
1

Semaphores

Chapter 7 from Inter-process Communications in Linux:

The Nooks & Crannies

by John Shapley Gray

Publisher: Prentice Hall

Pub Date: January 13, 2003

2

Topics

 Semaphore Definition

 Creating and Accessing Semaphore Sets

 Semaphore Control

 Semaphore Control Details

 Semaphore Operations

 Semaphore Operation Details

 Deleting Semaphores

SEMAPHORES

3

Semaphores

SEMAPHORES

4

Semaphore Definition

 A semaphore is a data structure that is shared

by several processes. Semaphores are most

often used to synchronize operations (to avoid

race conditions) when multiple processes

access a common, non-shareable resource.

 By using semaphores, we attempt to avoid other

multi-programming problems such as:

 Starvation

» Occurs when a process is habitually denied access to

a resource it needs.

 Deadlock

» Occurs when two or more processes each hold a

resource that the other needs while waiting for the

other process to release its resource.

SEMAPHORES

5

Semaphore Definition

 To indicate a process has gained access to the

resource, the process decrements the

semaphore.

 For events to progress correctly, the test and

decrement operation on the semaphore must be

 atomic (i.e., noninterruptible/indivisible).

 There are two kinds of Semaphores:

 Binary semaphores

» Control access to a single resource, taking the value

of 0 (resource is in use) or 1 (resource is available).

 Counting semaphores

» Control access to multiple resources, thus assuming a

range of nonnegative values.

SEMAPHORES

6

Semaphore Definition

 Semaphore is a nonnegative integer that is

stored in the kernel.

 Access to the semaphore is provided by a

series of semaphore system calls.

SEMAPHORES

7

Creating and Accessing Semaphore Sets

 Before a semaphore set can be used, it must be

created.

 The creation of the semaphore set generates a

unique data structure that the system uses to

identify and manipulate the semaphores.

 A conceptual arrangement of a system

semaphore structure for a newly allocated set of

three semaphores is shown in Figure 7.1.

SEMAPHORES

8

Creating and Accessing Semaphore Sets

SEMAPHORES

Figure 7.1. Data structures for a set of three semaphores.

9

Creating and Accessing Semaphore Sets

 To create a semaphore or gain access to one

that exists, the semget system call is used.

 (Table 7.1)

 Exp 7.1 : A program to create semaphores

SEMAPHORES

p71.c
p71.c

10

Creating and Accessing Semaphore Sets

SEMAPHORES

Return

int semget (key_t key,intnsems,int semflg); Summary

2 Manual Section

<sys/types.h>

<sys/ipc.h>

<sys/sem.h>

Include File(s)

Sets errno Failure Success

Yes -1 The semaphore identifier

Table 7.1. Summary of the semget System Call

11

Creating and Accessing Semaphore Sets

 The semget system call takes three arguments:

 The first argument, key, is used by the system to

 generate a unique semaphore identifier.

 The second argument, nsems, is the number of

semaphores in the set.

 The third argument, semflg, is used to specify

access permission and/or special creation

conditions.

SEMAPHORES

12

Creating and Accessing Semaphore Sets

 If the semget system call fails, it returns a −1

and sets the value stored in errno.

 (Table 7.2.)

SEMAPHORES

13

Creating and Accessing Semaphore Sets

SEMAPHORES

Explanation perror Message Constant #

Semaphore identifier does not exist for this key,

and IPC_CREAT was not set.

No such file or directory EOENT 2

Insufficient system memory to allocate the

semaphore set.

Cannot allocate

memory

ENOMEM 12

Semaphore identifier exists for this key, but

requested operation is not allowed by current

access permissions.

Permission denied EACCES 13

Semaphore identifier exists for this key, but the

flags IPC_CREAT and IPC_EXCL are both set.

File exists EEXIST 17

System-imposed limit (SEMMNI) for the

number of semaphore sets or systemwide

maximum number of semaphores (SEMMNS)

has been reached.

No space left on device ENOSPC 28

Specified semaphore set is marked for removal. Identifier removed EIDRM 43

Table 7.2. semget Error Messages.

14

Semaphore Control

 The semctl system call allows the user to

perform a variety of generalized control

operations on the system semaphore structure,

on the semaphores as a set, and on individual

semaphores.

 (Table 7.3)

SEMAPHORES

15

Semaphore Control

SEMAPHORES

Return

int semctl(int semid, int semnum, int cmd,

 union semun arg);

Summary

2 Manual Section

<sys/types.h>

<sys/ipc.h>

<sys/sem.h>

Include File(s)

Sets errno Failure Success

Yes -1 0 or the value requested

Table 7.3. Summary of the semctl System Call

16

Semaphore Control

 The semctl system call takes four arguments:

 The first argument, semid, is a valid semaphore

 identifier that was returned by a previous semget

system call.

 The second argument, semnum, is the number of

semaphores in the semaphore set (array), 0

means this number (index) is not relevant.

 The third argument to semctl, cmd, is an integer

command value. the cmd value directs semctl to

take one of several control actions. Each action

requires specific access permissions to the

semaphore control structure.

SEMAPHORES

17

Semaphore Control

 The fourth argument to semctl, arg, is a union of

type semun. Given the action specified by the

preceding cmd argument, the data in arg can be

one of any of the following four values:

» An integer already was set in the val member of

sem_union that used with SETVAL to indicate a

change of specific value for a particular semaphore

within the semaphore set.

» A reference to a semid_ds structure where information

is returned when IPC_STAT or IPC_SET is specified.

» A reference to an array of type unsigned short

integers; the array is used either to initialize the

semaphore set or as a return location when specifying

GETALL.

» A reference to a seminfo structure when IPC_INFO is

requested.

SEMAPHORES

18

Semaphore Control

 If semctl fails, it returns a value of −1 and sets

errno to indicate the specific error.

 (Table 7.4.)

SEMAPHORES

19

Semaphore Control

SEMAPHORES

Explanation perror Message Constant #

Value for cmd is IPC_RMID or IPC_SET and the

calling process in not the owner or superuser.

Operation not permitted EPERM 1

The requested operation is not allowed by the

current access permissions for this process.

Permission denied EACCES 13

The fourth argument to semctl contains a

reference to an illegal address (the union semun

may not have been declared).

Bad address EFAULT 14

• The semaphore identifier is invalid.

• The number of semaphores specified is less

 than 0 or greater than the number in the

 semaphore set.

• The value for cmd is invalid.

• The value for cmd is IPC_SET, but the value

 for sem_perm.uid or sem_perm.gid is invalid.

Invalid argument EINVAL 22

Table 7.4. semctl Error Messages.

20

Semaphore Control

SEMAPHORES

Explanation perror Message Constant #

The value for cmd is SETVAL or SETALL, and

the value to be assigned is greater than the

system maximum or less than 0.

Numerical result out of

range

ERANGE 34

Specified semaphore set is marked for removal. Identifier removed EIDRM 43

Table 7.4. semctl Error Messages.

21

Semaphore Control Details

 The following cmd values cause semctl to act

upon the system semaphore structure

 IPC_STAT

» Return the current values of the semid_ds structure

for the indicated semaphore identifier. The returned

information is stored in a user-generated structure

 referenced by the fourth argument to semctl. To

specify IPC_STAT, the process must have read

permission for the semaphore set associated with the

semaphore identifier.

SEMAPHORES

22

Semaphore Control Details

 IPC_SET

» Modify a restricted number of members in the

semid_ds structure. The members sem_perm.uid,

sem_perm.gid and sem_perm.mode can be changed

if the effective ID of the accessing process is that of

the superuser or is the same as the ID value stored in

sem_perm.cuid or sem_perm.uid. To make these

changes, a structure of the type semid_ds must be

allocated. The appropriate members' values are then

assigned, and a reference to the modified structure is

passed as the fourth argument to the semctl system

call.

 IPC_RMID

» Remove the semaphore set associated with the

semaphore identifier.

SEMAPHORES

23

Semaphore Control Details

 The following cmd values cause semctl to act

upon the entire set of semaphores:

 GETALL

» Return the current values of the semaphore set. The

values are returned via the array reference passed as

the fourth argument to semctl. The user is responsible

for allocating the array of the proper size and type

prior to passing its address to semctl. Read

permission for the semaphore set is required to

specify GETALL. When specifying GETALL, the

argument semnum is ignored.

SEMAPHORES

24

Semaphore Control Details

 SETALL

» Initialize all semaphores in a set to the values stored

in the array referenced by the fourth argument to

semctl. Again, the user must allocate the initializing

array and assign values prior to passing the address

of the array to semctl. The process must have alter

access for the semaphore set to use SETALL. When

specifying SETALL, the sem_ctime member of the

system semaphore data structure is updated.

SEMAPHORES

25

Semaphore Control Details

 The last set of semctl cmd values acts upon

individual semaphores or upon specific

members in the semid_ds structure. All of these

commands require read permission except for

SETVAL, which requires alter permission:

 GETVAL

» Return the current value of the individual semaphore

referenced by the value of the semnum argument.

 SETVAL

» Set the value of the individual semaphore referenced

by the semnum argument to the value specified by the

fourth argument to semctl.

SEMAPHORES

26

Semaphore Control Details

 GETPID

» Return the PID from the sem_perm structure within

the semid_ds structure.

 GETNCNT

» Return the number of processes waiting for the

semaphore referenced by the semnum argument to

increase in value.

 GETZCNT

» Return the number of processes waiting for the

semaphore referenced by the semnum argument to

become 0.

SEMAPHORES

27

Semaphore Operations

 Additional operations on individual semaphores

are accomplished by using the semop system

call.

 (Table 7.5.)

SEMAPHORES

28

Semaphore Operations

SEMAPHORES

Return

int semop(int semid, struct sembuf *sops,

 unsigned nsops);

Summary

2 Manual Section

<sys/types.h>

<sys/ipc.h>

<sys/sem.h>

Include File(s)

Sets errno Failure Success

Yes -1 0

Table 7.5. Summary of the semop System Call

29

Semaphore Operations

 The semop system call takes three arguments:

 The first argument, semid, is a valid semaphore

 identifier that was returned by a previous

successful semget system call.

 The second argument, sops, is a reference to the

base address of an array of semaphore

operations that will be performed on the

semaphore set associated with by the semid

value.

 The third argument, nsops, is the number of

elements in the array of semaphore operations.

SEMAPHORES

30

Semaphore Operations

 If semop fails, it returns a value of −1 and sets

errno to indicate the specific error.

 (Table 7.9.)

SEMAPHORES

31

Semaphore Operations

SEMAPHORES

Explanation perror Message Constant #

While in a wait queue for the semaphore, a signal

was received by the calling process.

Interrupted system

call

EINTR 4

The value for nsops is greater than the system

limit.

Argument list too

long

E2BIG 7

The requested operation would cause the calling

process to block, but IPC_NOWAIT was specified.

Resource temporarily

unavailable

EAGAIN 11

The limit for number of processes requesting

SEM_UNDO has been exceeded.

Cannot allocate

memory

ENOMEM 12

The requested operation is forbidden by the

current access permissions.

Permission denied EACCES 13

The value for sops references an illegal address. Bad address EFAULT 14

• The semaphore identifier is invalid.

• The number of semaphores requesting

 SEM_UNDO is greater than the system limit.

Invalid argument EINVAL 22

Table 7.9. semop Error Messages.

32

Semaphore Operations

SEMAPHORES

Explanation perror Message Constant #

The value for sem_num is < 0 or >= to the number

of semaphores in the set.

File too large EFBIG 27

The requested operation would cause the system

semaphore adjustment value to exceed its limit.

Numerical result out

of range

ERANGE 34

The semaphore set associated with semid value

has been removed.

Identifier removed EIDRM 43

Table 7.9. semop Error Messages.

33

Semaphore Operation Details

 When the sem_op value is negative, the process

specifying the operation is attempting to

decrement the semaphore.

 The decrement of the semaphore is used to

record the acquisition of the resource affiliated

with the semaphore.

 When a semaphore value is to be modified, the

accessing process must have alter permission

for the semaphore set.

 (Table 7.6.)

SEMAPHORES

34

Semaphore Operation Details

Action Taken by semop Flag Set Condition

Subtract abs(sem_op) from semval. semval >= abs(semop)

Subtract abs(sem_op) from semval and update

the undo counter for the semaphore.

SEM_UNDO semval >= abs(semop)

Increment semncnt for the semaphore and wait

(block) until

 •semval >= abs(semop), then adjust semncnt

 and subtract as noted in the previous two rows

 of table.

 •semid is removed, then return −1 and set errno

 to EIDRM.

 •A signal is caught, then adjust semncnt and

 set errno to EINTR.

semval < abs(semop)

Return −1 immediately and set errno to

EAGAIN.

IPC_NOWAIT semval < abs(semop)

Table 7.6. Actions Taken by semop when the Value for sem_op is Negative.

SEMAPHORES

35

Semaphore Operation Details

 When the sem_op value is positive, the process

is adding to the semaphore value. The addition

is used to record the return (release) of the

resource affiliated with the semaphore.

 Again, when a semaphore value is to be

modified, the accessing process must have alter

permission for the semaphore set.

 (Table 7.7.)

SEMAPHORES

36

Semaphore Operation Details

Action Taken by semop Flag Set Condition

Add sem_op to semval.

Add sem_op to semval and update the undo

counter for the semaphore.

SEM_UNDO

Table 7.7. Actions Taken by semop when the Value for sem_op is Positive.

SEMAPHORES

37

Semaphore Operation Details

 When the sem_op value is zero, the process is

testing the semaphore to determine if it is at 0.

 When a semaphore is at 0, the testing process

can assume that all the resources affiliated with

the semaphore are currently allocated (in use).

 For a semaphore value to be tested, the

accessing process must have read permission

for the semaphore set.

 (Table 7.8.)

SEMAPHORES

38

Semaphore Operation Details

Action Taken by semop Flag Set Condition

Return immediately. semval == 0

Return −1 immediately and set errno to EAGAIN. IPC_NOWAIT semval != 0

Increment semzcnt for the semaphore and wait

(block) until

• semval == 0, then adjust semzcnt and return.

• semid is removed, then return −1 and set errno

 to EIDRM.

• A signal is caught, then adjust semzcnt and set

 errno to EINTR.

semval != 0

Table 7.8. Actions Taken by semop when the Value for sem_op is Zero.

SEMAPHORES

39

Deleting Semaphores

 The semctl command with IPC_RMID removes the

semaphore in the program

 The command "ipcs -s" will list all semaphores on a

system.

 The command "ipcrm -s {semid}" will delete a

semaphore on system promt.

 To delete all semaphores you have authority over, you

can use this on system;

for semid in `ipcs -s | cut -d\ -f2`; do ipcrm -s $semid; done

 Exp 7.2 , Exp 7.3: See these header files which contain

all the semaphore system calls discussed so far.

SEMAPHORES

globsem.h
globsem.h
global.h
global.h

