10/10/2022

ARLINGTON.

CSE 4331/5331
Project 2
A Simple Tx Manager Implementation

Sharma Chakravarthy
Information Technology Laboratory (IT Lab)
Computer Science and Engineering Department
The University of Texas at Arlington, Arlington, TX 76019
Email: sharmac@cse.uta.edu
URL: http://itlab.uta.edu/

zLab

Note on Canvas and deadline

* Deadline indicated on the project description
is what you should go by

 If there is an extension, | will make an
announcement on Canvas explicitly indicating
that

1071072022 TSES33T-TnstructorDrSharma

Implement

* A transaction manager that is responsible for

— Starting a Transaction (Tx)

— Committing a Tx

— Aborting a Tx

— Performing read/write operations on items on behalf
of a transaction

— Acquiring necessary locks for performing operations
(e.g., read/write)

— Blocking transactions and continuing them when

resources become available

=

CSE533T-Tnstructor:Dr.Sharma

=

Basics

* You are given
— Zgt_test.C
* Implemented: accepts input and calls appropriate methods
— zgt_tm (transaction manager class)
* Partially implemented
— zgt_tx (transaction class)
« partially implemented
* This is where you will spend most of your time
— Zgt_ht class // implements the lock hash table

« Completely Implemented; you may have to add multiple
occurrences of the same objects for read only Txs

— Zgt_semaphore.C //does p, v, and other operations
* Completely Implemented (plz understand)
* Hash table size and other constants are defined as
well

| wn

1071072022 TSE533T- TnstructorDrSharma

10/10/2022

Input format . Input Example &
- 1/ serial hi
* Not very forgiving; be careful //Ze(nalsioy
— // up to 10 words of comment /[same object accessed
J/ multiple times
— // up to 10 tokens per line! Log S2Tlog < log output file name created where you execute the program (in src directory)
— Log logfileName Seame1 W
— BeginTx Txid R or W//begins a new transaction with Txid; Read 12
L Write 13
— Read Txid item // Transaction Txid reads object item Wiite 14
— Write Txid item //increments the object value by 1 read 11
write 12
— AbortTx Txid //aborts Txid and release all resources write 14
— CommitTx Txid //commits Txid and release all resources :::iml:
— itemis an integer from 1 to MAX_ITEMS (15, i think) begintx 2 W
— TxId is an integer from 1 to MAX_TRANSACTIONS (10) e 22
— Read and write are simulated by inc and dec operations + write 26
idling for some number of cycles to simulate computation Z“:‘“m:‘;
end all

1071072022 TSES33T-nstructor:Dr Sharma 1071072022 TSES33T- mstructorDr.Sharm

Labj o . H H H Labj
: (& utput file name is in the input ¢
What to implement P P
. . . . TxIid Txtype Operation Obld:Obvalue:optime LockType Status TxStatus
* The following five functions have to be implemented now BeginTx
in zgt_tx.C. As needed, additional functions to - peac 27 peadlock Granvec - »
support the above need to be implemented as well. n WriteTx Writelock Granted P
) T1 WriteTx WriteLock ~ Granted P
— begintx(thrdArguments), m ReadTx Readlock Granted P
T1 WriteTx WriteLock ~ Granted P
- readtx(thrdArguments), T1 WriteTx Writelock Granted P
- Writetx(thrdArgumentS), Tl WriteTx 4:3:277 WriteLock Granted P
T CommitTx also prints objects held
— aborttx(thrdArguments), T oW BeginTx
. T2 ReadTx 5:-1:235 Readlock Granted P
— committx(thrdArguments). ™ WriteTx 5 Writelock Granted P
. s 1k T2 WriteTx 6:1:235 WriteLock Granted P
* The return type is void ie) ReadTx 6:0:235 Readlock Granted P
. T2 C itT) I ts objects held
* Parameters need to be passed in a structure (param) ommiRe srop e
Read decrements the count and write increments the count; can check whether the
computation is correct!
@» 1071072022 CSES33T-Tnstructor:DrSharma @ 1071072022 TSE533T-TnstructorDrSharma

10/10/2022

Alternate Output T

(due to interleaving of threads)

Txid TxType Operation Obld:Obvalue:optime LockType Status TxStatus
T W BeginTx

T ReadTx 1:-1:277 Readlock ~ Granted P
T ReadTx 2:1:277 Readlock Granted P
7w BeginTx

T WriteTx 3:1:277 WriteLock Granted P
T2 ReadTx Readlock Granted P
T WriteTx Writelock Granted P
il WriteTx WriteLock Granted P
T ReadTx 1:-2:277 Readlock Granted P
el WriteTx 6:1:235 WriteLock Granted P
T WriteTx 2:0:277 WriteLock Granted 3
vl ReadTx 6:0:235 Readlock ~ Granted P
T WriteTx 4:2:277 WriteLock Granted P
¥l CommitTx also prints objects held

T WriteTx 4:3:277 Writelock Granted P
T CommitTx also prints objects held

Read decrements the count and write increments the count; can check whether the
computation is correct!

1071072022 TSES33T-nstructor:Dr Sharma
a W

1 Lab]
Overall Approach
TRANSACTION MANAGER
Linked list of transactions
LASTR \-{ D ‘ PID ‘ SGNO ‘ 0BNO |STATUS‘ LOCKMODE ‘SEMXO ‘ HEAD ‘ TXTYPE ‘NEXTR'—»
HEAD
\ \b{LOCKMODEl SGNO ‘DB}\'O ‘ TID | PID ‘XEXTP‘ NEXT |
MUTEXPOOL
CONDPOOL Object Hashed
CONDITION SET LOCKMODE‘ SGNO ‘OBXO ‘ TID | PID ‘\[xnv| NEXT |
Object Hashed
OBJECTS ARRAY
Next: pointer to next obj in the same bucket
OPTIME Nextp: pointer to obj held by the SAME Tx
e PID is the thread id; SGNO is set to 1
SEQNUM OBNO is the item number
WATGRAPH Lock Hash Table OPTIME for simulating read and write
LOGFILE Obj array: shared objects
Transaction Manager Table SEQNUM: for ordering ops WITHIN a Tx
"L W

Some outputs for debugging

printing the Hash table

Bucket Tid objno lockmode
0:11S->

4:22S->

printing the tx list

Tid TxType Thrid objno lock status semno

3 R -82814656 2 S W -1

2 W -145782464 1 X W 2

1 W -187754176 2 X W 1

Txs 2 and 1 have other Txs waiting on them; if the sems are
there, then they are used for making a Tx wait

Tx 3 has no one waiting on that Tx (-1)

| A

Lab]

“Sequencing” the Operations of a Tx
* Each operation of a Tx is numbered from 0
(begin) to — (n-1) (commit/abort)
— Example: If a tx has 5 operations, then they are
numbere‘d vfrom Oto-4

theNum, char type)

© 29t_tm: 1BeginTx (

bicder BeginTx
Flueh (stdout)

t param#)malloc(sizeof (struct param);

count= SEQNUMLEid]=";

20t tas TaRend(long 4, 1o cbno, int e ReadTx

) £€Lush (stdout) ;

« parant)alloc(sizect (param) ;

nodeint
nodeint.

nodeinfo->count = --SEQNUMItid] ;

Kravarthy © 7

© Sharm
a ¥

10/10/2022

Lab]
“Sequencing” the Operations of a Tx

* Three arrays initialized for this purpose

zgt_tm{

In zgt_tm.h

zgt_tx *lastr

29t hlink *head[ZGT_DEFAULT_HASH TABLE_SIZE];

pthread mutex_t mutexpool [MAX TRANSACTIONS+] ;

pthread cond t condpool [MAX_TRANSACTIONS+ 1;
int condset [VAX TRANSACTIONS+];

* Indexing begins from 1 in most of the code, thus for k Txs
— (k+1) mutexes
* A mutual exclusion object (mutex) is a program object that allows
multiple program threads to share the same resource
— (k+1) conditional variables
* Synchronization device that allows threads to suspend execution and relinquish the
processors until some predicate on shared data is satisfied
— Condset[i]: Specifies at any point the current operation being executed
for Tx i

© Sharma Chakravarthy © 3
a W

Labj
" H ”n H
Sequencing” the Operations of a Tx
* Two operations for guaranteeing that operations (threads) of
a particular Tx are executed in sequence (in zgt_tx.c)
it until the
pthread mutex lock (&
// Lock mutex([t] to make o
// threa f sa transa
while (ZGT_Sh->condset[tid] != count) // wait if condset|[t s != count
pthread_cond_wait (&2GT_Sh->condpool [tid] , &ZGT_Sh->mutexpool [tid]) ;
}
// Otherside of the start
/7 = s the conditional
void *finish_operation(long tid){
ZGT_Sh->condset [tid]--; // decr condset[tid] for allowing the next op
pthread cond broadcast (&% h->condpool [tid]) ;// other waiting threads of same tx
pthread mutex unlock (§ZGT_Sh->mutexpool [tid]) ;
}
© Sharma Chakravarthy © 4

Keep these in mind T=v
1. Don'’t forget to put your team no in zgt_tm.C
2. ipcs =s lists semaphores NOT released by you

3. ipcs_cleanup.sh releases semaphores held by
you

4. When your program hangs, it does not release

resources; use ipcs_cleanup

5. Understand the output; comes handy for
debugging

6. Once everything is working, turn off
DEBUGFLAGS to stop debugging output

7. You can redirect the output using >& to debug

© Sharma
a W

How is this project different s

1. It does not have a deadlock detector
a. It hangs more often
2. There is NO EXPLICIT scheduling

a. Depends on OS thread scheduling and race
conditions

b. This is a big difference from a DBMS
3. Disk read/write are simulated
4. There is No buffer manager!

© Sharma Chakravarthy © .

| wn

10/10/2022

Flow and Tx states

¢ The main thread (in zgt_test.C) creates a transaction
manager object and the needed hash table in the
main or test program. There is only one transaction
manager object. However, there will be one
transaction object for each transaction, created by
begin Tx input.

* Transaction states (reflected in the tx object)
— TR_ACTIVE (P)
— TR_WAIT (W)
— TR_ABORT, (A)
— TR_COMMIT (E)

T071072022 CSES33T- Tmstructor DrSharm
4%

Locking of objects

* An object is inserted into the hash table if a lock can be
obtained for that object by that tx. The presence of an
object in the lock table indicates that that object is being
used by a tx. Lockmode in the tx object indicates the type
of lock a Tx is waiting for (S or X). TxType is used to
indicate the type of the tx (R or W).

e All Txs are linked using lastr

* Head points to the hash table

* All objects within the same bucket are linked using next

* Head of Tx object points to the objects held by that tx as
a list (using nextp of object)

* Semno in the tx object is used to make other txs wait for
that tx on that semno (Tx k uses semno k)

To7T072022 TSESTIT mstructorDrShgma
4%

Overall Approach

TRANSACTION MANAGER
Linked list of transactions
LASTR \A{ ™ l PD lssxo l 0BNO ‘STATUS| LOCKMODE |SEMNO l H:EADITXTYPE ‘M:{TR}—»
HEAD
™ . .
oor \DILOCK.\IODEl SGNO |OBNO|1TD ‘Pl’D ‘I\E‘(TP ‘ NEXT ‘
CONDITION SET LOCKMODE | SGNO ‘OBNO ‘ TID ‘ PID ‘I\'E{TP ‘ NEXT ‘
Object Hashed
OBJECTS ARRAY
Next: pointer to next obj in the same bucket
OPTIME Nextp: pointer to obj held by the SAME Tx
iy PID is the thread id; SGNO is set to 1
SEQNUM OBNO is the item number
Lock Hash Tabl N - ’
WATGRAPH o ° OPTIME for simulating read and write
LOGFILE Obj array: shared objects
Tramsacton Mamager Table SEQNUM: for ordering ops WITHIN a Tx

A

Example

* For example, if Tx 1 is waiting on Tx 2 for
object 6 for writing (X lock), then the tx
objects will have the following information

Tid Thrid objno lock Txstatus TxType semno
2 2051 -1 P w
11026 6 X W w

2 //semno not -1 means someone is waiting
-1 //-1 means is no one is waiting on this tx

Lockmode X indicates that Tx 1 waiting for an X lock on item 6 that is being
held by T2, blank indicates initial value

Txstatus indicates that T1 is waiting and T2 is active

Txtype indicates the type of the transaction (R for readonly or W for
read/write)

IT-TnstructorDrSRbma

1071072022
a W

10/10/2022

Deadlock

* For example, if Tx 1 is waiting on Tx 2 for
object 6 for writing (X lock), and Tx 2 is waiting
on Tx 1 for object 4 for reading (S lock) then
the tx objects will have the following
information

Tid Thrid objno lock Txstatus TxType semno
2 2051 4 s w R 2
1 102 6 X w w 1

A deadlock can be formed by 2 or more Txs. Since deadlocks can form any
time a lock is requested, it needs to e checked periodically for every time a
lock is requested.

CSES33T- Tnstructor:DrSharma

T071072022
A

l Lab]

Important

* Lock table needs to be locked for every operation
— This is done by using one semaphore for the entire table
— In this implementation sem (an attribute of TxMgr object)
is an array of locks
— Sem 0 is used for the TM table table, sem k by Tx k
* Sem O is initialized to 1 to allow first operation

* Others sems are initialized to 0 as a p operation is done to make a
Tx wait!

* Important: Hold a lock for the shortest duration
* Never suspend/wait holding a lock

* Make sure all p operations have a corresponding v
operation (irrespective of the conditionals and flow)

hstructor:Dr.Sharm

1071072022 TSESTIT
A

Handling a Lock Request (a la project 2) y =

Lock Request (XID, OID, Mode)

OID Locked by the same XID?

Yes
_Te
No j Grant Lock
Mode==5 /
Mode==X gy No

Currently locked by another Tx?
Currently Locked by another XID?

Yes, by a R/ W/ es, by a R Tx

Wait queue not empty?

Put on Queue

Grant Lock This is based on whether you want to

Give preference to read only Txs!

Thank You !

© Sharma Chakravarthy © 2

PTHREADS AND SEMAPHORES

—
Am,wm of Texas “#Lab)
ARLINGTON.. e

10/10/2022

—
Am,wm of Texas “#Lab)
ARLINGTON.. e

PTHREADS

Pthreads

* To take full advantage of the capabilities provided by
threads, a standardized programming interface was
required.

¢ For UNIX/Linux systems, this interface has been
specified by the IEEE POSIX 1003.1c standard (1995).

* Implementations which adhere to this standard are
referred to as POSIX threads, or Pthreads.

av

| &

Thread Basics

* Multiple threads can be created within a
process.

* Threads use process resources and exist
within a process (different from a real DBMS)

* Scheduled by the operating system (you have
some control over its scheduling, can specify
FIFO, etc.)

* Run as independent entities within a process.

* If the main program blocks, all the threads will
block

1071072022 CSES33T- Tnstructor D Sharma
v

10/10/2022

i Lab] i Lab]

Thread management

* Creating and deleting a thread

Pthread_create(thread, attr, start_routine, arg)
where
- thread argument returns the new thread id.

- attr parameter for setting thread attributes. NULL for the
default values.

- start_routine is the C routine that the thread will execute once it
is created

- A single argument may be passed to start_routine via arg. It
must be passed by reference as a pointer cast of type void.

— If you need to pass multiple args, need to create an
struct and pass that (param in our case)

CSES33T- Tnstructor:DrSharma

Example

#include <pthread.h>
#include <stdio.h>

void *PrintHello(void *threadid) { printf("\n%d: Hello World!\n", threadid);
pthread_exit(NULL); }

int main(){
pthread_t thread;
intrc, t=1;
printf("Creating thread %d\n", t);
rc = pthread_create(&thread, NULL, PrintHello, (void *)t);
if (rc)
{ printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1); }

GctorDrSHarma

T071072022 ST
v

Other thread functions

¢ pthread_self()
* Attribute Set

pthread_attr_init(&attr)
pthread_attr_setschedpolicy(&attr, SCHED_FIFO)
* Exiting
pthread_exit(status);
This routine terminates the calling thread and makes a status value

available to any thread that calls pthread_join and specifies the
terminating thread.

1071072022 TSES33T TstructorDr S
A

:
ARLINGTON.

SYNCHRONIZATION PRIMITIVES

10/10/2022

. . . ey ab . . . ey ab
Synchronlzatlon pr|m|t|ves] Synchronlzatlon prlmltlves
e Semaphores * Semaphores
— Alocking mechanism
— Any thread can acquire and release
* Mutexes -
— Generalization of mutex.
— A semaphore restricts the number of simultaneous users
« Condition variables ofa sha.xred resource up“to a maximum number
— Operations: p and v (Dijkstra)
* We will be using all of the above and | want * Think of 4 toilets with 4 keys. 4 people can
you to understand clearly why! be using the resource at the same time!
* We use this for the lock table
@ 10/10/2022 CSE5331- instructor:Dr.SHarm @ 1071072022 CSES instructor:Dr.SHarm:

semaphores

* Array of semaphores are generated by semid =
semget(key, nsems, semflg) where nsems =0
to no_of transactions.

* Semaphore O(SHARED_MEM_AVAIL) is for
locking the transaction manager.

* Semaphores: 1 to no_of_transactions are used
for threads to wait when objects are locked
by other transactions.

@ 1071072022

semaphore

* semaphore creator can change its ownership or
permissions using semctl(); and semaphore
operations are performed via the semop()
function

* Semaphore 0 is initialized to 1 i.e., holds one
resource (transaction manager). Do ‘p’(zgt_p)
operation to obtain the resource and ‘v’(zgt_v) to
release the resource.

* Rest of semaphores are initialized to 0 i.e., hold
no resources. Hence on the first p operation, the
thread/process will wait till a v operation is done
on the semaphore.

CSES33T- Tnstructor:Dr.SHarma

1071072022
2y

10/10/2022

Synchronization primitives (2) L

e Mutexes: Deals with synchronization, which is an
abbreviation for "mutual exclusion”
— Asemaphore with count as 1
— Asignaling mechanism
— There is ownership with mutex
— Only the owner can release the lock

— Used for exclusive access to a shared resource (critical
section)

— Operations: lock, unlock
* This s like the key to the door of the bathroom!
Only one person can use at a time!

1071072022 CSES33T- Tmstructor DrSarm
4%

Synchronization primitives (3)

¢ Condition variables (CV): Condition variables provide
yet another way for threads to synchronize.

— While mutexes implement synchronization by controlling
thread access to data, condition variables allow threads
to synchronize based upon the actual value of
data/condition.

— Athread can wait on a CV and then the resource
producer can signal or broadcast the variable

— Tied to a mutex for mutual exclusion

— Wait for event and signal or broadcast

. Signal if any thread can proceed

. Broadcast if you have to select a thread based on Cv value!!
. We use this for sequencing operations of a Tx. Using conset and
SEQNUM

To7T072022 TSESTIT mstructorDrSHtma
4%

Condition Variable

* To synchronize thread A and B
— Declare and initialize global data/variables for
synchronization. e.g:condset[tid] =0
— Declare and initialize a condition variable object.
* pthread_cond_init (condition,attr)
— Create and initialize associated mutex.
* pthread_mutex_init (mutex,attr)

— Create threads A and B to do work.

Astructor-DrSHama

1071072022
a W

Thread A Thread B

* Lock associated mutex * Lock associated mutex and check

« Change the value of the variable value of a variable(condset[tid]=0)
(If condset[tid] =0, set it to —1) * Call pthread_cond_wait to perform

a blocking wait if condset([tid]!= 0.

Note that a call to

pthread_cond_wait automatically

and atomically unlocks the

¢oOperations

* Set the global variable
condset[tid]= 0, for thread B to

continue N N .
associated mutex variable so that it

Do,) - can be used.

pthread_cond_signal(condition)) .

or * When signalled, wake up. Mutex is

pthread_cond_broadcast(conditio automatically and atomically

n) locked.

* Explicitly unlock mutex after

* Unlock mutex A N
completion of operation.

* Continue
¢ Continue

CSE5331-structor:Dr.Sharma 70

10

Compilation Details

* Pthreads are defined as a set of C language
programming types and procedure calls,
implemented with a pthread.h

* athread library ‘pthread’ has to be linked.
ie. -Ipthread

Ly!_%b

10/10/2022

11

