A’Fhe University of Texas
, ARLINGTO N

Storage Structures Introduction
Chapter 8 (3™ edition)

Sharma Chakravarthy
UT Arlington

Database Management Systems: © Sharma Chakravarthy

mailto:sharma@cse.uta.edu

Disks and Files

= DBMS stores information on (“hard”) disks.
« Known as HDDs in contrast to SSDs

== This has major implications for DBMS design!
Remember impedance mismatch!

= READ: transfer data from disk to main
memory (RAM).

= WRITE: transfer data from RAM to disk.

« Both are high-cost operations, relative to in-
memory operations, so must be planned

carefully!
Slide 2

Why Not Store Everything in Main Memory?

=~ Costs too much.
1 TB of RAM is $8000+
- 1 TB of SSD for $150 portable SSD $250
« 8 TB of HDD for $250

== Main memory is volatile. \We want data to be saved
(persistent) between runs. (Obviously!)
= Typical storage hierarchy:
« Cache — most expensive (L1 and L2)
« Main memory (RAM) for currently used data.
« Solid state disks (SSD) -- New !l Still expensive
= Disk for the main database (storage in Peta bytes).
« Other storage devices (flash card, usb stick, ...)

= Tapes for archiving older versions of the data (tertiary
storage).

= DVD/CDROM and other devices — least expensive

Slide 3

Over the last 30 years, space per unit cost has doubled roughly every 14
months (increasing by an order of magnitude every 48 months)

Hard Drive Cost per Gigabyte
1980 - 2009

$10.00

$1.00

$0.10

$0.01
*Pﬁ@ *Pﬁr‘g)

Slide 4

SSD Vs. HDD

Average HDD and SSD prices in USD per gigabyte

HDD O SSD
$60

Prediction

-

T $56.30/GB
="HDD

3c/gb in
2014

= SSD is
.35c/gb in
2014

1996 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2ﬂ12'_____"‘-
$0.054/GB

Data sources: Mkomo.com, Gartner, and Pingdom (December 2011) www.pingdom.com

M@me: www.tomshardware.com Slide §
/ ™

$0.90
$0.80
$0.70
$0.60
$0.50
$0.40
$0.30
50.20
$0.10
$0.00

SSD vs HDD Price Erosion

TS d—_\h\\
2014A 2015A 2016A 2017E 2018E 2019E 2020E 2021E
®MHDD $/GB SSD S/GB —Gap (%)

Source: Gartner Forecast: Hard-Disk Drives, Worldwide, 2014-2021, 1Q17 Update

Slide 6

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

Disks

=Secondary storage device of choice.

=~Main advantage over tapes: random access
VS. sequential.

-Data is stored and retrieved in units called
disk blocks or pages.

=~Unlike RAM, time to retrieve a disk page
varies depending upon location on disk.

« Therefore, relative placement of pages on disk
has major impact on DBMS performance!

Slide 7

Hard Disk Drive (HDD)
Components

Rotating disks
Arm assembly

Disk controller
Cache
Interface controller

HDD Organization

Arm
Assembly Spindle Cylipder

Track

Components of a Disk

> The platters spin (say, 7200rpm). () ——spindle
. Tracks
»The arm assembly is Disk head <\/}
moved in or out to position
p /zector

a head on a desired track.

Tracks under heads make k/
a cylinder (imaginary!). U

>Only one head < \
reads/writes at any A movement Platters
one time.

»Block size is a multiple

of sector size (which is f}A)r(rﬁ as)sembly \
»Addressing: CHS (cylinder, head, secte

Slide 10

HDD Otrganization

= Typical configurations seen in disks today
= Platter diameters: 3.77, 3.3", 2.6”
= RPMs: 5400, 7200, 10000, 15000
* 0.5-1% variation in the RPM during operation
= Number of platters: 1-5
= Mobile disks can be as small as 0.75”
s~ Power proportional to:
« Tradeoff in the drive-design
- Read/write head
« Reading — Faraday’s Law
= Writing — Magnetic Induction

= Data-channel
« Encoding/decoding of data to/from magnetic phase changes

Accessing a Disk Page

= Time to access (read/write) a disk block:
= Sseek time (moving arms to position disk head on track)
= rotational delay (waiting for block to rotate under head)
= transfer time (actually moving data to/from disk surface)
= Buffer size (2 MB typical, 8 MB, ...)

= Seek time and rotational delay dominate.
« Seek time varies from about 1 to 20msec
- Rotational delay varies from 0 to 10msec
= Transfer rate is about 1 msec per 4KB page

= Key to lower I/O cost: reduce seek/rotation delays!

Hardware vs. software solutions?
e Slide 12

Accessing a Disk Page

=~ Time to access (read/write) a disk block:
= Average seek time -- 9.1 msec
= Average rotational delay -- 4.17 msec
= transfer rate — 13MB/sec

= Seek from one track to next — 2.2 msec
= Max. seek time 15 msec

"Disk access takes about 10 msec whereas

accessing memory location takes about 60
nano secs !!

-Memory is more than a Million times faster!!

m Slide 13
/ ™

Arranging Pages on Disk

== Next’ block concept:

= b
= b
= b

OoC
OoC
OoC

KS on same track, followed by
KS on same cylinder, followed by

KS on adjacent cylinder

-Blocks in a file should be arranged
sequentially on disk (by next’), to minimize
seek and rotational delay.

="For a sequential scan, pre-fetching several
pages at a time is a big win!

Slide 14

Disk Space Management

"Lowest layer of DBMS software manages space
on disk.

=>~Higher levels call upon this layer to:
« allocate/de-allocate a page
« read/write a page

Request for a sequence of pages must be
satisfied by allocating the pages sequentially on

disk! Higher levels don’t need to know how this
is done, or how free space is managed.

Slide 15

Buffer Management in a DBMS

BUFFER POOL A page is
N Stored in a
disk page Buffer frame

S
free frame

(2]
== Data must be in RAM for DBMS to operate on it!
== Mapping of <frame#, pageid> pairs is maintained.

“% Slide 16
/ ™

Buffer manager L2b

The buffer manager reads disk pages into a main memory
page as needed.

The buffer manager is used by access methods, heap files,
and relational operators to read / write /allocate / de-
allocate pages.

When a page is requested, the buffer manager brings it in
and pins it.

Replacement policies can be changed at compile time
» An abstract class Replacer is used for this purpose

» This class is extended to change replacement policies (e.g.,
Clock, LRU, MRU)

Buffer manager g &

Buffer Pool Pages

9/15/2025 % © your name 18
/ ™

Frame(s)

» Hashmap (pagemap), maps current page numbers

Design

Bufpool

Page(s)

FrameDesc

index
pageno
pincnt
dirty
state

to frames; used for efficient lookups

9/15/2025

© your name

“fLab

19

Buffer Manager Implementation

» Public BufMgr(int numbufs) //constructor

" |nitialize your buffer manager layer with buffer pool,
frame table and page map and replacer policy

= Buffer Pool: The actual array of page objects

" Frame table: Array of frame descriptors, each
containing the pin count and dirty status

= Page map: Maps current page numbers to frame
numbers

Buffer Manager Implementation (2) “=°

» Public pageld newPage(Page firstpg, int run_size):
= Allocates a set of new pages

" Try to pin that page in the buffer, if the page is
available in some frames

= You can use allocate_page() function from disk
manager layer

» Public void freePage(Pageld firstid):

" This method deallocates a page from disk after
removing it from the buffer, if present

" You can use deallocate page function from disk
manager layer.

Lab

Buffer Manager Implementation (3)

» Public void pinPage(Pageld pageno, Page page, boolean
skipRead):
= Check if the required page is in the buffer and already
pinned, if so, increment pin count of the page

= Else the page is not buffer pool, read the page from disk
using read_page. Note, here you may need to use the
replacement policy here if there are no free pages. This
may involve writing out a replacement candidate out to
disk for which you may use write_page (if the dirty bit was
set)

= Skipread has two values
— PIN_MEMCPY : Copy a given page to buffer pool
— PIN_DISKIO : Read a disk page to buffer pool

Lab

Buffer Manager Implementation (4)

» Public void unpinPage (Pageld pageno, boolean
dirty)

= Unpin a page when it is no more needed by
decreasing its pin count

" Check whether the page is in the buffer manager
= Check whether the page is pinned or not

" if not, then decrement the pin count, update frame
descriptor and notify the replacer

Lab

Buffer Manager Implementation (5)

Public void flushPage(pageld pageno):

= Writes a page in the buffer pool to disk, if the page is
dirty

Public void flushAllPages():

= Writes all the dirty pages from the buffer pool to disk
Public int getNumBuffers():

= Return the total number of buffer frames

Public int getNumpinned():

= Return the total number of unpinned buffer frames

When a Page is Requested ...

= If requested page is not in buffer pool:
« Choose a frame for replacement
« If frame is dirty, write it to disk
« Read requested page into chosen frame

= Pin (increment pin_count) the page and return
its address.

= If there is no frame to choose, then the buffer
IS full. When is the buffer full?

= If requests can be predicted (e.g., sequential scans)
pages can be pre-fetched several pages at a time!

m Slide 25
/ ™

Design

Initially
Page_num = INVALID _PAGE
_ Buffer Descriptor Array Buffer Pool Pages
pin_count=0
FrameNo=0

Dirty = FALSE

Hash Directory
Null
> <Page, > <Page,
frame> pair frame> pair
Page Frame numper
number
> Page,
frame pair
Queue —> QNode » QNode » QNode
Implementation
for LRU, MRU

and CLOCK Data structures used in the buffer manager

Design (Contd.)

The buffer manager maintains a buffer pool to store
the pages fetched from the disk. A buffer descriptor
table is maintained for each frame in the buffer pool to
store the characteristics of that specific frame. The
buffer descriptor stores information about whether the
specified frame is dirty/clean and its pin count.

The buffer manager implements a hash function to
map page numbers to frame numbers. This is needed
when the upper layer sends a page number and the
buffer manager must resolve which frame that page
resides in, if at all the page is in the buffer at that time.

The buffer manager implements functions to pin and
unpin pages, create new pages, free exiting pages

M]d flush pages to the disk
/ i< ™

More on Buffer Management

=-Requestor of page must unpin it, and indicate
whether page has been modified:

= dirty bit is used for this.

=~Page in pool may be requested many times,

= a pin countis used. A page is a candidate for
replacement iff pin count = 0.

=~CC & recovery may entail additional I/O when
a frame is chosen for replacement. (Write-
Ahead Log protocol; more later in module 2.)

=~ The buffer is full when app pin counts of ALL
pages are non-zero!

- What happens then?

A Slide 28

e

Buffer Replacement Policy

= If multiple frames have pin count as zero, which one
do you choose?

=~ Frame is chosen for replacement by a replacement
policy:
« Least-recently-used (LRU), Clock, most-recently-used
(MRU). FIFO, Random, etc.

= Policy can have big impact on # of I/O’s; depends on
the access pattern.

= Sequential flooding: Nasty situation caused by LRU
+ repeated sequential scans.
= # buffer frames is less than # pages in file means each

page request causes an actual I/O. MRU much better
in this situation (but not in all situations, of course).

Slide 29

Project 1

- Each team will be asked to implement one of the 2
replacement policies: LRU, MRU, FIFO, CLOCK, or
random

== All of you should be familiar with LRU and MRU (from
OS class)
= Clock replacement policy has less overhead
« Chooses a frame in a circular order (1 to n)
= Currentis a clock hand moving across the clock face

= Each frame has a reference bit, turned on when pin
count becomes 0

= Read the rest from the book

== What policies to implement by each team is given in
the param file

Slide 30

Buffer Hit Ratios

= A replacement policy is good if requests for a page is
already in the buffer pool

- Buffer hit ratio can be computed by keeping track of hits
(already in the buffer pool) to the number of times the
page is loaded to the buffer pool.

== BHR: count the number of page loads (not considered a hit) and the
number of times it was a hit (that is page was already in the buffer
pool). Output both numbers and the ratio

== Higher the ratio, better is the replacement policy

== Also, keep track of the loads and hits for each page and output the
top 5/10 pages with respect to hits

= As part of project 1, you will implement 2 replacement policies and
compute BHR and top 5/10 pages with respect to hits by adding
code to the given Buffer manager (BufMgr class)

== You will have to modify the print method

printBhrAndRefCount in the buffer manager

m Slide 31
/ ™

DBMS vs. OS File (Buffer)

=~ 0OS does disk space & buffer management as well.
So, why not let OS manage these tasks?

« Purpose is the same in both. Use files (code
mainly) larger than memory available
-Buffer management in DBMS requires ability to:

= pin a page in buffer pool, force a page to disk
(important for implementing CC & recovery),

« adjust replacement policy, and pre-fetch pages
based on access patterns in typical DB operations.

« Use multiple replacement policies on differet parts of
the buffer pool

Slide 32

DBMS vs. OS File System

=~ The above are not provided by the OS

=~A DBMS can also predict buffer usage better
than OS and do prefetching of pages!

= Other limitations:
-Differences in OS support: portability issues

=Some limitations, e.q., files can’t span disks.
~Earlier files sizes was also an issue

Slide 33

Record Formats: Fixed Length

F1 F2 F3 F4
— L]1— L2 L3 L4
Base address (B) Address = B+L1+L2

= |Information about field types same for all
records in a file; stored in system catalogs.

Slide 34

Record Formats: Variable Length

=~ Two alternative formats (# fields is fixed):
F1 F2 F3 F4

4 $ $ $ $
Fields Delimited by Special Symbols

Field/

Count

=Finding /’th field requires scan of record

Slide 35

Record Formats: Variable Length

=~ Two alternative formats (# fields is fixed):

F1 F2 F3 F4
Array of Field Offsets

* Second offers direct access to i'th field, efficient storage
of nulls (special don’t know value); small directory overhead.

m Slide 36
/ ™

Subtle Issues: Variable Length

=~What about modification? Growth may
involve moving fields

="\What if a record does not fit into the space
remaining on a page? (rids and forwarding
address)

=~ A record grows to occupy more than one

page! (chained smaller records) — spanning
records

Slide 37

Page Formats: Fixed Length Records
(physically numbered slots)

Slot 1 Slot 1
Slot 2 Slot 2
Free — ™~—_"
e o o Space e o o
. N
Slot M
N 1ol iM—
number M.. 321 number
PACKED of records UNPACKED, BITMAP of slots

* Record id (rid) or tuple id (tid) = <page id, slot #>. In
the first alternative, moving records for free space
m management changes rid;, may not be acceptable.
?}\% ™

Slide 38

Page Formats: Variable Length Records
(logically numbered slots)

Rid = (i,N
Page i

Rid = iiiZi
Rid = iiili
d

\ \\ \
20 16 | 24 | N Pointer
N o 2 1 to start
#slots ¢ free
space
SLOT DIRECTORY

* Can move records on page without changing rid; so, attractive
for fixed-length records too.

m Record cannot be removed from the directory! Why?
823”4 . Can be compacted without changing rid

Slide 39

Files of Records

~Page or block is OK when doing I/O, but
higher levels of DBMS operate on records,
and files of records.
= FILE: A collection of pages, each containing a
collection of records. Must support:
» insert/delete/modify opeartions
= read a particular record (specified using record
id)
= scan all records (possibly with some
conditions on the records to be retrieved)

Slide 40

Unordered (Heap) Files

==Simplest file structure contains records in no
particular order.

=-As a file grows and shrinks, disk pages are
allocated and de-allocated.

= To support
= keep trac
= keep trac
= keep trac

record level operations, we must:
K of the pages in a file
K of free space on pages

K of the records on a page

- There are many alternatives for keeping track

of this.

Slide 41

Heap File Implemented as a List

\
\ Data
> Page

Data
Page

Data
Page

N N

= The header page id and Heap file name must be
stored someplace.

- Each page contains 2 disk pointers’ plus data.
= Disadvantage for variable length records! (all pages

“‘%will be on the free list)
A

Pages with
Free Space

Slide 42

Heap File Using a Page Directory
.
=

o
=~ The entry for a page can include the number

of free bytes on the page.

- The directory is a collection of pages; linked
list implementation is just one alternative.

]I/'%m- Much smaller than linked list of all HF pages!+

Indexes

==A Heap file allows us to retrieve records:
« by specifying the rid, or
» by scanning all records sequentially

=Sometimes, we want to retrieve records by
specifying the values in one or more fields,

e.g.,
« Find all students in the “CS” department
» Find all students with gpa > 3.0

="|ndexes are file structures that enable us to
answer such value-based queries efficiently.

Slide 44

System Catalogs

=~For each index:

« structure (e.g., B+ tree) and search key fields
=~For each relation:

« name, file name, file structure (e.g., Heap file)

« attribute name and type, for each attribute

« index name, for each index

= Integrity constraints « Catalogs are themselves
= For each view: * stored as relations!

» view name and definition

="Plus statistics, authorization, buffer pool size,

tc.
< Slide 45
/ ™

Attr_Cat(attr_name, rel_name, type, position)

attr_name rel name type position
attr_name | Attribute_Cat |string 1
rel name |Attribute_Cat string 2
type Attribute_Cat |string 3
position | Attribute_Cat |integer -
sid Students string 1
name Students string 2
login Students string 3
age Students integer -
gpa Students real 5
fid Faculty string 1
fname Faculty string 2
sal Faculty real 3

Slide 46

Summary

=~Disks provide cheap, non-volatile storage.

« Random access, but cost depends on location of
page on disk; important to arrange data
sequentially to minimize seek and rotation delays.

-Buffer manager brings pages into RAM.

» Page stays in RAM until released by requestor.

= Written to disk when frame chosen for

replacement (which is sometime after requestor
releases the page).

» Choice of frame to replace based on replacement
policy (LRU, MRU, FIFO, CLOCK. ...).

m Tries to pre-fetch several pages at a time.
/' N ™

Slide 47

Summary (Contd.)

="DBMS vs. OS File Support
« DBMS needs features not found in many OSs,
e.g., forcing a page to disk, controlling the
order of page writes to disk, files spanning
disks, ability to control pre-fetching and page
replacement policy based on predictable
access patterns, etc.

-Variable length record format with field offset
directory offers support for direct access to i'th
field and null values.

-Slotted page format supports variable length
m "ecords and allows records to move on page.

Summary (Contd.)

=File layer keeps track of pages in a file, and
supports abstraction of a collection of
records.
« Pages with free space identified using linked

list or directory structure (similar to how pages
in file are kept track of).

"Indexes support efficient retrieval of records
based on the values in some fields.

-Catalog relations store information about
relations, indexes and views. (Information
that is common to all records in a given

ncollection.) e 40

Thank You !

T 2N

	�Storage Structures Introduction�Chapter 8 (3rd edition)
	Disks and Files
	Why Not Store Everything in Main Memory?
	����Over the last 30 years, space per unit cost has doubled roughly every 14 months (increasing by an order of magnitude every 48 months)��
	SSD Vs. HDD
	Slide Number 6
	Disks
	Hard Disk Drive (HDD) Components
	HDD Organization
	Components of a Disk �
	HDD Organization
	Accessing a Disk Page
	Accessing a Disk Page
	Arranging Pages on Disk
	Disk Space Management
	Buffer Management in a DBMS
	Buffer manager
	Buffer manager
	Design
	Buffer Manager Implementation
	Buffer Manager Implementation (2)
	Buffer Manager Implementation (3)
	Buffer Manager Implementation (4)
	Buffer Manager Implementation (5)
	When a Page is Requested ...
	Slide Number 26
	Slide Number 27
	More on Buffer Management
	Buffer Replacement Policy
	Project 1
	Buffer Hit Ratios
	DBMS vs. OS File (Buffer)
	DBMS vs. OS File System
	Record Formats: Fixed Length
	Record Formats: Variable Length
	Record Formats: Variable Length
	 Subtle Issues: Variable Length
	Page Formats: Fixed Length Records�(physically numbered slots)
	Page Formats: Variable Length Records�(logically numbered slots)
	Files of Records
	Unordered (Heap) Files
	Heap File Implemented as a List
	Heap File Using a Page Directory
	Indexes
	System Catalogs
	Attr_Cat(attr_name, rel_name, type, position)
	Summary
	Summary (Contd.)
	Summary (Contd.)
	Slide Number 50

