
Map/Reduce Problem Solving

Sharma Chakravarthy
Information Technology Laboratory

Computer Science and Engineering Department
The University of Texas at Arlington, Arlington, TX 76009

Email: sharma@cse.uta.edu
URL: http://itlab.uta.edu/sharma

11/30/2022 © Sharma Chakravarthy 1

Acknowledgements
 These slides are put together from a variety of

sources (both papers and slides/tutorials available
on the web)

 Mostly I have tried to: provide my perspective,
emphasize aspects that are of interest to this
course, and have tried to put forth a consolidated
view of Map/Reduce

11/30/2022 © Sharma Chakravarthy 2

Approach to M/R problem solving

1. Do not start writing code when you are given a problem to
solve using map/reduce (e.g., project 3) or even a PL

2. Try to understand the problem in terms of M/R (or PL)
framework
a. Come up with an algorithm FIRST

3. Think of all three levels we have discussed for problem at
hand
a. Do you have 1 input or multiple inputs?
b. Do you need any other data/file/info in addition to input?
c. Can you solve it in one m/r job or do you need more than 1? And

why?
d. Is this an iterative m/r job with one or more jobs in each iteration
e. Is there anything to be done in between iterations?

11/30/2022 © Sharma Chakravarthy 3

Approach to M/R problem solving (2)

1. Understand the input and what should happen at each
step under your control (input, output)
a. Map code
b. Combiner code (if needed)
c. Reducer code

2. Understand what happens in between your steps and how
that contributes to the overall solution?
a. In fact, the above has to be part of your overall solution!
b. Your solution will not be correct without the whole thing

working correctly!
3. What should be done in each part of your code and why?
4. I am not even considering optimization here!

11/30/2022 © Sharma Chakravarthy 4

Concrete steps to M/R problem solving
1. What is the input, in terms of key value?
2. What should be done in the mapper?

 Specify key value output for each input record
3. Is a combiner needed? If so, what should it do?

 How does it transform the key, value pair produced by the mapper?
 What should it produce as key, value pair?

4. How many reducers are needed? Based on what?
5. Should we use default partitioning?

 Default partitioning is done on the key values produced by the
mapper. # partitions is based on the number of specified reducers.

6. Should we provide a custom partitioning?
 Why? If so, what should it be? How do you decide that?

7. What is received by the reducer? How do we process the key,
value-list for each key produced in the mapper
 This needs a good understanding of what happens during shuffle!

11/30/2022 © Sharma Chakravarthy 5

Application 1: Word Count
This is the “Hello World” equivalent!
A simple Map/Reduce program can be written to determine count
of words in a set of files. For example, if we had:
foo.txt: Sweet, this is the foo file, sweet
bar.txt: This is the bar file, very sweet
We would expect the output to be:

sweet 3
this 2
is 2
the 2
foo 1
bar 1
file 2
Very 1

11/30/2022 © Sharma Chakravarthy 6

Word Count example
 Input: Large number of text documents
 Task: Compute word count across all the documents
 Solution
 Mapper:

− Input: A line from the text
− Output: For every word in a document, output (word (as key), "1“

(as value))
− For the word “hello”, output <“hello”, “1”>

 Mapper will generate several similar outputs
 Reducer: (after all mapper tasks are done)

− What comes to the reducer is <key, value-list>
− As many of the above as the number of unique words (why?)
− <“hello”, [“1”, “1”, ….. “1”] and so on
− For each <key, value-list>, reduce code can count the number of

elements in the list and output <“Hello”, “54”>

11/30/2022 © Sharma Chakravarthy 7

Word Count Solution (in Java)
//Pseudo-code for "word counting"
map(String key, String value):

// key: document name,
// value: document contents

for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of “1”s

int word_count = 0;
for each v in values:

word_count += ParseInt(v);
Emit(key, AsString(word_count)); //No types, just strings

11/30/2022 © Sharma Chakravarthy 8

Analysis
 Is this a good word count implementation?
 If not, why?
 Let us take a closer look at the mapper output
 Mapper produces repeating key, value pairs
 <“hello”, “1”>, <“the”, “1”>, <“hello”, “1”> <“the”, “1”>
 When mapper sorts on key and groups, you get

− <“hello”, [“1”, “1”, …]> say 35 in the list
− <“the”, [“1”, “1”, …]> say 44 in the list
− …

 This list from (EACH) mapper is sent to the reducer
 Reducer merges and applies the previous algorithm

 Is this a good implementation?
 Will a combiner be beneficial? How?

11/30/2022 © Sharma Chakravarthy 9

An Optimization: The Combiner

 A combiner is a local aggregation function for
repeated keys produced by same mapper

 For associative operations, such as sum, count, and
max, reducer can be used as a combiner for local
aggregation

 Decreases size of intermediate data shuffled!
 For the word Count problem,

− <“hello”, [“1”, “1”, …]> with 35 “1”s can be reduced to
− <“hello”, “35”> and
− <“the”, [“1”, “1”, …]> with 44 “1”s can be reduced to
− <“hello”., “44”>

Combiner
 Word count is a prime example where a Combiner is

useful. The Word Count program emits a (word, 1) pair for
every instance of every word it sees. So if the same
document contains the word "cat" 300 times, the
pair ("cat", 1) is emitted three hundred times; all of these
are then sent to the Reducer.

 By using a Combiner, these can be condensed into a
single <"cat", “300”> pair to be sent to the Reducer. Now
each node only sends a single value (a string of 3 chars
instead of hundreds of chars) to the reducer for each word
 drastically reducing the total bandwidth required for the

shuffle process, and speeding up the job.

11/30/2022 © Sharma Chakravarthy 11

Combiner
 The best part is that we may not need to write any

additional code to take advantage of this!
 If a reduce function is both commutative and associative,

then it can be used as a Combiner as well.
 The Combiner should be an instance of

the Reducer interface. If your Reducer itself cannot be
used directly as a Combiner because of commutativity or
associativity, you might still be able to write a third class to
use as a Combiner for your job.

 Commutative means A o B is the same as B o A
 Associative means (A o B) o C is the same as A o (B o C)
 Count is both commutative and associative (as are +, max)
 -, avg are not associative, concat is not commutative!

 Keep this in mind when using reduce code for combiner code!

11/30/2022 © Sharma Chakravarthy 12

Word Count with Combiner

Input Map & Combine Shuffle & Sort Reduce Output

the quick
brown fox

the fox ate
the mouse

how now
brown cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 2
fox, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Homework 1
 Write a Map/Reduce program that counts the words in

each document separately. Assume, document name is
the key and all words are values as input. For example, if
we had:

foo.txt: sweet this this is very sweet
bar.txt: this sweet bar is very very sweet

 The output should be:
 Foo.txt, sweet 2 bar.txt, this 1
 Foo.txt, this 2 bar.txt, sweet 2
 Foo.txt, is 1 bar.txt, bar 1
 Foo.txt, very 1 bar.txt, is 1

bar.txt, very 2

11/30/2022 © Sharma Chakravarthy 14

Word frequency example
 Used for decrypting, comparison of documents etc.

 Input: Large number of text documents
 Task: Compute word frequency (ratio) across all the

document
 Need to compute total count as well as individual count

 You need the total count before you can compute total word
count of each word in order to compute frequency

 This cannot be done with a single map reduce task without
additional support (why?)

11/30/2022 © Sharma Chakravarthy 15

Word frequency example
 A naive solution with basic Map/Reduce model

requires two Map/Reduce jobs
 Map/Reduce job 1: count number of all words in these documents

− Use combiners
− The reducer just needs to sum up all word counts

 Map/Reducer job 2:
− count number of each word as we did in the previous example
− The reducer, in addition to the input, reads the total word count and uses

for the denominator in every reducer for generating word frequency
− Alternatively, the Map/Reducer job 1 can generate word count for each

word and total word count and map/reduce job 2 can use them for
computing word frequency

 Requires the output of one Map/Reduce job to be fed into
another Map/Reduce job
 Chaining of M/R jobs

11/30/2022 © Sharma Chakravarthy 16

Word frequency example
 Can we do better?
 Two nice features of Google's MapReduce

implementation can help!
 Ordering guarantee of reduce key
 Auxiliary functionality: EmitToAllReducers(k, v)

 A nice trick: To compute the total number of words in
all documents
 Every map task sends its total world count with key "“ to ALL

reducers
 Key "" will be the first key processed by reducer (due to ordering

guarantee)
− Sum of its values → total number of words!

 Requires only 1 map and 1 reduce instead of 2 chained
map/reduce jobs

11/30/2022 © Sharma Chakravarthy 17

Word frequency solution: Mapper with combiner
map(String key, String value):
// key: document name, value: document contents

int word_count = 0;
for each word w in value:

EmitIntermediate(w, "1");
word_count++;

EmitIntermediateToAllReducers("", AsString(word_count));

combine(String key, Iterator values):
// Combiner for map output

// key: a word, values: a list of counts
int partial_word_count = 0;
for each v in values:

partial_word_count += ParseInt(v);
Emit(key, AsString(partial_word_count));

© Sharma Chakravarthy 18

Word frequency solution: reducer
reduce(String key, Iterator values):
// Actual reducer, key: a word
// values: a list of counts

if (is_first_key):
assert("" == key); // sanity check
total_word_count = 0;
for each v in values:

total_word_count += ParseInt(v)
else

assert("" != key); // sanity check
int word_count = 0;
for each v in values:

word_count += ParseInt(v);
Emit(key, AsString(word_count /

total_word_count));

© Sharma Chakravarthy 19

Join using Map/Reduce
 An important and expensive operation in RDBMSs
 Supported in SQL (transparent to user)

 Joins two input relations on attribute
 Consider equi-join on 2 attributes
Table 1: (SSN, {name; town; state})
123456:(John Smith;Sunnyvale, CA)
123457:(Jane Brown;Mountain View, CA)
123458:(Tom Little;Mountain View, CA)
Table 2: (SSN, {year, income})
123456:(2007,$70000),(2006,$65000),(2005,$6000),...
123457:(2007,$72000),(2006,$70000),(2005,$6000),...
123458:(2007,$80000),(2006,$85000),(2005,$7500),...
 Task: Compute average income in each city in 2007 or each city

for each year
 Relations are not ordered!

11/30/2022 © Sharma Chakravarthy 20

Analysis of the problem
 Can this be done with ONE map/reduce job?
 If so, what do you need at the reducer?
 Can that be emitted/generated by the mapper?
 In order to compute the average, you need

somethings like
 <city2007, [list of incomes]>
 <city2008, [list of incomes]>
 Study the inputs to figure this out!

 If you look at the input, it should be evident that it is
not possible
 Because city info is not there in table 1

 Then look for what can be output from mapper and
how it can be used in a second map/reduce job for
solving the problem

11/30/2022 © Sharma Chakravarthy 21

Computing averages
Mapper 1a Mapper 1b:
Input: SSN  personal info input: SSN  annual incomes
emit: <ssn, city> emit: <SSN, 2007 income>

reducer 1:
input: SSN, {city, 2007 income}
Output: (SSN, [City, 2007 income])

Mapper 2:
Input: SSN  [city, 2007 income]
Output: (City, 2007 income)

reducer 2:
Input: City  2007 incomes
output: (City, AVG (2007 Incomes))

11/30/2022 © Sharma Chakravarthy 22

Reducer-side Join using Map/Reduce
 Note that join requires one map/reduce task
 Average computation requires another
 Each input (table) need to be processed separately by a

mapper
 Cannot run the same mapper code in all mappers

 This example is a simple one (why?)
 The join attribute is unique!
 Also, equality join

 Why does that matter?
 If not, the input to the reducer is more complicated
 It will NOT be a pair of values
 Tagging is required to differentiate

 How about non equi-joins?

11/30/2022 © Sharma Chakravarthy 23

Doing Join using Map/Reduce
 There are two approaches
 Mapper-side join
 Requires only mapper
 Uses Hash join

 Reducer-side join
 requires one map/reduce task
 Mapper separates tuples on join key attributes
 Tagging tuples may be needed

− Depends on whether the join attribute is unique or not
 Typically used for equi-join
 Does not use hash join directly, but relies on the hashing

during shuffling
 Non equi-joins are more complicated!

11/30/2022 © Sharma Chakravarthy 24

non-key Join example

11/30/2022 © Sharma Chakravarthy 25

sid sname rating age
22 dustin 7 45
28 yuppy 9 35
31 lubber 8 55
44 guppy 5 35
58 rusty 10 35

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustinsid sname age bid

28 Yuppy 35 103
28 yuppy 35 103
31 lubber 55 101
31 Lubber 55 102
31
58

Lubber
rusty

55
35

101
103

[22, <r1,dustin,45>] [28, <r2,103>]
[28, <r1,yuppy,35>] [28, <r2,103>]
[31, <r1,lubber,55>] [31, <r2,101>]

At reducer:

[22, {<r1,dustin,45>}]
[28, {<r1,yuppy,35>,<r2,103>,<r2,103>}]
[31, {<r1,lubber,25>,<r2,101>, …, …}]

		sid

		sname

		rating

		age

		22

		dustin

		7

		45

		28

		yuppy

		9

		35

		31

		lubber

		8

		55

		44

		guppy

		5

		35

		58

		rusty

		10

		35

		sid

		sname

		age

		bid

		28

		Yuppy

		35

		103

		28

		yuppy

		35

		103

		31

		lubber

		55

		101

		31

		Lubber

		55

		102

		31

58

		Lubber

rusty

		55

35

		101

103

Another Example
Suppose, we have the following input (can be any delimiter separated)
Id Name Age Gender Salary
1201 gopal 45 Male 50,000
1202 manisha 40 Female 51,000
1203 khalil 34 Male 30,000
1204 prasanth 30 Male 30,000
1205 kiran 20 Male 40,000
1206 laxmi 25 Female 35,000
1207 bhavya 20 Female 15,000
1208 reshma 19 Female 14,000
1209 kranthi 22 Male 22,000
1210 Satish 24 Male 25,000
1211 Krishna 25 Male 25,000
1212 Arshad 28 Male 20,000
1213 lavanya 18 Female 8,000

 We have to compute highest salaried employee by gender in
different age groups: up to 20, between 21 to 30, and above 30

 Essentially compute Histograms for Male and Female separately

11/30/2022 © Sharma Chakravarthy 26

Desired output:
age range up to 20
Female 15000
Male 40000
age range between 21 and 30
Female 35000
Male 31000
age range above 30
Female 51000
Male 50000

Approach (steps to follow)
 What should be done in the mapper? How many mappers?
 Key: gender
 Value: entire record (or needed portions)

 Do we need a combiner?
 For this problem we do not need a combiner! (why?)

 Should we use the default partitioning?
 Default partitioning will partition the key, namely, gender. We also

want partitioning on age for histogram
 Should we provide a custom partitioning?

 Yes, but on what?
 Read the key value pair. Access the age and create p partitions (3 in

our case) based on the age groups given (if 5 age groups, need 5
partitions)

 What should be done in the reducer?
 How to choose the number of reducers?

11/30/2022 © Sharma Chakravarthy 27

Mapper
 For this input record

 1201 gopal 45 Male 50,000
 Mapper emits <“Male”, “45, 50,000”>
 Custom partitioner will take this as input and generate

− <maleAbove30, “50000”>

 Similarly, for this input record
 1208 reshma 19 Female 14,000
 mapper emits <“Female”, “19, 14000”>
 Custom partitioner will take this as input and generate

− <FemaleUnder20, “14000”>

 Mapper will sort and group all newly generates <kay, value> into
 <“maleabove30”, value-list> and <“femaleUnder20”, value-list>

11/30/2022 © Sharma Chakravarthy 28

Histogram details
 The mapper output key space was only 2
 If default partitioning is used, we ONLY get 2 partitions as male

and female
 But, we need to compute histograms which requires age
 There is NO combiner
 Hence a custom partition need to be used
 Custom partitioner takes mapper emits and creates as many

partitions as needed based on the age range. They bare sorted
and grouped to get
 <MaleAbove30, “50000”, “30000”, “30000”>
 <MaleUnder20, “40000”, …>
 <MaleBetween, …>

 These are shuffled (sent to reducers -- can be 1 or 2 or 3 in this
example)

 No combiner in this example

11/30/2022 © Sharma Chakravarthy 29

Reducer
 With the partitioning, max number of reducers that can be

used?
 3

 Each partition is on age range and can be sent to a
different reducer

 How do the key value pairs look like in each partition?
 Partition 0:

− <FemaleUnder20 [15000, 14000, 8000]>
− MaleUnder20, [15000]>

 Partition 1:
− <FemaleBetween21-30, [35000]>
− <MaleBetween21-30, [25000, …]> total 5

 Partition 2: similar

11/30/2022 © Sharma Chakravarthy 30

Approach
 What does the reducer do?

 Reducer 0 takes
− <FemaleUnder20 [15000, 14000, 8000]> and computes highest value

in the list
• <Female Under 20, 15,000> as output

− <Male under 20, 40000 > as output
 Compute the highest for each <key, list> coming to that reducer!

− Female Bhavya, 15,000; Male, Kiran, 40,000
 Reducer 1:

− Female, Laxmi, 25, female, 35000
− Male Satish, 24, male, 25000

 Reducer 2:

 You can see the code for this example at
https://www.tutorialspoint.com/map_reduce/map_reduce_partitioner.ht
m

11/30/2022 © Sharma Chakravarthy 31

https://www.tutorialspoint.com/map_reduce/map_reduce_partitioner.htm

Approach
 Final output will be in 3 files each generated by a reducer.

 Reducer 0:
− Female <(bhavya, 20, female, 15000), {reshma, 19, female, 14000)

(lavanya, 18, female, 8000)>
− Male <(kiran, 20, male, 40000)>

 Output in Part-00000 (age range up to 20)
 Female 15000
 Male 40000

 Output in Part-00001 (age range between 20 and 30)
 Female 35000
 Male 31000

 Output in Part-00002 (age range above 30)
 Female 51000
 Male 50000

11/30/2022 © Sharma Chakravarthy 32

Homework
 Think of an alternative approach to do this problem using

map/reduce
 Assume mapper uses age range for generating its key,

value output
 Could be a test problem

11/30/2022 © Sharma Chakravarthy 33

Summary

 Additional features such as pipes and streaming are available in
Hadoop.

 If you are familiar with C++ or Java, it is not very difficult to
understand the basic concept and use it

 Of course, if you want to use advanced features, you need to
learn them

 Much easier than using a DBMS for some jobs where the data is
in free format; will discuss more of this later!

11/30/2022 © Sharma Chakravarthy 42

Questions !

43© Sharma Chakravarthy ©

	Map/Reduce Problem Solving
	Acknowledgements
	Approach to M/R problem solving
	Approach to M/R problem solving (2)
	Concrete steps to M/R problem solving
	Application 1: Word Count
	Word Count example
	Word Count Solution (in Java)
	Analysis
	An Optimization: The Combiner
	Combiner
	Combiner
	Word Count with Combiner
	Homework 1
	Word frequency example
	Word frequency example
	Word frequency example
	Word frequency solution: Mapper with combiner
	Word frequency solution: reducer
	Join using Map/Reduce
	Analysis of the problem
	Computing averages
	Reducer-side Join using Map/Reduce
	Doing Join using Map/Reduce
	non-key Join example
	Another Example
	Approach (steps to follow)
	Mapper
	Histogram details
	Reducer
	Approach
	Approach
	Homework
	Summary
	Slide Number 43

