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Approach to M/R problem solving

1. Do not start writing code when you are given a problem to 
solve using map/reduce (e.g., project 3) or even a PL

2. Try to understand the problem in terms of M/R (or PL) 
framework
a. Come up with an algorithm FIRST

3. Think of all three levels we have discussed for problem at 
hand
a. Do you have 1 input or multiple inputs?
b. Do you need any other data/file/info in addition to input?
c. Can you solve it in one m/r job or do you need more than 1? And 

why?
d. Is this an iterative m/r job with one or more jobs in each iteration
e. Is there anything to be done in between iterations?
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Approach to M/R problem solving (2)

1. Understand the input and what should happen at each 
step under your control (input, output)
a. Map code
b. Combiner code (if needed)
c. Reducer code

2. Understand what happens in between your steps and how 
that contributes to the overall solution? 
a. In fact, the above has to be part of your overall solution!
b. Your solution will not be correct without the whole thing 

working correctly!
3. What should be done in each part of your code and why?
4. I am not even considering optimization here!
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Concrete steps to M/R problem solving
1. What is the input, in terms of key value?
2. What should be done in the mapper?

 Specify key value output for each input record
3. Is a combiner needed? If so, what should it do?

 How does it transform the key, value pair produced by the mapper?
 What should it produce as key, value pair?

4. How many reducers are needed? Based on what?
5. Should we use default partitioning? 

 Default partitioning is done on the key values produced by the 
mapper. # partitions is based on the number of specified reducers.

6. Should we provide a custom partitioning? 
 Why? If so, what should it be? How do  you decide that?

7. What is received by the reducer? How do we process the key, 
value-list for each key produced in the mapper
 This needs a good understanding of what happens during shuffle!
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Application 1: Word Count
This is the “Hello World” equivalent!
A simple Map/Reduce program can be written to determine count 
of words in a set of files. For example, if we had:
foo.txt: Sweet, this is the foo file, sweet
bar.txt: This is the bar file, very sweet
We would expect the output to be:

sweet 3
this 2 
is 2 
the 2 
foo 1 
bar 1 
file 2 
Very 1
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Word Count example
 Input: Large number of text documents
 Task: Compute word count across all the documents
 Solution
 Mapper:

− Input: A line from the text
− Output: For every word in a document, output (word (as key), "1“ 

(as value))
− For the word “hello”, output <“hello”, “1”>

 Mapper will generate several similar outputs
 Reducer: (after all mapper tasks are done)

− What comes to the reducer is <key, value-list>
− As many of the above as the number of unique words (why?)
− <“hello”, [“1”, “1”, ….. “1”] and so on
− For each <key, value-list>, reduce code can count the number of 

elements in the list and output <“Hello”, “54”>
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Word Count Solution (in Java)
//Pseudo-code for "word counting"
map(String key, String value):

// key: document name,
// value: document contents

for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of “1”s

int word_count = 0;
for each v in values:

word_count += ParseInt(v);
Emit(key, AsString(word_count)); //No types, just strings
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Analysis
 Is  this a good word count implementation?
 If not, why?
 Let us take a closer look at the mapper output
 Mapper produces repeating key, value pairs
 <“hello”, “1”>, <“the”, “1”>, <“hello”, “1”> <“the”, “1”>
 When mapper sorts on key and groups, you get

− <“hello”, [“1”, “1”, …]>  say 35 in the list
− <“the”, [“1”, “1”, …]> say 44 in the list
− …

 This list from (EACH) mapper is sent to the reducer
 Reducer merges and applies the previous algorithm

 Is this a good implementation?
 Will a combiner be beneficial? How?
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An Optimization: The Combiner

 A combiner is a local aggregation function for 
repeated keys produced by same mapper

 For associative operations, such as sum, count, and 
max, reducer can be used as a combiner for local 
aggregation

 Decreases size of intermediate data shuffled!
 For the word Count problem,

− <“hello”, [“1”, “1”, …]>  with 35 “1”s can be reduced to
− <“hello”, “35”>  and
− <“the”, [“1”, “1”, …]> with 44 “1”s can be reduced to
− <“hello”., “44”>



Combiner
 Word count is a prime example where a Combiner is 

useful. The Word Count program emits a (word, 1) pair for 
every instance of every word it sees. So if the same 
document contains the word "cat" 300 times, the 
pair ("cat", 1) is emitted three hundred times; all of these 
are then sent to the Reducer. 

 By using a Combiner, these can be condensed into a 
single <"cat", “300”> pair to be sent to the Reducer. Now 
each node only sends a single value ( a string of 3 chars 
instead of hundreds of chars) to the reducer for each word
 drastically reducing the total bandwidth required for the 

shuffle process, and speeding up the job.
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Combiner
 The best part is that we may not need to write any 

additional code to take advantage of this! 
 If a reduce function is both commutative and associative, 

then it can be used as a Combiner as well. 
 The Combiner should be an instance of 

the Reducer interface. If your Reducer itself cannot be 
used directly as a Combiner because of commutativity or 
associativity, you might still be able to write a third class to 
use as a Combiner for your job.

 Commutative means  A o B is the same as B o A
 Associative means   (A o B) o C is the same as A o (B o C)
 Count is both commutative and associative (as are +, max)
 -, avg are not associative, concat is not commutative!

 Keep this in mind when using reduce code for combiner code!
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Word Count with Combiner

Input Map & Combine Shuffle & Sort Reduce Output

the quick
brown fox

the fox ate
the mouse

how now
brown cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 2
fox, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1



Homework 1 
 Write a Map/Reduce program that counts the words in 

each document separately. Assume, document name is 
the key and all words are values as input. For example, if 
we had:

foo.txt: sweet this this is very sweet
bar.txt: this sweet bar is very very sweet

 The output should be:
 Foo.txt, sweet 2 bar.txt, this 1
 Foo.txt, this 2 bar.txt, sweet 2
 Foo.txt, is 1 bar.txt, bar 1
 Foo.txt, very 1 bar.txt, is 1

bar.txt, very 2
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Word frequency example
 Used for decrypting, comparison of documents etc.

 Input: Large number of text documents
 Task: Compute word frequency (ratio) across all the 

document
 Need to compute total count as well as individual count

 You need the total count before you can compute total word 
count of each word in order to compute frequency

 This cannot be done with a single map reduce task without 
additional support (why?)
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Word frequency example
 A naive solution with basic Map/Reduce model 

requires two Map/Reduce jobs
 Map/Reduce job 1: count number of all words in these documents

− Use combiners
− The reducer just needs to sum  up all word counts

 Map/Reducer job 2: 
− count number of each word as we did in the previous example
− The reducer, in addition to the input, reads the total word count and uses 

for the denominator in every reducer for generating word frequency
− Alternatively, the Map/Reducer job 1 can generate word count for each 

word and total word count and map/reduce job 2 can use them for 
computing word frequency

 Requires the output of one Map/Reduce job to be fed into 
another Map/Reduce job
 Chaining of M/R jobs
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Word frequency example
 Can we do better?
 Two nice features of Google's MapReduce 

implementation can help!
 Ordering guarantee of reduce key
 Auxiliary functionality: EmitToAllReducers(k, v)

 A nice trick: To compute the total number of words in 
all documents
 Every map task sends its total world count with key "“  to ALL 

reducers
 Key "" will be the first key processed by reducer (due to ordering 

guarantee)
− Sum of its values → total number of words!

 Requires only 1 map and 1 reduce instead of 2 chained 
map/reduce jobs
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Word frequency solution: Mapper with combiner
map(String key, String value):
// key: document name, value: document contents

int word_count = 0;
for each word w in value:

EmitIntermediate(w, "1");
word_count++;

EmitIntermediateToAllReducers("", AsString(word_count));

combine(String key, Iterator values):
// Combiner for map output

// key: a word, values: a list of counts
int partial_word_count = 0;
for each v in values:

partial_word_count += ParseInt(v);
Emit(key, AsString(partial_word_count));
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Word frequency solution: reducer
reduce(String key, Iterator values):
// Actual reducer, key: a word
// values: a list of counts

if (is_first_key):
assert("" == key); // sanity check
total_word_count = 0;
for each v in values:

total_word_count += ParseInt(v)
else

assert("" != key); // sanity check
int word_count = 0;
for each v in values:

word_count += ParseInt(v);
Emit(key, AsString(word_count / 

total_word_count));
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Join using Map/Reduce
 An important and expensive operation in RDBMSs
 Supported in SQL (transparent to user)

 Joins two input relations on attribute
 Consider equi-join on 2 attributes
Table 1: (SSN, {name; town; state})
123456:(John Smith;Sunnyvale, CA)
123457:(Jane Brown;Mountain View, CA)
123458:(Tom Little;Mountain View, CA)
Table 2: (SSN, {year, income})
123456:(2007,$70000),(2006,$65000),(2005,$6000),...
123457:(2007,$72000),(2006,$70000),(2005,$6000),...
123458:(2007,$80000),(2006,$85000),(2005,$7500),...
 Task: Compute average income in each city in 2007 or each city 

for each year
 Relations are not ordered!
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Analysis of the problem
 Can this be done with ONE map/reduce job?
 If so, what do you need at the reducer?
 Can that be emitted/generated by the mapper?
 In order to compute the average, you need 

somethings like
 <city2007, [list of incomes]>
 <city2008, [list of incomes]>
 Study the inputs to figure this out!

 If you look at the input, it  should be evident that it is 
not possible
 Because city info is not there in table 1

 Then look for what can be output from mapper and 
how it can be used in a second map/reduce job for 
solving the problem
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Computing averages
Mapper 1a Mapper 1b:
Input: SSN  personal info input: SSN  annual incomes
emit: <ssn, city> emit: <SSN, 2007 income>

reducer 1:
input:  SSN, {city, 2007 income}
Output:  (SSN, [City, 2007 income])

Mapper 2:
Input: SSN  [city, 2007 income]
Output:  (City, 2007 income)

reducer 2:
Input: City  2007 incomes
output: (City, AVG (2007 Incomes))
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Reducer-side Join using Map/Reduce
 Note that join requires one map/reduce task
 Average computation requires another
 Each input (table) need to be processed separately by a 

mapper
 Cannot run the same mapper code in all mappers 

 This example is a simple one (why?)
 The join attribute is unique!
 Also, equality join

 Why does that matter?
 If not, the input to the reducer is more complicated
 It will NOT be a pair of values
 Tagging is required to differentiate

 How about non equi-joins?
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Doing Join using Map/Reduce
 There are two approaches
 Mapper-side join
 Requires only mapper
 Uses Hash join

 Reducer-side join
 requires one map/reduce task
 Mapper separates tuples on join key attributes
 Tagging tuples may be needed

− Depends on whether the join attribute is unique or not
 Typically used for equi-join
 Does not use hash join directly, but relies on the hashing 

during shuffling
 Non equi-joins are more complicated!
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non-key Join example
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sid sname rating age 
22 dustin 7 45 
28 yuppy 9 35 
31 lubber 8 55 
44 guppy 5 35 
58 rusty 10 35 

 

 

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustinsid sname age bid 

28 Yuppy 35 103 
28 yuppy 35 103 
31 lubber 55 101 
31 Lubber 55 102 
31 
58 

Lubber 
rusty 

55 
35 

101 
103 

 

 

[22, <r1,dustin,45>]  [28, <r2,103>]
[28, <r1,yuppy,35>]  [28, <r2,103>]
[31, <r1,lubber,55>]  [31, <r2,101>]

At reducer:

[22, {<r1,dustin,45>}]
[28, {<r1,yuppy,35>,<r2,103>,<r2,103>}]
[31, {<r1,lubber,25>,<r2,101>, …, …}]


		sid

		sname

		rating

		age



		22

		dustin

		7

		45



		28

		yuppy

		9

		35



		31

		lubber

		8

		55



		44

		guppy

		5

		35



		58

		rusty

		10

		35






		sid

		sname

		age

		bid



		28

		Yuppy

		35

		103



		28

		yuppy

		35

		103



		31

		lubber

		55

		101



		31

		Lubber

		55

		102



		31

58

		Lubber

rusty

		55

35

		101

103







Another Example
Suppose, we have the following input (can be any delimiter separated)
Id Name Age Gender Salary
1201 gopal 45 Male 50,000
1202 manisha 40 Female 51,000
1203 khalil 34 Male 30,000
1204 prasanth 30 Male 30,000
1205 kiran 20 Male 40,000
1206 laxmi 25 Female 35,000
1207 bhavya 20 Female 15,000
1208 reshma 19 Female 14,000
1209 kranthi 22 Male 22,000
1210 Satish 24 Male 25,000
1211 Krishna 25 Male 25,000
1212 Arshad 28 Male 20,000
1213 lavanya 18 Female 8,000

 We have to compute highest salaried employee by gender in 
different age groups: up to 20, between 21 to 30, and above 30

 Essentially compute Histograms for Male and Female separately
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Desired output:
age range up to 20
Female   15000
Male     40000
age range between 21 and 30
Female   35000
Male    31000
age range above 30
Female  51000
Male   50000



Approach (steps to follow)
 What should be done in the mapper? How many mappers?
 Key: gender
 Value: entire record (or needed portions)

 Do we need a combiner? 
 For this problem we do not need a combiner! (why?)

 Should we use the default partitioning? 
 Default partitioning will partition the key, namely, gender. We also 

want partitioning on age for histogram
 Should we provide a custom partitioning? 

 Yes, but on what?
 Read the key value pair. Access the age and create p partitions (3 in 

our case) based on the age groups given (if 5 age groups, need 5 
partitions)

 What should be done in the reducer?
 How to choose the number of reducers?
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Mapper 
 For this input record

 1201 gopal 45 Male 50,000
 Mapper emits <“Male”, “45, 50,000”>
 Custom partitioner will take this as input and generate

− <maleAbove30, “50000”>

 Similarly, for this input record
 1208 reshma 19 Female 14,000
 mapper emits <“Female”, “19, 14000”>
 Custom partitioner will take this as input and generate

− <FemaleUnder20, “14000”>

 Mapper will sort and group all newly generates <kay, value> into
 <“maleabove30”, value-list>  and <“femaleUnder20”, value-list>
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Histogram details 
 The mapper output key space was only 2
 If default partitioning is used, we ONLY get 2 partitions as male 

and female
 But, we need to compute histograms which requires age
 There is NO combiner
 Hence a custom partition need to be used
 Custom partitioner takes mapper emits and creates as many 

partitions as needed based on the age range. They bare sorted 
and grouped to get
 <MaleAbove30, “50000”, “30000”, “30000”>
 <MaleUnder20, “40000”, …>
 <MaleBetween, …>

 These are  shuffled (sent to reducers -- can be 1 or 2 or 3 in this 
example)

 No combiner in this example
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Reducer 
 With the partitioning, max number of reducers that can be 

used?
 3

 Each partition is on age range and can be sent to a 
different reducer

 How  do the key value pairs look like in each partition?
 Partition 0:

− <FemaleUnder20 [15000, 14000, 8000]>
− MaleUnder20, [15000]>

 Partition 1:
− <FemaleBetween21-30,  [35000]>
− <MaleBetween21-30, [25000, …]>    total 5

 Partition 2: similar
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Approach
 What does the reducer do?

 Reducer 0 takes
− <FemaleUnder20 [15000, 14000, 8000]> and computes highest value 

in the list
• <Female Under 20, 15,000> as output

− <Male under 20,  40000 > as output
 Compute the highest for each <key, list>  coming to that reducer!

− Female  Bhavya, 15,000; Male, Kiran, 40,000
 Reducer 1:

− Female, Laxmi, 25, female, 35000
− Male Satish, 24, male, 25000

 Reducer 2:

 You can see the code for this example at 
https://www.tutorialspoint.com/map_reduce/map_reduce_partitioner.ht
m
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Approach
 Final output will be in 3 files each generated by a reducer.

 Reducer 0:
− Female <( bhavya, 20, female, 15000 ), {reshma, 19, female, 14000)

(lavanya, 18, female, 8000)>
− Male <( kiran, 20, male, 40000  )>

 Output in Part-00000  (age range up to 20)
 Female   15000
 Male     40000

 Output in Part-00001  (age range between 20 and 30)
 Female   35000
 Male    31000

 Output in Part-00002 (age range above 30)
 Female  51000
 Male   50000

11/30/2022 © Sharma Chakravarthy 32



Homework
 Think of an alternative approach to do this problem using 

map/reduce
 Assume mapper uses age range for generating its key, 

value output
 Could be a test problem
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Summary

 Additional features such as pipes and streaming are available in 
Hadoop.

 If you are familiar with C++ or Java, it is not very difficult to 
understand the basic concept and use it

 Of course, if you want to use advanced features, you need to 
learn them

 Much easier than using a DBMS for some jobs where the data is 
in free format; will discuss more of this later!
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Questions !
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