
1

Database Management Systems, S. Chakravarthy 1

Transaction Management

Index Locking

Instructor: Sharma Chakravarthy
sharma@cse.uta.edu

The University of Texas @ Arlington

Database Management Systems, S. Chakravarthy 2

Multiple-Granularity Locks

 Hard to decide what granularity to lock 
(tuples vs. pages vs. tables vs. database).

 Shouldn’t have to decide!
 Data “containers” are nested: 

Tuples

Tables

Pages

Database

contains

Database Management Systems, S. Chakravarthy 3

Solution: New Lock Modes, Protocol

 Allow Xacts to lock at each level, but with a 
special protocol using new “intention” locks:

 Before locking an item, Xact 
must set “intention locks” on 
all its ancestors. (top-down)

 For unlock, go from specific 
to general (i.e., bottom-up).

 SIX mode: Like S & IX at the 
same time.

-- IS IX

--

IS

IX







 



S X




S

X

 







 



Database Management Systems, S. Chakravarthy 4

Multiple Granularity Lock Protocol

 Each Xact starts from the root of the hierarchy.
 To get S or IS lock on a node, must hold IS or IX 

on parent node.
– What if Xact holds SIX on parent? S on parent?

 To get X or IX or SIX on a node, must hold IX or 
SIX on parent node.

 Must release locks in bottom-up order.

Protocol is correct in that it is equivalent to directly setting
locks at the leaf levels of the hierarchy.



2

Database Management Systems, S. Chakravarthy 5

Examples

 T1 scans R, and updates a few tuples:
– T1 gets an SIX lock on R, then repeatedly gets an S 

lock on tuples of R, and occasionally upgrades to 
X on the tuples.

 T2 uses an index to read only part of R:
– T2 gets an IS lock on R, and repeatedly               

gets an S lock on tuples of R.

 T3 reads all of R:
– T3 gets an S lock on R. 
– OR, T3 could behave like T2; can                                      

use lock escalation to decide which.

-- IS IX

--

IS

IX







 



S X




S

X

 







 



Database Management Systems, S. Chakravarthy 6

Index Locking

 If there is a dense index on the rating field using 
Alternative (2), T1 should lock the index page 
containing the data entries with rating = 1.
– If there are no records with rating = 1, T1 must lock the index 

page where such a data entry would be, if it existed!

 If there is no suitable index, T1 must lock all pages, 
and lock the file/table to prevent new pages from 
being added (equivalent to locking the end of file or 
eof), to ensure that no new records with rating = 1 are 
added.

r=1

Data
Index

Database Management Systems, S. Chakravarthy 7

Predicate Locking

 Grant lock on all records that satisfy some 
logical predicate,  e.g. title = supervisor.

 Index locking is a special case of predicate 
locking for which an index supports efficient 
implementation of the predicate lock.
– What is the predicate in the sailor example?

 In general, predicate locking has a lot of 
locking overhead.

Database Management Systems, S. Chakravarthy 8

Locking in B+ Trees (or index)

 Why do we have to worry about locking when 
using B+ trees?

 We lock the data pages (or records) anyway!

 If we are only reading, should we worry about 
locking the index

 If we are writing (insert/update/delete), should 
we worry about locking the index



3

Database Management Systems, S. Chakravarthy 9

Locking in B+ Trees (or index)

 How can we efficiently lock a particular leaf 
node?
– Btw, don’t confuse this with multiple granularity 

locking!

 One solution:  Ignore the tree structure, just lock 
pages while traversing the tree, following 2PL.

 This has terrible performance!
– Root node (and many higher level nodes) become 

bottlenecks because every tree access begins at the 
root.

Database Management Systems, S. Chakravarthy 10

Two Useful Observations

 Higher levels of the tree only direct searches for leaf 
pages.

 For inserts, a node on a path from root to modified 
leaf must be locked (in X mode, of course), only if a 
split can propagate up to it from the modified leaf.  
(Similar point holds w.r.t. deletes.)

 We can exploit these observations to design efficient 
locking protocols that guarantee serializability even 
though they violate 2PL.

Database Management Systems, S. Chakravarthy 11

Tree Locking 

 If  we are only doing read operations on the database, 
should we lock the index tree nodes and how?

 If we are doing updates to the database 
(insert/delete/modify), should we lock the index 
nodes and how?

 Where does the 2PL come into picture? We have not 
discussed it for indexes; we discussed it only for data 

Database Management Systems, S. Chakravarthy 12

A Simple Tree Locking Algorithm

 Search:  Start at root and go down; repeatedly, S lock 
child then unlock parent.
– Why?

 Insert/Delete: Start at root and go down, obtaining X 
locks as needed.  Once child is locked, check if it is 
safe:
– If child is safe, release all locks on ancestors.
– Why will this work?

 Safe node: Node such that changes will not 
propagate up beyond this node.
– Inserts:  Node is not full.
– Deletes:  Node is not half-empty.

 Why does this violate 2PL?



4

Database Management Systems, S. Chakravarthy 13

Example
ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1)  Search 38*
2)  Delete 38*
3)  Insert 45*
4)  Insert 25*

23

Database Management Systems, S. Chakravarthy 14

A Better Tree Locking Algorithm (See Bayer-
Schkolnick paper)

 Search: As before.

 Insert/Delete:
– Set locks as if for search, get to leaf, and set 

X lock on leaf.
– If leaf is not safe, release all locks, and restart 

Xact using previous Insert/Delete protocol.

 Gambles that only leaf node will be modified; 
if not, S locks set on the first pass to leaf are 
wasteful.  In practice, better than previous alg.

Database Management Systems, S. Chakravarthy 15

Example
ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1)  Delete 38*
2)  Insert 25*
4)  Insert 45*
5)  Insert 45*, 

then 46*  

23

Database Management Systems, S. Chakravarthy 16

Even Better Algorithm
 Search: As before.
 Insert/Delete: 

– Use original Insert/Delete protocol, but set 
IX locks instead of X locks at all nodes. 

– Once leaf is locked, convert all IX locks to X 
locks top-down: i.e., starting from node 
nearest to root. (Top-down reduces chances 
of deadlock.)

 Contrast use of IX locks here with their use in
multiple-granularity locking.
– Not containment
– Need for dealing with a path whose nodes may get updated



5

Database Management Systems, S. Chakravarthy 17

Hybrid Algorithm

 The likelihood that we really need an X lock 
decreases as we move up the tree.

 Hybrid approach:
Set S locks

Set SIX locks

Set X locks

Database Management Systems, S. Chakravarthy 18

Multiversion Timestamp CC

 Idea:  Let writers make a “new” copy while 
readers use an appropriate “old” copy:

O O’

O’’

MAIN
SEGMENT
(Current
versions of
DB objects)

VERSION
POOL
(Older versions that
may be useful for 
some active readers.)

 Readers are always allowed to proceed.
– But may be blocked until writer commits.

Database Management Systems, S. Chakravarthy 19

Multiversion CC (Contd.)

 Each version of an object has its writer’s TS as 
its WTS, and the TS of the Xact that most 
recently read this version as its RTS.

 Versions are chained backward; we can 
discard versions that are “too old to be of 
interest”.

 Each Xact is classified as Reader or Writer.
– Writer may write some object; Reader never will.
– Xact declares whether it is a Reader when it begins.

Database Management Systems, S. Chakravarthy 20

Transaction Support in SQL-92

 Each transaction has an access mode, a 
diagnostics size, and an isolation level.

NoNoNoSerializable

MaybeNoNoRepeatable Reads

MaybeMaybeNoRead Committed

MaybeMaybeMaybeRead Uncommitted

Phantom 
Problem

Unrepeatable 
Read

Dirty
Read

Isolation Level



6

Database Management Systems, S. Chakravarthy 21

CC comparison
 Locks

– used by lock-based approaches
– space in the lock table is proportional to the number of 

database elements locked
 Timestamps

– Used by timestamp-based algos
– space is needed for read- and write-times to be 

recorded
– Can use something similar to a lock table to record 

timestamps of only those database elements that have 
been accessed recently

 Validation
– used by optimistic CC.
– Space is needed for timestamps and read/write sets for 

each currently active Tx.

Database Management Systems, S. Chakravarthy 22

Summary

 There are several lock-based concurrency 
control schemes (Strict 2PL, 2PL, conservative 
2PL). Conflicts between transactions can be 
detected in the dependency graph

 The lock manager keeps track of the locks 
issued. Deadlocks can either be prevented or 
detected.

 Naïve locking strategies may have the 
phantom problem 

Database Management Systems, S. Chakravarthy 23

Summary (Contd.)
 Index locking is common, and affects 

performance significantly. 
– Needed when accessing records via index.
– Needed for locking logical sets of records (index 

locking/predicate locking).
 Tree-structured indexes:

– Straightforward use of 2PL very inefficient.
– Bayer-Schkolnick illustrates potential for 

improvement.
 In practice, better techniques now known; do 

record-level, rather than page-level locking.

Database Management Systems, S. Chakravarthy 24

Summary (Contd.)

 Multiple granularity locking reduces the overhead 
involved in setting locks for nested collections of objects 
(e.g., a file of pages); should not be confused with tree 
index locking!

 Optimistic CC aims to minimize CC overheads in an 
``optimistic’’ environment where reads are common and 
writes are rare.

 Optimistic CC has its own overheads however; most 
real systems use locking.

 SQL-92 provides different isolation levels that control 
the degree of concurrency



7

Database Management Systems, S. Chakravarthy 25

Summary (Contd.)

 Timestamp CC is another alternative to 2PL; allows 
some serializable schedules that 2PL does not (although 
converse is also true).

 Ensuring recoverability with Timestamp CC requires 
ability to block Xacts, which is similar to locking.

 Multiversion Timestamp CC is a variant which ensures 
that read-only Xacts are never restarted; they can 
always read a suitable older version. Additional 
overhead of version maintenance. 

Database Management Systems, S. Chakravarthy 26

Thank You !


