CSE 4331/5331 — Fall 2025

Database Systems
Project la — index Choices for SQL Queries

Instructor: Sharma Chakravarthy
Description of the IMDb Database and Questions

Made availableon: 8/22/2025
Project Ia due date: 9/18/2025 (11:55 PM)

Submit on: Canvas (1 zipped folder containing a file with
English questions, SQL queries, and answers
obtained)

Weight: 8% of total

Total Points: 100

We have created a large database and populated it with Millions of rows of
International Movies and TV episodes information. It is known as the IMDb
database by the community (publicly available data set, but not as a
relational DBMS) and used by researchers in databases and other fields. The
details of the tables are given below. This has all movie and TV episode
information from the beginning (1925) until 2020 or so for both US and
other countries. You can query this database for looking up certain
information of interest to you, finding aggregate and statistical information
that you are interested in, and OLAP analysis queries (using CUBE ROLL UP)
as well to the extent possible using Oracle SQL.

The IMDb database includes the following information: movie title, year
produced, genres a movie belongs to, actors, writers, directors, runtime,
adult or non-adult classification, reviews in terms of votes on the movie,
average rating, region, language etc. Similarly for TV series.

The purpose of setting up this database and this project is to provide you
with an understanding of the differences between a toy DBMS (having 10 to
100 rows) and a reasonably large real-world DBMS, in terms of the kinds of
gueries you can ask, the response time, and appreciate the technology
behind a DBMS (query optimization, concurrency control, simple relational
abstraction, easy-to-use, non-procedural query language etc.)

Please make sure you do not write queries that produce large
amounts of output, such as list all rows of a table containing Millions
of rows. You need to think in terms of aggregate queries so you can
extract the sliver of information that you are interested in. Also, as
many fields contain strings with some delimiter, you need to be

Chakravarthy Project Ia Page 1 of 12

careful about string comparison and use the LIKE operator of SQL
with % and _ for picking out the correct string of interest (can also
use string matching). Converting strings into either lowercase
(LOWER(attribute) or UPPER(attribute)or upper case for comparison
is also a good idea. For example, genres can be matched using LIKE
‘Comedy’ or LIKE ‘Drama’. Note the first letter is capitalized. The
other genres present are Horror, Short, Thriller, Sci-Fi, Music,
Musical, to name a few. For years, use LIKE '200%' to get values in
the range 2000 to 2009. Similarly for others. Some populated field
values have a \N as their value. So, it is useful to have NOT LIKE ‘\N’
to exclude those. The same goes for names of actors or directors and
using LIKE with % and _ is a better idea.

Use select *
From your_table_name
Fetch first n rows only; //nis an integer
You can also use last or rownum (as in where rownum <= 10; etc.)

Please lookup Oracle SQL documentation
I. The following tables are populated in the database:

We have setup 2 identical databases imdb00 and imdb01. Hence you
need to prefix table names with the database name to query ten (e.g.,
imdb00.title_basics or imdb01.title_basics). We will be using the
database imdb01 as we will setup indexes in that database. Imdb00 will
have no indexes, and you can run the same queries on both databases
by changing the prefix. Imdb00 will act as the baseline for comparison.

Total Number of Tables: 9

Maximum Number of rows in a table: 27 million rows

Maximum Number of attributes in a table: 9; they are self-explanatory.
1. TITLE_BASICS table

SQL> describe TITLE_BASICS

Name Null? Type

TCONST NOT NULL VARCHAR2(10)
TITLETYPE NVARCHAR2(500)
PRIMARYTITLE NVARCHAR2(950)
ORIGINALTITLE NVARCHAR2(950)
ISADULT NUMBER(1)

Chakravarthy Semester Project Page 2 of 12

CSE 4331/5331 — Fall 2025

STARTYEAR NUMBER(4)
ENDYEAR NUMBER(4)
RUNTIMEMINUTES NUMBER(10)
GENRES NVARCHAR2(350)

SQL> select count(*) from TITLE_BASICS;

COUNT(*)

Total number of row: 4809386 (4.8 million rows)
3K 3K 5k 3K 3k 3K 3K 3k 3Kk 5K 3k 3K 5K 3k 3K 5K 3K 3k 3K 5K 3k 3K 5K >k 3K 5K 3k 3Kk 5k 3K 3K 3K 5K 3k 3K 5k >k 3K 5k 3k 3K 5K 3k 3K 5K 3K 3K 3K 5k >k 5k 5k >k kK >k >k kK >k Xk %k Xk

2. TITLE_CREW_WRITER table

SQL> describe TITLE_CREW_WRITER

Name Null? Type
TCONST NOT NULL VARCHAR2(10)
WRITERS NOT NULL VARCHAR2(10)

SQL> select count(*) from TITLE_CREW_WRITER;
COUNT(*)

Total number of rows: 5297540 (5.2 million rows)

3. TITLE_CREW_DIR table

SQL> describe TITLE_CREW_DIR

Name Null? Type
TCONST NOT NULL VARCHAR2(10)
DIRECTORS NOT NULL VARCHAR2(10)

SQL> select count(*) from TITLE_CREW_DIR;

COUNT(*)

Total number of rows: 3408484 (3.4 million rows)
3K 3K 3K 3K 3k 3k 3K 3k 3k 3k 3K 3K 3K 3K 5K 3K 3K 5K 5K 5K 5K 5K 5K 5K 5K 5K 5K 3K 3K 3K 3K 3k 3k 3K 3K 3k 3K 3K 3K 3K 3K 5Kk 3K 5K 5K 5K 5K 5K 5K 3K 5K 5K K K K kK kK kK kK k

4. TITLE_EPISODE table

Chakravarthy Project Ia Page 3 of 12

SQL> describe TITLE_EPISODE

Name Null?
TCONST NOT NULL
PARENTTCONST NOT NULL
SEASONNUMBER

EPISODENUMBER

SQL> select count(*) from TITLE_EPISODE;

COUNT(*)

VARCHAR2(10)
VARCHAR2(10)
NUMBER(9)
NUMBER(9)

Total number of rows:3206322 (3.2 million rows)
3K 3K 3k 5k >k >k >k 3k >k 3k 3k 3k 3k 3k >k 3k 3k 3k 5k 3K 5K 3K 3K 5K 5k 5K 5K 3K 3k 3K 3k 3k >k >k 3k >k >k 3k 3k 3k 3k 3k 3k 3k 5Kk 5k 5k 3K 5K 5K 5K 5K 5K 5K K K >k >k >k >k >k

5. TITLE_PRINCIPALS table

SQL> describe TITLE_PRINCIPALS
Name Null?

TCONST
ORDERING
NCONST
CATEGORY
JOB
CHARACTERS

NOT NULL

NOT NULL

VARCHAR2(10)
NUMBER(4)
VARCHAR2(10)
VARCHAR2(550)
VARCHAR2(500)
NVARCHAR2(800)

SQL> select count(*) from TITLE_PRINCIPALS;

COUNT(*)

Total number of row: 27054380 (27 million rows)

3K 3K 3K 3K 3K 3K 3K 3K 3K 5K 3K 3k 3k 5K 5K 3K >k 3K 5K 3K 3k 3K 3K 5K 3K K 3K 5K 5K K K 3K 5K 3K K 3K 5K 3K K K 3K 5K 3K K K 5K 5K Kk K K >k K kK K K >k k k Xk

6. TITLE_RATINGS tables

SQL> describe TITLE_RATINGS

Name Null?
TCONST NOT NULL
AVERAGERATING NOT NULL
NUMVOTES NOT NULL
Chakravarthy Semester Project

VARCHAR2(10)
NUMBER(5,2)
NUMBER(15)

Page 4 of 12

CSE 4331/5331 — Fall 2025

SQL> select count(*) from TITLE_RATINGS;

COUNT(*)

Total number of rows: 805011 (0.8 million rows)
3K 3K 3k 5k >k >k >k 3k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3Kk 3K 3K 3K 5K 5k 5K 5K 3K 3k 3K 3k 3k >k >k 3k >k >k 3k 3k 3k 3k 3k 3k 3k 3K 5k 5K 3K 5K 5K 5K 5K 5K 5K K K >k >k Xk >k >k

7. TITLE_AKAS table

SQL> describe TITLE_AKAS

Name Null? Type

TITLEID NOT NULL VARCHAR2(10)
ORDERING NUMBER(10)
TITLE NVARCHAR2(950)
REGION NVARCHAR2(550)
LANGUAGE NVARCHAR2(550)
TYPES NVARCHAR2(550)
ATTRIBUTES NVARCHAR2(500)
ISORIGINALTITLE NUMBER(2)

SQL> select count(*) from TITLE_AKAS;

COUNT(*)

3563547 (3.5 million rows)

3K 3Kk 3k >k 5k 5Kk 3k >k 5k 5k Kk 3k >k 5k 5k 3k >k 5k 5k Kk >k >k 5k 5k 3k >k 5k 5k 5k >k >k 5k 5k 3k >k 5k 5k Kk >k >k 5k 5k >k >k >k 5k >k >k >k >k >k >k >k 5k >k >k >k >k >k >k

8. NAME_TITLE_MAPPING table

SQL> describe NAME_TITLE_MAPPING

Name Null? Type
NCONST NOT NULL VARCHAR2(10)
TCONST NOT NULL VARCHAR2(10)

SQL> select count(*) from NAME_TITLE MAPPING:

COUNT(*)

14144524 (14 million rows)

3K 3K 3K 3K 3K 3K 3k 3K 3K 5K 3K 3k 3k 5K 5K 3K 3k 3K 5K 3K 3k 3K 5K 5k Kk K 3K 5K 5K K 3k 5K 5K 3k K 3K 5K 3K K K 5K 5k 3K K K 5K 5k %k K 3K 5k 3K kK K >k >k %k %k Xk Xk X

9. NAME_BASICS table

Chakravarthy Project Ia Page S of 12

SQL> describe NAME_BASICS

Name Null? Type

NCONST NOT NULL VARCHAR2(10)
PRIMARYNAME NOT NULL NVARCHAR2(950)
BIRTHYEAR NUMBER(4)
DEATHYEAR NUMBER(4)
PRIMARYPROFESSION VARCHAR2(900)

SQL> select count(*) from NAME_BASICS;

COUNT(*)

8424762 (8.4 million rows)

II. In this project, you are given 4 English queries on the IMDb database
described above. What you need to do is:

a) Translate these English queries into SQL and make sure they are
correct in terms of the answers you get

b) For EACH query, execute it on the imdb00 database where there
are no indexes. Record the response time

c) For Each query choose 4 different indexes (each can be multiple
indexes separate for each table) from among the indexes available
to the tables and run it on the imdb01 database. Remember, more
than one index may be available on any table.

d) Record the response time for each index chosen for each query and
create a table of response time plus the response time from imdb00
database which has no index as shown below.

e) Do an analysis of the response time based on what you have learnt
in the course on the use of indexing and file structure.

f) The table used for analysis should like

Query/index | Imdb00 Index 1 |Index 2 |Index 3 |Index 4

Q1

Q2

Chakravarthy Semester Project Page 6 of 12

CSE 4331/5331 — Fall 2025

Q3

Q4

If you are using different indexes for different queries, make a separate
table for each query. The column header should indicate the index type
used along with its description clearly.

Choice of indexes and analysis is the most important aspect of this project.

It should clearly indicate/justify the response time you see and your
explanation of why that is the case.

Hint: use of with clause makes it easier to write these queries. It is very
similar to the subqueries in the FROM clause.

1. Retrieve by the years (for a 10 year period, such as 2000 to 2009), the
count of movies produced in a genre (choose one from the genre list,
Comedy, Drama, Horror, Sci-Fi, ...) whose rating is greater than the
average rating of movies in that genre for that year.

Start
Year

Above_avg
134
136
123
153
176
220
224
207
257
267

2. For the above years, retrieve the total number of movies produced in
each genre and the average rating

Start
Year

Chakravarthy

Genres

Movies_produced
325
312
314
398
443
539

Project la Page 7 of 12

2006 Comedy
2007 Comedy
2008 Comedy
2009 Comedy

567
562
689
751

3. Choose you favorite actor and an actress and for each fine the number

of movies done by them for each year in the entire database

Here is the result for Tom Hanks

NB.PRIMARYNAME||','| [TB.STARTYEAR|[','| [COUNT(*)

Tom Hanks,2016,4
Tom Hanks,2004,3
Tom Hanks,1986,3
Tom Hanks,1989,2
Tom Hanks,2013,2
Tom Hanks,2011,2
Tom Hanks,2002,2
Tom Hanks,1998,2
Tom Hanks,1988,2
Tom Hanks,2017,2
Tom Hanks,1985,2
Tom Hanks,1995,2
Tom Hanks,1990,2
Tom Hanks,1999,2
Tom Hanks,1984,2
Tom Hanks,1993,2
Tom Hanks,1992,1
Tom Hanks,1987,1
Tom Hanks,2000,1
Tom Hanks,2006,1
Tom Hanks,1996,1
Tom Hanks,1994,1
Tom Hanks,2010,1
Tom Hanks,2019,1
Tom Hanks,2012,1
Tom Hanks,2009,1
Tom Hanks,2007,1
Tom Hanks,2015,1
Tom Hanks,2008,1

29 rows selected.

Chakravarthy

Semester Project

Page 8 of 12

CSE 4331/5331 — Fall 2025

b) Retrieve the average ratings of the movies by genre for a 5-year period

(e.g., 2010 to 2014) for each genre, Comedy, Drama, Horror, Sci-Fi,
Should have 24 rows of output, for 5 years and 4 genres.
start
year GENRES YEARLY_AVG
2010 Drama 6.35474326
2010 Horror 4.,93798077
2010 Sci-Fi 5.27391304
2010 Thriller 5.6872
2011 Drama 6.40383653
2011 Horror 4.,95151515
2011 Sci-Fi 5.17
2011 Thriller 5.78739496
2012 Drama 6.47727987
2012 Horror 4.98027211
2012 Sci-Fi 4.99583333
2012 Thriller 5.48928571
2013 Drama 6.46666667
2013 Horror 4.8939759
2013 Sci-Fi 5.46666667
2013 Thriller 5.61341463
2014 Drama 6.54582185
2014 Horror 4.94344828
2014 Sci-Fi 5.28
2014 Thriller 5.6625
III. Grading Scheme 100 points
1. Correct SQL and output (4 queries) 40 (10 each)

A file containing English queries, its SQL version
That can be submitted for execution

A separate fie containing the above And result from
execution on Oracle on Omega

. A word fie containing analysis explaining

the choice of Indexed for each query and
analysis of response time 40 (10 each)

Chakravarthy Project la Page 9 of 12

3. SQL coding style and completeness of submission
Each clause of SQL should be on a separate
line and properly indented 20

Please pay attention to what you need to submit. All files should be named
appropriately and included for submission.

All the above files/directories should be placed in a single zipped
folder named as - ‘projla_team_<no>_final’. Only one zipped folder
per team should be uploaded using canvas. We will ONLY grade the
Latest version submitted.

e Your .sql file shoud be executable (without any modification by us) on
Omega Oracle using the @filename command. So, please test it for
that before submitting it. However, the source code files can be
created and/or edited on any editor that produces an ASCII text file.
As I mentioned in the class, an IDE is not necessary for this and
subsequent projects. If you decide to use it, please learn it on your
own and make sure your code compiles and executes with appropriate
package information.

e You can submit your zip file at most 3 times. The latest one (based on
timestamp) will be used for grading. So, be careful about what you
turn in and when!

e Five days after the due date, the late submission upload link (separate
from the on-time submission link) will be closed. Penalty for each day
is 20% of the earned grade. No partial penalties per day!

Oracle Information

1. If you want to use a client (e.g., Oracle Development workbench,
https://docs.oracle.com/cd/E99083 01/PDF/Open Dev Tools/03-
Development WorkBench Getting Started.pdf), you are welcome to use.
However, you need to learn on your own. However, submission should be
done as indicated in this project description.

2. Oracle provides extensive documentation on its web site. We are using
Oracle 19c. You may want to use that for

Oracle SQL:
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/

Oracle Hints:
Chakravarthy Semester Project Page 10 of 12

https://docs.oracle.com/cd/E99083_01/PDF/Open_Dev_Tools/03-Development_WorkBench_Getting_Started.pdf
https://docs.oracle.com/cd/E99083_01/PDF/Open_Dev_Tools/03-Development_WorkBench_Getting_Started.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/

CSE 4331/5331 — Fall 2025

Oracle SQL hints are instructions embedded within SQL statements to
influence the Oracle optimizer's execution plan. They are placed within a
comment block immediately following
the SELECT, UPDATE, MERGE, INSERT, or DELETE keyword, and are
distinguished by a plus sign (+) immediately after the comment delimiter.

SELECT /*+ hint [hint ...] */ column_list FROM table_name;
documentation: https://docs.oracle.com/en/middleware/bi/analytics-

server/datamodel-oas/use-hints-sqgl-statements.html#GUID-14FCF9ES8-
B592-4336-82CC-E16C24068D68

Purpose:

Hints override the optimizer's default processing plan, allowing developers to
guide the optimizer towards a more efficient plan based on their knowledge
of data characteristics or specific performance goals. This can be useful in
scenarios where the optimizer might not choose the optimal plan
automatically.

Types of Hints:
Oracle offers various types of hints to control different aspects of query
execution:
- Optimization Approaches and Goals:
o« ALL_ROWS: Optimizes for best throughput (retrieving all rows).
o« FIRST_ROWS(n): Optimizes for best response time (retrieving
the first n rows quickly).
» Access Paths:
o FULL(table_alias): Forces a full table scan.
« INDEX(table_alias index_name): Forces the use of a specific
index.
« Join Orders and Operations:
o« ORDERED: Joins tables in the order they appear in
the FROM clause.
o« USE_NL(table_alias): Forces a nested loop join.
« USE_HASH(table_alias): Forces a hash join.
» Parallel Execution:
o« PARALLEL(table_alias degree_of_parallelism): Enables parallel
execution for a table.
 Query Transformations:
o STAR_TRANSFORMATION: Forces a star transformation for star
schemas.
Considerations:

Chakravarthy Project la Page 11 of 12

https://docs.oracle.com/en/middleware/bi/analytics-server/datamodel-oas/use-hints-sql-statements.html#GUID-14FCF9E8-B592-4336-82CC-E16C24068D68
https://docs.oracle.com/en/middleware/bi/analytics-server/datamodel-oas/use-hints-sql-statements.html#GUID-14FCF9E8-B592-4336-82CC-E16C24068D68
https://docs.oracle.com/en/middleware/bi/analytics-server/datamodel-oas/use-hints-sql-statements.html#GUID-14FCF9E8-B592-4336-82CC-E16C24068D68

While hints can improve performance in specific cases, they should be used
cautiously. They can make SQL statements less portable and require
maintenance as data or database environments change. Oracle recommends
using tools like SQL Tuning Advisor and SQL Plan Management for
addressing performance issues, as these tools provide more dynamic and
adaptable solutions compared to static hints.

Chakravarthy Semester Project Page 12 of 12

