
Database Management Systems: © Sharma Chakravarthy

Storage Structures Introduction
Chapter 8 (3rd edition)

Sharma Chakravarthy
UT Arlington

sharma@cse.uta.edu

mailto:sharma@cse.uta.edu

Slide 2

Disks and Files
☞DBMS stores information on (“hard”) disks.

 Known as HDDs in contrast to SSDs

☞This has major implications for DBMS design!
 Remember impedance mismatch!

 READ: transfer data from disk to main
memory (RAM).

 WRITE: transfer data from RAM to disk.

 Both are high-cost operations, relative to in-
memory operations, so must be planned
carefully!

Slide 3

Why Not Store Everything in Main Memory?
☞Costs too much.

 1 TB of RAM is $8000+
 1 TB of SSD for $150 portable SSD $250
 8 TB of HDD for $250

☞Main memory is volatile. We want data to be saved
(persistent) between runs. (Obviously!)

☞Typical storage hierarchy:
 Cache – most expensive (L1 and L2)
 Main memory (RAM) for currently used data.
 Solid state disks (SSD) -- New !! Still expensive
 Disk for the main database (storage in Peta bytes).
 Other storage devices (flash card, usb stick, …)
 Tapes for archiving older versions of the data (tertiary

storage).
 DVD/CDROM and other devices – least expensive

Over the last 30 years, space per unit cost has doubled roughly every 14
months (increasing by an order of magnitude every 48 months)

Slide 4

SSD Vs. HDD

Slide 5 ☞From: www.tomshardware.com

☞HDD
3c/gb in
2014

☞SSD is
.35c/gb in
2014

Slide 6

Slide 7

Disks

☞Secondary storage device of choice.
☞Main advantage over tapes: random access

vs. sequential.
☞Data is stored and retrieved in units called

disk blocks or pages.
☞Unlike RAM, time to retrieve a disk page

varies depending upon location on disk.
 Therefore, relative placement of pages on disk

has major impact on DBMS performance!

Hard Disk Drive (HDD)
Components

☞Electromechanical
 Rotating disks
 Arm assembly

☞Electronics
 Disk controller
 Cache
 Interface controller

HDD Organization

Arm
Assembly

Arm Head
CylinderSpindle

Platter Track

Slide 10

Components of a Disk

Platters

 The platters spin (say, 7200rpm). Spindle

The arm assembly is
moved in or out to position
a head on a desired track.
Tracks under heads make
a cylinder (imaginary!).

Disk head

Arm movement

Arm assembly

Only one head
reads/writes at any
one time.

Tracks

Sector

Block size is a multiple
 of sector size (which is fixed).
Addressing: CHS (cylinder, head, sector)

HDD Organization
☞Typical configurations seen in disks today

 Platter diameters: 3.7”, 3.3”, 2.6”
 RPMs: 5400, 7200, 10000, 15000

• 0.5-1% variation in the RPM during operation
 Number of platters: 1-5
 Mobile disks can be as small as 0.75”

☞Power proportional to: (# Platters)*(RPM)2.8(Diameter)4.6

 Tradeoff in the drive-design
☞Read/write head

 Reading – Faraday’s Law
 Writing – Magnetic Induction

☞Data-channel
 Encoding/decoding of data to/from magnetic phase changes

Slide 12

Accessing a Disk Page

☞Time to access (read/write) a disk block:
 seek time (moving arms to position disk head on track)
 rotational delay (waiting for block to rotate under head)
 transfer time (actually moving data to/from disk surface)
 Buffer size (2 MB typical, 8 MB, …)

☞Seek time and rotational delay dominate.
 Seek time varies from about 1 to 20msec
 Rotational delay varies from 0 to 10msec
 Transfer rate is about 1 msec per 4KB page

☞Key to lower I/O cost: reduce seek/rotation delays!
Hardware vs. software solutions?

Slide 13

Accessing a Disk Page

☞Time to access (read/write) a disk block:
 Average seek time -- 9.1 msec
 Average rotational delay -- 4.17 msec
 transfer rate – 13MB/sec
 Seek from one track to next – 2.2 msec
 Max. seek time 15 msec

☞Disk access takes about 10 msec whereas
accessing memory location takes about 60
nano secs !!

☞Memory is more than a Million times faster!!

Slide 14

Arranging Pages on Disk

☞`Next’ block concept:
 blocks on same track, followed by
 blocks on same cylinder, followed by
 blocks on adjacent cylinder

☞Blocks in a file should be arranged
sequentially on disk (by `next’), to minimize
seek and rotational delay.

☞For a sequential scan, pre-fetching several
pages at a time is a big win!

Slide 15

Disk Space Management

☞Lowest layer of DBMS software manages space
on disk.

☞Higher levels call upon this layer to:
 allocate/de-allocate a page
 read/write a page

☞Request for a sequence of pages must be
satisfied by allocating the pages sequentially on
disk! Higher levels don’t need to know how this
is done, or how free space is managed.

Slide 16

Buffer Management in a DBMS

☞Data must be in RAM for DBMS to operate on it!
☞Mapping of <frame#, pageid> pairs is maintained.

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

A page is
Stored in a
Buffer frame

Buffer manager

 The buffer manager reads disk pages into a main memory
page as needed.

 The buffer manager is used by access methods, heap files,
and relational operators to read / write /allocate / de-
allocate pages.

 When a page is requested, the buffer manager brings it in
and pins it.

 Replacement policies can be changed at compile time
An abstract class Replacer is used for this purpose
This class is extended to change replacement policies (e.g.,

Clock, LRU, MRU)

9/15/2025 © your name 17

Buffer manager

9/15/2025 © your name 18

Buffer Management
Layer

Disk Management Layer

DISK

File Management Layer
Buffer Pool Pages

Page Id

Page Id Page pointer

Page contents

Design

9/15/2025 © your name 19

 Hashmap (pagemap), maps current page numbers
to frames; used for efficient lookups

Bufpool FrameDesc

Frame(s)
Page(s)

index
pageno
pincnt
dirty
state

Buffer Manager Implementation

 Public BufMgr(int numbufs) //constructor
 Initialize your buffer manager layer with buffer pool,

frame table and page map and replacer policy
 Buffer Pool: The actual array of page objects
 Frame table: Array of frame descriptors, each

containing the pin count and dirty status
 Page map: Maps current page numbers to frame

numbers

9/15/2025 © your name 20

Buffer Manager Implementation (2)

 Public pageId newPage(Page firstpg, int run_size):
 Allocates a set of new pages
 Try to pin that page in the buffer, if the page is

available in some frames
 You can use allocate_page() function from disk

manager layer
 Public void freePage(PageId firstid):
 This method deallocates a page from disk after

removing it from the buffer, if present
 You can use deallocate_page function from disk

manager layer.

9/15/2025 © your name 21

Buffer Manager Implementation (3)

 Public void pinPage(PageId pageno, Page page, boolean
skipRead):
 Check if the required page is in the buffer and already

pinned, if so , increment pin count of the page
 Else the page is not buffer pool, read the page from disk

using read_page. Note, here you may need to use the
replacement policy here if there are no free pages. This
may involve writing out a replacement candidate out to
disk for which you may use write_page (if the dirty bit was
set)

 Skipread has two values
− PIN_MEMCPY : Copy a given page to buffer pool
− PIN_DISKIO : Read a disk page to buffer pool

9/15/2025 © your name 22

Buffer Manager Implementation (4)

 Public void unpinPage (PageId pageno, boolean
dirty)
 Unpin a page when it is no more needed by

decreasing its pin count
 Check whether the page is in the buffer manager
 Check whether the page is pinned or not
 if not, then decrement the pin count, update frame

descriptor and notify the replacer

9/15/2025 © your name 23

Buffer Manager Implementation (5)

 Public void flushPage(pageId pageno):
 Writes a page in the buffer pool to disk, if the page is

dirty
 Public void flushAllPages():
 Writes all the dirty pages from the buffer pool to disk

 Public int getNumBuffers():
 Return the total number of buffer frames

 Public int getNumpinned():
 Return the total number of unpinned buffer frames

9/15/2025 © your name 24

Slide 25

When a Page is Requested ...
☞ If requested page is not in buffer pool:

 Choose a frame for replacement
 If frame is dirty, write it to disk
 Read requested page into chosen frame

☞Pin (increment pin_count) the page and return
its address.

☞ If there is no frame to choose, then the buffer
is full. When is the buffer full?

* If requests can be predicted (e.g., sequential scans)
 pages can be pre-fetched several pages at a time!

Design

Data structures used in the buffer manager

FrameNo=0

.

.

.

Buffer Pool PagesBuffer Descriptor Array

Null

<Page,
frame> pair

<Page,
frame> pair

Page,
frame pair

Hash Directory

Page
number

Frame number

QNode QNode QNodeQueue
Implementation
for LRU, MRU
and CLOCK

Initially

Page_num = INVALID_ PAGE

pin_count = 0

Dirty = FALSE

The buffer manager maintains a buffer pool to store
the pages fetched from the disk. A buffer descriptor
table is maintained for each frame in the buffer pool to
store the characteristics of that specific frame. The
buffer descriptor stores information about whether the
specified frame is dirty/clean and its pin count.

The buffer manager implements a hash function to
map page numbers to frame numbers. This is needed
when the upper layer sends a page number and the
buffer manager must resolve which frame that page
resides in, if at all the page is in the buffer at that time.

The buffer manager implements functions to pin and
unpin pages, create new pages, free exiting pages
and flush pages to the disk

Design (Contd.)

Slide 28

More on Buffer Management
☞Requestor of page must unpin it, and indicate

whether page has been modified:
 dirty bit is used for this.

☞Page in pool may be requested many times,
 a pin count is used. A page is a candidate for

replacement iff pin count = 0.
☞CC & recovery may entail additional I/O when

a frame is chosen for replacement. (Write-
Ahead Log protocol; more later in module 2.)

☞The buffer is full when app pin counts of ALL
pages are non-zero!
 What happens then?

Slide 29

Buffer Replacement Policy
☞ If multiple frames have pin count as zero, which one

do you choose?
☞Frame is chosen for replacement by a replacement

policy:
 Least-recently-used (LRU), Clock, most-recently-used

(MRU). FIFO, Random, etc.
☞Policy can have big impact on # of I/O’s; depends on

the access pattern.
☞Sequential flooding: Nasty situation caused by LRU

+ repeated sequential scans.
 # buffer frames is less than # pages in file means each

page request causes an actual I/O. MRU much better
in this situation (but not in all situations, of course).

Slide 30

Project 1
☞Each team will be asked to implement one of the 2

replacement policies: LRU, MRU, FIFO, CLOCK, or
random

☞All of you should be familiar with LRU and MRU (from
OS class)

☞Clock replacement policy has less overhead
 Chooses a frame in a circular order (1 to n)
 Current is a clock hand moving across the clock face
 Each frame has a reference bit, turned on when pin

count becomes 0
 Read the rest from the book

☞What policies to implement by each team is given in
the param file

Slide 31

Buffer Hit Ratios
☞A replacement policy is good if requests for a page is

already in the buffer pool
☞Buffer hit ratio can be computed by keeping track of hits

(already in the buffer pool) to the number of times the
page is loaded to the buffer pool.

☞ BHR: count the number of page loads (not considered a hit) and the
number of times it was a hit (that is page was already in the buffer
pool). Output both numbers and the ratio

☞ Higher the ratio, better is the replacement policy
☞ Also, keep track of the loads and hits for each page and output the

top 5/10 pages with respect to hits
☞ As part of project 1, you will implement 2 replacement policies and

compute BHR and top 5/10 pages with respect to hits by adding
code to the given Buffer manager (BufMgr class)

☞ You will have to modify the print method
printBhrAndRefCount in the buffer manager

Slide 32

DBMS vs. OS File (Buffer)
☞OS does disk space & buffer management as well.

So, why not let OS manage these tasks?
 Purpose is the same in both. Use files (code

mainly) larger than memory available
☞Buffer management in DBMS requires ability to:

 pin a page in buffer pool, force a page to disk
(important for implementing CC & recovery),

 adjust replacement policy, and pre-fetch pages
based on access patterns in typical DB operations.

 Use multiple replacement policies on differet parts of
the buffer pool

Slide 33

DBMS vs. OS File System

☞The above are not provided by the OS
☞A DBMS can also predict buffer usage better

than OS and do prefetching of pages!

☞Other limitations:

☞Differences in OS support: portability issues

☞Some limitations, e.g., files can’t span disks.
☞Earlier files sizes was also an issue

Slide 34

Record Formats: Fixed Length

☞Information about field types same for all
records in a file; stored in system catalogs.

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

Slide 35

Record Formats: Variable Length

☞Two alternative formats (# fields is fixed):

4 $ $ $ $

Field
Count

Fields Delimited by Special Symbols

F1 F2 F3 F4

.
☞Finding i’th field requires scan of record

Slide 36

Record Formats: Variable Length

☞Two alternative formats (# fields is fixed):

* Second offers direct access to i’th field, efficient storage
of nulls (special don’t know value); small directory overhead.

F1 F2 F3 F4

Array of Field Offsets

Slide 37

Subtle Issues: Variable Length

☞What about modification? Growth may
involve moving fields

☞What if a record does not fit into the space
remaining on a page? (rids and forwarding
address)

☞A record grows to occupy more than one
page! (chained smaller records) – spanning
records

Slide 38

Page Formats: Fixed Length Records
(physically numbered slots)

* Record id (rid) or tuple id (tid) = <page id, slot #>. In
the first alternative, moving records for free space
management changes rid; may not be acceptable.

Slot 1
Slot 2

Slot N

.

N M10. . .
M ... 3 2 1

PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M
11

number
of records

number
of slots

Slide 39

Page Formats: Variable Length Records
(logically numbered slots)

* Can move records on page without changing rid; so, attractive
for fixed-length records too.

* Record cannot be removed from the directory! Why?
* Can be compacted without changing rid

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer
to start
of free
space

SLOT DIRECTORY

N . . . 2 1
20 16 24 N

slots

Slide 40

Files of Records

☞Page or block is OK when doing I/O, but
higher levels of DBMS operate on records,
and files of records.

☞FILE: A collection of pages, each containing a
collection of records. Must support:
 insert/delete/modify opeartions
 read a particular record (specified using record

id)
 scan all records (possibly with some

conditions on the records to be retrieved)

Slide 41

Unordered (Heap) Files

☞Simplest file structure contains records in no
particular order.

☞As a file grows and shrinks, disk pages are
allocated and de-allocated.

☞To support record level operations, we must:
 keep track of the pages in a file
 keep track of free space on pages
 keep track of the records on a page

☞There are many alternatives for keeping track
of this.

Slide 42

Heap File Implemented as a List

☞The header page id and Heap file name must be
stored someplace.

☞Each page contains 2 `disk pointers’ plus data.
☞Disadvantage for variable length records! (all pages

will be on the free list)

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page Pages with

Free Space

Full Pages

Slide 43

Heap File Using a Page Directory

☞The entry for a page can include the number
of free bytes on the page.

☞The directory is a collection of pages; linked
list implementation is just one alternative.
 Much smaller than linked list of all HF pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

Slide 44

Indexes

☞A Heap file allows us to retrieve records:
 by specifying the rid, or
 by scanning all records sequentially

☞Sometimes, we want to retrieve records by
specifying the values in one or more fields,
e.g.,
 Find all students in the “CS” department
 Find all students with gpa > 3.0

☞Indexes are file structures that enable us to
answer such value-based queries efficiently.

Slide 45

System Catalogs

☞For each index:
 structure (e.g., B+ tree) and search key fields

☞For each relation:
 name, file name, file structure (e.g., Heap file)
 attribute name and type, for each attribute
 index name, for each index
 integrity constraints

☞For each view:
 view name and definition

☞Plus statistics, authorization, buffer pool size,
etc.

* Catalogs are themselves
* stored as relations!

Slide 46

Attr_Cat(attr_name, rel_name, type, position)

attr_name rel_name type position
attr_name Attribute_Cat string 1
rel_name Attribute_Cat string 2
type Attribute_Cat string 3
position Attribute_Cat integer 4
sid Students string 1
name Students string 2
login Students string 3
age Students integer 4
gpa Students real 5
fid Faculty string 1
fname Faculty string 2
sal Faculty real 3

Slide 47

Summary

☞Disks provide cheap, non-volatile storage.
 Random access, but cost depends on location of

page on disk; important to arrange data
sequentially to minimize seek and rotation delays.

☞Buffer manager brings pages into RAM.
 Page stays in RAM until released by requestor.
 Written to disk when frame chosen for

replacement (which is sometime after requestor
releases the page).

 Choice of frame to replace based on replacement
policy (LRU, MRU, FIFO, CLOCK. …).

 Tries to pre-fetch several pages at a time.

Slide 48

Summary (Contd.)

☞DBMS vs. OS File Support
 DBMS needs features not found in many OSs,

e.g., forcing a page to disk, controlling the
order of page writes to disk, files spanning
disks, ability to control pre-fetching and page
replacement policy based on predictable
access patterns, etc.

☞Variable length record format with field offset
directory offers support for direct access to i’th
field and null values.

☞Slotted page format supports variable length
records and allows records to move on page.

Slide 49

Summary (Contd.)

☞File layer keeps track of pages in a file, and
supports abstraction of a collection of
records.
 Pages with free space identified using linked

list or directory structure (similar to how pages
in file are kept track of).

☞Indexes support efficient retrieval of records
based on the values in some fields.

☞Catalog relations store information about
relations, indexes and views. (Information
that is common to all records in a given
collection.)

Thank You !

	�Storage Structures Introduction�Chapter 8 (3rd edition)
	Disks and Files
	Why Not Store Everything in Main Memory?
	����Over the last 30 years, space per unit cost has doubled roughly every 14 months (increasing by an order of magnitude every 48 months)��
	SSD Vs. HDD
	Slide Number 6
	Disks
	Hard Disk Drive (HDD) Components
	HDD Organization
	Components of a Disk �
	HDD Organization
	Accessing a Disk Page
	Accessing a Disk Page
	Arranging Pages on Disk
	Disk Space Management
	Buffer Management in a DBMS
	Buffer manager
	Buffer manager
	Design
	Buffer Manager Implementation
	Buffer Manager Implementation (2)
	Buffer Manager Implementation (3)
	Buffer Manager Implementation (4)
	Buffer Manager Implementation (5)
	When a Page is Requested ...
	Slide Number 26
	Slide Number 27
	More on Buffer Management
	Buffer Replacement Policy
	Project 1
	Buffer Hit Ratios
	DBMS vs. OS File (Buffer)
	DBMS vs. OS File System
	Record Formats: Fixed Length
	Record Formats: Variable Length
	Record Formats: Variable Length
	 Subtle Issues: Variable Length
	Page Formats: Fixed Length Records�(physically numbered slots)
	Page Formats: Variable Length Records�(logically numbered slots)
	Files of Records
	Unordered (Heap) Files
	Heap File Implemented as a List
	Heap File Using a Page Directory
	Indexes
	System Catalogs
	Attr_Cat(attr_name, rel_name, type, position)
	Summary
	Summary (Contd.)
	Summary (Contd.)
	Slide Number 50

