
1

Database Management Systems, S. Chakravarthy 1

Transaction Management

Index Locking

Instructor: Sharma Chakravarthy
sharma@cse.uta.edu

The University of Texas @ Arlington

Database Management Systems, S. Chakravarthy 2

Multiple-Granularity Locks

 Hard to decide what granularity to lock
(tuples vs. pages vs. tables vs. database).

 Shouldn’t have to decide!
 Data “containers” are nested:

Tuples

Tables

Pages

Database

contains

Database Management Systems, S. Chakravarthy 3

Solution: New Lock Modes, Protocol

 Allow Xacts to lock at each level, but with a
special protocol using new “intention” locks:

 Before locking an item, Xact
must set “intention locks” on
all its ancestors. (top-down)

 For unlock, go from specific
to general (i.e., bottom-up).

 SIX mode: Like S & IX at the
same time.

-- IS IX

--

IS

IX







 



S X




S

X

 







 



Database Management Systems, S. Chakravarthy 4

Multiple Granularity Lock Protocol

 Each Xact starts from the root of the hierarchy.
 To get S or IS lock on a node, must hold IS or IX

on parent node.
– What if Xact holds SIX on parent? S on parent?

 To get X or IX or SIX on a node, must hold IX or
SIX on parent node.

 Must release locks in bottom-up order.

Protocol is correct in that it is equivalent to directly setting
locks at the leaf levels of the hierarchy.

2

Database Management Systems, S. Chakravarthy 5

Examples

 T1 scans R, and updates a few tuples:
– T1 gets an SIX lock on R, then repeatedly gets an S

lock on tuples of R, and occasionally upgrades to
X on the tuples.

 T2 uses an index to read only part of R:
– T2 gets an IS lock on R, and repeatedly

gets an S lock on tuples of R.

 T3 reads all of R:
– T3 gets an S lock on R.
– OR, T3 could behave like T2; can

use lock escalation to decide which.

-- IS IX

--

IS

IX







 



S X




S

X

 







 



Database Management Systems, S. Chakravarthy 6

Index Locking

 If there is a dense index on the rating field using
Alternative (2), T1 should lock the index page
containing the data entries with rating = 1.
– If there are no records with rating = 1, T1 must lock the index

page where such a data entry would be, if it existed!

 If there is no suitable index, T1 must lock all pages,
and lock the file/table to prevent new pages from
being added (equivalent to locking the end of file or
eof), to ensure that no new records with rating = 1 are
added.

r=1

Data
Index

Database Management Systems, S. Chakravarthy 7

Predicate Locking

 Grant lock on all records that satisfy some
logical predicate, e.g. title = supervisor.

 Index locking is a special case of predicate
locking for which an index supports efficient
implementation of the predicate lock.
– What is the predicate in the sailor example?

 In general, predicate locking has a lot of
locking overhead.

Database Management Systems, S. Chakravarthy 8

Locking in B+ Trees (or index)

 Why do we have to worry about locking when
using B+ trees?

 We lock the data pages (or records) anyway!

 If we are only reading, should we worry about
locking the index

 If we are writing (insert/update/delete), should
we worry about locking the index

3

Database Management Systems, S. Chakravarthy 9

Locking in B+ Trees (or index)

 How can we efficiently lock a particular leaf
node?
– Btw, don’t confuse this with multiple granularity

locking!

 One solution: Ignore the tree structure, just lock
pages while traversing the tree, following 2PL.

 This has terrible performance!
– Root node (and many higher level nodes) become

bottlenecks because every tree access begins at the
root.

Database Management Systems, S. Chakravarthy 10

Two Useful Observations

 Higher levels of the tree only direct searches for leaf
pages.

 For inserts, a node on a path from root to modified
leaf must be locked (in X mode, of course), only if a
split can propagate up to it from the modified leaf.
(Similar point holds w.r.t. deletes.)

 We can exploit these observations to design efficient
locking protocols that guarantee serializability even
though they violate 2PL.

Database Management Systems, S. Chakravarthy 11

Tree Locking

 If we are only doing read operations on the database,
should we lock the index tree nodes and how?

 If we are doing updates to the database
(insert/delete/modify), should we lock the index
nodes and how?

 Where does the 2PL come into picture? We have not
discussed it for indexes; we discussed it only for data

Database Management Systems, S. Chakravarthy 12

A Simple Tree Locking Algorithm

 Search: Start at root and go down; repeatedly, S lock
child then unlock parent.
– Why?

 Insert/Delete: Start at root and go down, obtaining X
locks as needed. Once child is locked, check if it is
safe:
– If child is safe, release all locks on ancestors.
– Why will this work?

 Safe node: Node such that changes will not
propagate up beyond this node.
– Inserts: Node is not full.
– Deletes: Node is not half-empty.

 Why does this violate 2PL?

4

Database Management Systems, S. Chakravarthy 13

Example
ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25*

23

Database Management Systems, S. Chakravarthy 14

A Better Tree Locking Algorithm (See Bayer-
Schkolnick paper)

 Search: As before.

 Insert/Delete:
– Set locks as if for search, get to leaf, and set

X lock on leaf.
– If leaf is not safe, release all locks, and restart

Xact using previous Insert/Delete protocol.

 Gambles that only leaf node will be modified;
if not, S locks set on the first pass to leaf are
wasteful. In practice, better than previous alg.

Database Management Systems, S. Chakravarthy 15

Example
ROOT

A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Delete 38*
2) Insert 25*
4) Insert 45*
5) Insert 45*,

then 46*

23

Database Management Systems, S. Chakravarthy 16

Even Better Algorithm
 Search: As before.
 Insert/Delete:

– Use original Insert/Delete protocol, but set
IX locks instead of X locks at all nodes.

– Once leaf is locked, convert all IX locks to X
locks top-down: i.e., starting from node
nearest to root. (Top-down reduces chances
of deadlock.)

 Contrast use of IX locks here with their use in
multiple-granularity locking.
– Not containment
– Need for dealing with a path whose nodes may get updated

5

Database Management Systems, S. Chakravarthy 17

Hybrid Algorithm

 The likelihood that we really need an X lock
decreases as we move up the tree.

 Hybrid approach:
Set S locks

Set SIX locks

Set X locks

Database Management Systems, S. Chakravarthy 18

Multiversion Timestamp CC

 Idea: Let writers make a “new” copy while
readers use an appropriate “old” copy:

O O’

O’’

MAIN
SEGMENT
(Current
versions of
DB objects)

VERSION
POOL
(Older versions that
may be useful for
some active readers.)

 Readers are always allowed to proceed.
– But may be blocked until writer commits.

Database Management Systems, S. Chakravarthy 19

Multiversion CC (Contd.)

 Each version of an object has its writer’s TS as
its WTS, and the TS of the Xact that most
recently read this version as its RTS.

 Versions are chained backward; we can
discard versions that are “too old to be of
interest”.

 Each Xact is classified as Reader or Writer.
– Writer may write some object; Reader never will.
– Xact declares whether it is a Reader when it begins.

Database Management Systems, S. Chakravarthy 20

Transaction Support in SQL-92

 Each transaction has an access mode, a
diagnostics size, and an isolation level.

NoNoNoSerializable

MaybeNoNoRepeatable Reads

MaybeMaybeNoRead Committed

MaybeMaybeMaybeRead Uncommitted

Phantom
Problem

Unrepeatable
Read

Dirty
Read

Isolation Level

6

Database Management Systems, S. Chakravarthy 21

CC comparison
 Locks

– used by lock-based approaches
– space in the lock table is proportional to the number of

database elements locked
 Timestamps

– Used by timestamp-based algos
– space is needed for read- and write-times to be

recorded
– Can use something similar to a lock table to record

timestamps of only those database elements that have
been accessed recently

 Validation
– used by optimistic CC.
– Space is needed for timestamps and read/write sets for

each currently active Tx.

Database Management Systems, S. Chakravarthy 22

Summary

 There are several lock-based concurrency
control schemes (Strict 2PL, 2PL, conservative
2PL). Conflicts between transactions can be
detected in the dependency graph

 The lock manager keeps track of the locks
issued. Deadlocks can either be prevented or
detected.

 Naïve locking strategies may have the
phantom problem

Database Management Systems, S. Chakravarthy 23

Summary (Contd.)
 Index locking is common, and affects

performance significantly.
– Needed when accessing records via index.
– Needed for locking logical sets of records (index

locking/predicate locking).
 Tree-structured indexes:

– Straightforward use of 2PL very inefficient.
– Bayer-Schkolnick illustrates potential for

improvement.
 In practice, better techniques now known; do

record-level, rather than page-level locking.

Database Management Systems, S. Chakravarthy 24

Summary (Contd.)

 Multiple granularity locking reduces the overhead
involved in setting locks for nested collections of objects
(e.g., a file of pages); should not be confused with tree
index locking!

 Optimistic CC aims to minimize CC overheads in an
``optimistic’’ environment where reads are common and
writes are rare.

 Optimistic CC has its own overheads however; most
real systems use locking.

 SQL-92 provides different isolation levels that control
the degree of concurrency

7

Database Management Systems, S. Chakravarthy 25

Summary (Contd.)

 Timestamp CC is another alternative to 2PL; allows
some serializable schedules that 2PL does not (although
converse is also true).

 Ensuring recoverability with Timestamp CC requires
ability to block Xacts, which is similar to locking.

 Multiversion Timestamp CC is a variant which ensures
that read-only Xacts are never restarted; they can
always read a suitable older version. Additional
overhead of version maintenance.

Database Management Systems, S. Chakravarthy 26

Thank You !

