only one Tx
mgr object) and the associated hash table that acts as a lock table. As the input is read
from a file, a separate thread is created and started for carrying out each operation (in
a real DBMS one thread or process will handle all the operations of a Tx) requested by
that transaction (zgt_tm.C). The reason for using threads is to allow concurrent execution
of multiple threads, where possible, by the Tx mgr logic. The thread is terminated at the
end of the operation using a pthread_exit call. The main thread reads transactions
(instructions from the input — see below) and invokes a method on the created
transaction manager object. This method will create a new thread to perform each
operation.

The thread created for each operation will execute a function (not a method, as we are
using C) for that operation in zgt_tx.C. For example, the function begintx does the
operation of starting a transaction. All the functions for a transaction execution (begintx,
readtx, writetx, committx, and aborttx) need to be implemented or completed as part of
this project. The thread has to make sure that a previous operation by the same

Chakravarthy Page 1 0f 16 Project 2

CSE 4331/5331 - Fall 2025 (All Sections)

transaction has been completed before starting the current operation (otherwise, as
you know, it is not a legal schedule). In order to do that, it uses a condition wait on a
mutex. Each transaction has a mutex associated with it for this purpose. This is
accomplished by using the SEQNUM array and condset array defined in class zgt_tm. They
are initialized to zero. Each operation is assigned its position using the count variable
before a thread is created. SEQNUM is used to keep track of the order of operations for
each Tx. The count variable in each thread holds the current operation number. They are
compared with the condset[tid] value to decide whether to wait (using cond_wait on the
thread) for an operation or proceed. This allows the operations to be executed
sequentially within a Tx. Use the cond_wait and cond_broadcast functions. The working
of these functions is described in the supplementary material. If the operation is
successfully completed (i.e., transaction gets a shared or exclusive lock for that
operation), the appropriate parameters should be inserted in the log file. Do a flush on
the logfile write operation to force write it. If there are no threads available, an error
should be written in the log. You make sure all threads complete before exiting the test
program.

Since each operation of each transaction is done in a separate thread, all errors and the
log output need to be printed (or transmitted) at the point of occurrence. These threads
cannot return any error status.

A transaction abort operation should release locks held on all objects by that transaction
(not necessarily in any particular order). In addition, the abort operation should release
all transactions waiting on objects held by the aborted transaction so that one of them
can proceed.

A transaction commit will also release locks held on all objects by that transaction and the
transactions waiting on those objects (not necessarily in any particular order). This is done
by doing as many p operations associated with the semaphore for that tx. In a real DBMS,
the data durability (or persistence) will be handled by the buffer manager and the log is
written for recovery which we are not addressing in this project. However, in this
simplified project, values of the data items reflect the work accomplished by a
transaction.

Il. Transaction manager interface

The simplified Transaction manager interface that you will implement in this assignment
allows a client (a higher-level program that calls the Transaction manager) to create the
data structures used by the transactions. We will assume default values for the hash table
size. The header files zgt_tm.h, zgt_tx.h and zgt_ht.h describe the interface you will need
to implement. The following five functions have to be implemented/completed in
zgt_tx.C. As needed, additional functions to support the above need to be implemented
as well.

e begintx(thrdArguments)

Chakravarthy Page 2 of 16 Project 2

CSE 4331/5331 - Fall 2025 (All Sections)

e readtx(thrdArguments)

e writetx(thrdArguments)

e aborttx(thrdArguments)

e committx(thrdArguments)

The return types are void*. If more than one parameter needs to be passed in the thread,
the required parameters of the function like transaction id, object number etc. need to
be passed in a structure (param in our case). After creating a thread for each transaction
operation, you are supposed to call these functions from zgt_tm.C. The transaction
manager object used is the global ZGT_Sh. All the functions you need to implement are
specified in the files. If you feel you need to add new functions, please discuss that with
the instructor or the TA so that we can understand their need and help you implement it
correctly!

lll. Overall Approach

The following diagram shows the overall organization of the transaction manager data
structures along with the transaction and hash table objects.

Linked list of transactions
LASTR \b{ TID ‘ PID ‘ SGNO ‘ OBNO ‘STATUS‘LOCKMODE ‘SEMNO ‘ HEAD ‘ TXTYPE ‘I\EXIR}—D
\D{LOCKMODE ‘ SGNO ‘DBND ‘ TID ‘P]D ‘NEXIP ‘ NEXT ‘
MUTEXPOOL
CONDPOOL Object Hashed
CONDITION SET LOCKMODE‘ SGNO ‘OBNO ‘ TID ‘P]ID ‘NEXTP ‘ NEXT ‘
Object Hashed
OBJECTS ARRAY
OPTIME
SEMAPHORE
SEQNUM
Lock Hash Table
WATGRAPH
LOGFILE

Transaction Manager Table

Note: PID =threadID, SGNO =1 (always), NEXT links nodes hashed to the same bucket,
NEXTP links nodes of the same transaction, i.e., all locks held by the transaction. The
main thread creates a transaction manager object in the main or test program. There
is only one transaction manager object. However, there will be one transaction object
for each transaction. Transactions can be in one of the following states:

Chakravarthy Page 3 0f 16 Project 2

CSE 4331/5331 - Fall 2025 (All Sections)

e TR_ACTIVE or processing (represented as “P”)

e TR_WAIT (represented as “W”)

e TR_ABORT (represented as “A”) and

e TR_END (represented as “E”). This is the state while commit is going on.

When a transaction starts, it is set to TR_ACTIVE with obno = 0 and sgno being 1 by
default. Before reading or writing, a transaction inserts the object into the hash table
in the appropriate lock-mode. The presence of an object in the lock table indicates
that the object is being used by some transaction (may be the same as the one
requesting it).

If the object is in the hash table and is being held by the same transaction as the one
requesting it, it gets the lock (i.e., can continue with the operation irrespective of
whether it is read or write). We will not consider lock upgrades in this project. The
given inputs for testing will avoid such cases. Once you get the lock on an object, you
perform the operation. You hold the lock until the transaction either commits or
aborts (strict two-phase locking). However, the operations of a transaction should be
performed in the same order as given in the input. That is, the previous operation of
the same Transaction should be completed before starting the next operation.

The operation in our case is decrementing the object value by 1 and printing a line in
the log if it is a read operation and sleeping for the given time (optime). For a write
operation, we increment the value by one, write this to the log and sleep for given
optime. The sleep is to simulate disk read/write operations. Begin and commit
operations are also written to the log. Writes are flushed to the log to ensure that it
is written immediately. An array containing the optime for each transaction will be
supplied. You need to set the TEAM_NO to your team number in your zgt_tm.C file
for the optime to work correctly!

In this project, there are two types of transactions: read only (R) and read/write (W).
Read only transactions do not modify any object and hence read operations from
multiple read only transactions can proceed concurrently. If the object is held by a
read/write transaction, the current transaction (whether read only or read/write) has
to wait (both for read and write) for the lock to be released by that transaction (on a
commit or abort). The transaction object of the waiting transaction should indicate
the object (along with lock -mode) for which it is waiting on. The transaction status of
the waiting tx is changed to TR_WAIT to indicate that it is waiting for that object. The
tx that holds the object currently (holding tx) is the tx on which the requesting tx is
going to wait. This is done by making the requesting tx thread wait on a semaphore
and that semaphore number is inserted into that holding tx object. Note that a tx
can wait only on one other tx. On the other hand, a number of

Chakravarthy Page 4 of 16 Project 2

CSE 4331/5331 - Fall 2025 (All Sections)

transactions may be waiting for the same (or different) object, and this is reflected in
many transaction objects being in the wait state and waiting on the same semaphore.
Semaphore s is used to make other transactions wait on transaction s (we have an
array of semaphores and s corresponds to the index. Semaphore 0 is used as a lock for
the transaction manager.

For example, if Tx 1 is waiting on Tx 2 for object 6 for writing, then the tx objects will
have the following Information (Tid with number m uses the semno m in this project)
in the output.

Tid Txtype Thrid objno lock Txstatus semno
2 R 2051 -1 P 2
1 W 1026 6 X W -1

In the above, tx object for tid 1 indicates that it is waiting for object 6 and the status
is W (does not actually indicate which Tx it is waiting on. Here there are only 2 txs and
hence it is obvious.) Tx 1 waits on semno 2 as it is waiting for Tx 2 to complete. It is
important that you initialize the attributes properly to undefined values (example, -1
for objno and “ “ (blank) for lockmode, tx_type, and —1 for semno). Otherwise, you will
not be able to differentiate between undefined and defined states. Semaphore
number for Tx 2 is 2 (convention) and a value of semno indicates that some other Tx
is waiting on this tx to release objects.

As another example, if two transactions are deadlocked, then the tx objects will have
the following pattern

Tid Txtype Thrid objno lock Tx status semno
2 W 2051 4 S W 2
1 W 1026 6 X W 1

Here Tid 1 is waiting on semno 2 for the objno 6 held by Tid 2. Similarly, Tid 2 is waiting
on semno 1 for objno 4 held by Tid 1. Hence, they are deadlocked. When Tid 1
aborts/commits, it releases all the threads waiting on its semno (1 in this case). As you
can see both semaphores 1 and 2 (associated with Tx1 and Tx2 are positive indicating
one is waiting on the other.

In strict two-phase locking, each transaction holds all objects until the end (commit or
abort) of the transaction. Hence, even after an individual operation is over, the object
is in the lock table indicating that it is held by that transaction.

Note that if the input file produces a deadlock, your program will hang. It needs to be
killed and semaphores released explicitly from command prompt using ipcs and ipcrm
shell commands (see below). Even if the program does not hang, you may have to
remove the semaphores explicitly from command prompt using ipcs and ipcrm shell
commands. We have provided a script ipcs_cleanup.sh for that purpose. It will remove

Chakravarthy Page 5 0of 16 Project 2

CSE 4331/5331 - Fall 2025 (All Sections)

all the shared resources that you might not have cleaned up!

When a transaction commits, all the objects held by that transaction are released
(using the head pointer of the transaction object). Transactions waiting for these
objects are allowed to continue (by performing v operations on the appropriate
semaphore) and the transaction object itself is deleted. If many transactions are ready
for continuation, only one of them will be able to get the lock (in case of conflicts) and
the first one that gets the lock will proceed (race conditions are normal in multi-
threaded programs and makes it difficult to reproduce an error and hence debug!.)
The rest will go to wait mode again.

When a transaction aborts, the status of that transaction is set to TR_ABORT. Again,
all the locks held by that transaction is released and waiting transactions enabled.
Since the aborted transaction can be waiting for another resource (in case of a
deadlock), it is important to check when the thread is released, whether the
transaction status has changed to TR_ABORT. In this case you do not proceed with the
operation.

It is important that all of the transaction operations (insert/delete into the hash
table and the transaction list) are protected. The semaphore
sem<SHARED_MEM_AVAIL> is used for that purpose. It is very important that a
transaction does not go into the wait state holding a lock. In this case the program
will hang. You should acquire the semaphore as late as possible and release it as
early as you can (thereby reducing the length of the critical section and the
duration for which you hold the semaphore or lock on the main data structure).
Note that this semaphore is different from the semaphore on which you make a
transactionwait. This semaphore is for managing the transaction manager object as
a critical section.

NOTE 1: In order that semaphores used by each team does not conflict with other
team’s semaphores if running on the same machine (we are using shared memory
semaphores), we need to make sure that the key for initializing the semaphores is set
differently for each team. Hence each team needs to change the value of x in line (in
file zgt_tm.C)

#define TEAM_NO x //team number to be substituted for x
// your team number is known to you already

NOTE 2: Various print_xx methods are under the debug flags. TM_DEBUG, HT_DEBUG,
and TX_DEBUG (names are self-explanatory) print details in the corresponding classes.
Disable these flags in the Makefile by putting a # in front of them. The order of these
flags does not matter. For example,
DEBUG_FLAGS = -DHT_DEBUG # -DTX_DEBUG -DTM_DEBUG
will enable the first flag and disables the other two. All or none can be
disabled/enabled by moving the # sign. Once you change the Makefile, you have to
make clean first and then make again.

Chakravarthy Page 6 0of 16 Project 2

CSE 4331/5331 - Fall 2025 (All Sections)

NOTE 3: In order to make sure your program is correct, it needs to be executed
multiple (read a large number of) times so that it takes all possible paths and handles
all possible race conditions. In order to do that we have included a tmtest script that
accepts a number (number of times to be run) and a test file name (without the
extension) and executes the test as many times. Please use that to thoroughly test the
correctness of your implementation. Running each test case 5000 to 10000 times is a
must for testing the correctness of your implementation thoroughly. More times and
under different conditions are even better.

NOTE 4: Initially and before your program executes correctly, you will be acquiring
and may not be releasing semaphores correctly. If this continues, you may run out of
shared memory and/or semaphores (or may not be able to acquire them). The
following commands will be useful for checking and removing semaphores that have
not been released.

>ipcs //will list all shared memory and semaphores that you have acquired
>ipcrm —s semid //will remove semaphores with given id (obtained using the ipcs
command)

Note 5: We have included a ipcs_cleanup.sh script for removing semaphores and
other shared memory resources held by you. You can use it separately to cleanup all
shared memory resources held by you. It is also included in the tmtest to clean up
resources at the end of your run.

Additional help on threads and semaphores:

Semaphore: http://www.cs.cf.ac.uk/Dave/C/node26.html
Posix Threads: http://www.thefreecountry.com/developercity/freeclibraries.shtml#threads

lll. What you are asked to do:

In this assighnment you will implement a simple transaction manager. The transaction
manager is responsible for:

e Starting a Transaction (Tx),

e Committing a Tx,

e Aborting a Tx,

e Performing read/write operations on items on behalf of a transaction,

e Acquiring necessary locks for performing operations (e.g., read/write),
blocking transactions, and continuing them when resources become available.

1. Complete the implementation of the zgt tx class given to you
2. Complete the implementation of the zgt tm class given toyou

3. Compile and run using the test data files given to you. We may add/extend the

Chakravarthy Page 7 of 16 Project 2

http://www.cs.cf.ac.uk/Dave/C/node26.html
http://www.thefreecountry.com/developercity/freeclibraries.shtml#threads

CSE 4331/5331 - Fall 2025 (All Sections)

test cases for evaluation. You are welcome to create your own additional test
cases and use them. Please follow the format indicated.

Here is an example of input (file: S2T.txt) and expected output:

// serial history
// 2 transactions
// same object accessed
// multiple times
Log S2T.log
BeginTx 1 w
Read 11

Read 12

Write 13

Write 14

read 11

write 12

write 14

write 14
commit 1

begintx 2 W
read 25

write 25

write 26

read 26
commit 2

The log file (S2T.log) should contain the following output (your program produces 1 line
per input command) and terminate properly.

Logfile S2T.log

TxId Txtype Operation Obld:Obvalue:optime LockType Status TxStatus
T1 W BeginTx

T1 ReadTx 1:-1:277 ReadLock Granted P
T1 ReadTx 2:-1:277 ReadLock Granted P
T1 WriteTx 3:1:277 WriteLock Granted P
T1 WriteTx 4:1:277 WriteLock Granted P
T1 ReadTx 1:-2:277 ReadLock Granted P
T1 WriteTx 2:0:277 WriteLock Granted P
T1 WriteTx 4:2:277 WriteLock Granted P
T1 WriteTx 4:3:277 WriteLock Granted P
Tl CommitTx

T2 W BeginTx

T2 ReadTx 5:-1:235 ReadLock Granted P
T2 WriteTx 5:0:235 WriteLock Granted P
T2 WriteTx 6:1:235 WriteLock Granted P
T2 ReadTx 6:0:235 ReadLock Granted P
T2 CommitTx

Note that the order of lines may be different for each run. You need to make sure the order of operations WITHIN
each Tx is done correctly!

Chakravarthy Page 8 0of 16 Project 2

V.

CSE 4331/5331 - Fall 2025 (All Sections)

Getting Started

Copy the zip file and unzip it in your project directory. It is easier to use makefiles
and the make command for compiling and executing your code and testing it. If you
are using WSL on windows, the Linux version should already have makefile installed.
If you are using Linux, make is already there. You can also install Cygwin on windows
to get into a linux-like command prompt. You also need the GCC (g++) compiler and
the runtime environment. Alternatively, you can use Omega for compiling and
executing this project. The instructions are the same! We know for sure the code
given runs on Omega. If you use any other option mentioned above, you need to
figure it out yourself.

After you copy the code, the code should compile without any errors when you
execute the command. You need to change one line (TXMGR=..) in the makefile to
set the directory into which you copied your files. The g++ is set for Omega. You
need to change the GCCPATH=/usr to correctly indicate where the g++ compiler is.
Do not delete any files you copy!!

For checking/executing during the coding phase

Change the active directory to the src folder (cd src)
>make clean

>make

>./zgt _test ../test-files/<test file name>

When I executed make my WSL (with ubuntu version 20.04
using g++ version 9.4), I got a bunch of warnings which
seems fine. ONE sample is below:

zgt_ht.C: In member function ‘void zgt_ht::print_ht()":
zgt_ht.C:152:11: warning: format ‘%d’ expects argument of type
‘int’, but argument 2 has type ‘long int’ [-Wformat=]

152 | printf("%d %d %c ->", hlink->tid, hlink->o0bno, hlink-
>lockmode);

| N/\ NINNININNINNININI NI NI N
| | |

| int long int

| %Id

When I ran

>./zgt _test ../test-files/Mult ROTxs.txt I got the
following output.

Initializing the TM

leaving TM initialization

Chakravarthy Page 9 of 16 Project 2

CSE 4331/5331 - Fall 2025 (All Sections)

// Multiple RO Txs test case

// Multiple RO Txs test case

// read only transactions

// read only transactions

log Multi_ROTxs.log

Log file name:Multi_ROTxs.log

entering openlog

Given log file name: (null)
leaving openlog

// op Tx# type

// op Tx# type

// op Tx# Obj

// op Tx# Obj
BeginTx 1 R

BeginTx : 1

TxType : R

creating BeginTx thread for Tx: 1
finished creating BeginTx thread for Tx: 1
Read 11

Read : 1:1

creating TxRead thread for Tx: 1
exiting TxRead thread create for Tx: 1
Read 1 2

Read :1:2

creating TxRead thread for Tx: 1
exiting TxRead thread create for Tx: 1
Read 1 3

Read : 1:3

creating TxRead thread for Tx: 1
exiting TxRead thread create for Tx: 1

Read 1 8
Read : 1: 8

Chakravarthy Page 10 of 16 Project 2

CSE 4331/5331 - Fall 2025 (All Sections)

creating TxRead thread for Tx: 1
exiting TxRead thread create for Tx: 1
BeginTx 2 R

BeginTx : 2

TxType : R

creating BeginTx thread for Tx: 2
finished creating BeginTx thread for Tx: 2
Read 2 1

Read : 2:1

creating TxRead thread for Tx: 2
exiting TxRead thread create for Tx: 2
Read 2 8

Read: 2: 8

creating TxRead thread for Tx: 2
exiting TxRead thread create for Tx: 2
Read 2 5

Read: 2:5

creating TxRead thread for Tx: 2
exiting TxRead thread create for Tx: 2
BeginTx 3 R

BeginTx : 3

TxXType : R

creating BeginTx thread for Tx: 3
finished creating BeginTx thread for Tx: 3
Read 31

Read : 3: 1

creating TxRead thread for Tx: 3

exiting TxRead thread create for Tx: 3
Chakravarthy Page 11 of 16 Project 2

CSE 4331/5331 - Fall 2025 (All Sections)

Read 35
Read : 3:5

creating TxRead thread for Tx: 3

exiting TxRead thread create for Tx: 3
Read 3 3
Read : 3:3

creating TxRead thread for Tx: 3

exiting TxRead thread create for Tx: 3
read 3 7
Read : 3:7

creating TxRead thread for Tx: 3

exiting TxRead thread create for Tx: 3
Commit 2
Commit : 3

commit 3
Commit : 2

Commit 1
Commit : 3

end all
Release all resources and exit:

Entering End of schedule thread with thrNum: 17
Wait for threads and cleanup

Thread 0 completed with ret value:
Thread 1 completed with ret value:
Thread 2 completed with ret value:
Thread 3 completed with ret value:
Thread 4 completed with ret value:
Thread 5 completed with ret value:
Thread 6 completed with ret value:
Thread 7 completed with ret value:
Thread 8 completed with ret value:
Thread 9 completed with ret value:
Thread 10 completed with ret value: 0
Thread 11 completed with ret value: 0
Thread 12 completed with ret value: 0

Chakravarthy Page 12 of 16 Project 2

clolololololololNoNe

CSE 4331/5331 - Fall 2025 (All Sections)

Thread 13 completed with ret value:
Thread 14 completed with ret value:
Thread 15 completed with ret value:
Thread 16 completed with ret value:
ALL threads finished their work
Releasing mutexes and condpool
Releasing all semaphores

endTm completed

wWwwo

Finished end of schedule thread: endTm

For testing at the end of the coding and initial testing phase when you think your
code is working correctly and robust
Change the active directory to the srec folder (cd src)
>make clean //for deleting .o and other files
>make zgt test //for making the executable
>tmtest n test_filel //for running your program n times using test_filel.txt
//initially use 1 for n; once working test up to 50000 times
//2™ param is input file with .txt extension
// and will create a new log file specified in the input file.
// log file will include the output
// it will also redirect the stdout to test_filel.out

Project Report

Please include (at least) the following sections in a REPORT.{doc} file that you will
turn in along with your code:

¢ Each input and its output (.log file contents) as shown in this document for S2T.txt
¢ Also include all .log files in the .zip uploaded for each test case with proper naming.
For example, if the input file name is Multi_ROTxs.txt, the log file name should be
MultiROTxs.log
o A spread sheet that shows maximum times you were able to run each test case
correctly. Follow the format given in test-robustness.xlsx in test-files dir. The TA will
ask you to run a couple from this list during the demo
e Overall Status
Give a brief overview of how you implemented the major components. If you were
unable to finish any portion of the project, please give details about what is
completed and your understanding of what is not. (This information is useful when
determining partial credit.)
o Where you encountered difficulty
Please indicate what aspects of the transaction manager (e.g., semaphore logic,
thread logic, flow) that was difficult. This will help us understand what additional
information we can provide in subsequent offerings.
o File Descriptions

List any new files you have created and briefly explain their major functions and/or
Chakravarthy Page 13 of 16 Project 2

CSE 4331/5331 - Fall 2025 (All Sections)

data structures. If you have added additional test cases, please summarize them.
« Division of Labor
Describe how you divided the work, i.e., which group member did what. Please
also include how much time each of you spent on this project. (This has no impact
on your grade whatsoever; we will only use this as feedback in planning future
projects -- so be honest!)
e Logical errors and how you handled them
List at least 3 logical errors you encountered during the implementation of the
project. Pick those that challenged you. This will provide us some insights into how
we can improve the description and forewarn students for future assignments.

And finally, any suggestions you may have on this project.
VI. What to Submit

e After you are satisfied that your code does exactly what the project requires, you
may turn it in for grading. Please submit your project report and the
TxMgr package. We will ignore source code in any other directories.

You will turn in one zipped file containing you source code as well as thereport

All of the above files should be placed in a single zipped folder named as -
‘5331_Proj2Fall2025_team_<teamNo>’. Only one zipped folder should be
uploaded using CANVAS.

You can submit your zip file at most 3 times. The latest one (based on timestamp)
will be used for grading. So, be careful in what you turn in and when!

Only one person per group should turn in the zip file!

To discourage late submissions, a penalty of 20% per day (no partial penalty) will be
imposed. This means that if your submission is delayed by more than 5 days, do
not even bother submitting. You certainly do not want this delay to hurt your next
project!

VIl. Coding Style:

Be sure to observe the following standard naming conventions and style. These will be
used across all projects for this course; hence it is necessary that you understand and
follow them correctly. You can look this up on the web. Remember the following:
a. Class names begin with an upper-case letter, as do any subsequent words in the
class name.
b. Method names begin with a lower-case letter, and any subsequent words in the
method name begin with an upper-case letter.
c. Class, instance and local variables begin with a lower-case letter, and any
subsequent words in the name of that variable begin with an upper-case letter.
d. No hardwiring of constants. Constants should be declared using all upper-case
identifiers with _ as separators.
e. Alluser prompts (if any) must be clear and understandable.
Give meaningful names for classes, methods, and variables even if they seem to

Chakravarthy Page 14 of 16 Project 2

CSE 4331/5331 - Fall 2025 (All Sections)

be long. The point is that the names should be easy to understand for a new
person looking at your code.

g. Your program is properly indented to make it understandable. Proper matching of
if ... then ... else and other control structures is important and should be easily
understandable.

n. Do not put multiple statements in a single line.

In addition, ensure that your code is properly documented in terms of comments and
other forms of documentation.

VIIl. Grading Scheme for the Complete Project:
The project will be graded using the following rubric:

1. Correctness of the TxMgr code:

a. Correctness of Subroutines 30
i. readTx() 5
ii. writeTx() 15
iii. commitTx() 5
iv. abortTx() 5
b. Correctness of Output Log Files 30
(For all inputs given including spread sheet)
2. Documentation and commenting of the code: 10
(including coding style)
3. Answering questions during demo 30
TOTAL 100

5 days after the due date, the submission will not make any sense as there is a penalty
of 20% per day (no partial penalties within a day!).

Your program must be executable (without any modification by us or you during the
demo) from the WSL Linux command prompt or Cygwin command prompt (either on
UTA’s Omega server or a PC or laptop). So, please test it for that before submitting it.
However, the source code files can be created and/or edited on any editor that produces
an ASCII text file. As | mentioned in the class, an IDE is not necessary for this and
subsequent projects. If you decide to use it, please learn it on your own and make sure
your code compiles and executes with appropriate package information.

Chakravarthy Page 15 of 16 Project 2

CSE 4331/5331 - Fall 2025 (All Sections)

Interview with the team members

If we suspect that the code is copied or plagiarized from anywhere, we reserve the
right to ask the team members to explain the code and the output. If it is determined
that the code is copied or if the team members are unable to explain what they have
done, we intend to take full action as dictated by the academic dishonesty procedures
of UTA (that | am bound by.)

Just want to remind students that we use a sophisticated tool to check for similarity

of code. Also, we input previous project implementations at UTA and code from
Internet/Github. All the best!

Chakravarthy Page 16 of 16 Project 2

	Made available on: 09/20/2025
	This project implements a transaction manager that manages concurrency control using locking. You will implement the strict two-phase locking (S2PL) protocol with shared locks for read and exclusive locks for write. The transaction manager handles loc...
	I. Problem Statement:
	II. Transaction manager interface
	III. Overall Approach
	III. What you are asked to do:
	IV. Getting Started
	V. Project Report
	 Each input and its output (.log file contents) as shown in this document for S2T.txt
	 Also include all .log files in the .zip uploaded for each test case with proper naming. For example, if the input file name is Multi_ROTxs.txt, the log file name should be MultiROTxs.log
	 spread sheet that shows maximum times you were able to run each test case correctly. Follow the format given in test-robustness.xlsx in test-files dir. The TA will ask you to run a couple from this list during the demo
	 Overall Status
	 Where you encountered difficulty
	 File Descriptions
	 Division of Labor
	 Logical errors and how you handled them
	VI. What to Submit
	 Only one person per group should turn in the zip file!
	VII. Coding Style:
	VIII. Grading Scheme for the Complete Project:
	IX. Interview with the team members

