
1

Database Management Systems, S. Chakravarthy 1

Transaction Management
Recovery

Chapter 18 (3rd ed)

Instructor: Sharma Chakravarthy
sharma@cse.uta.edu

The University of Texas @ Arlington

Database Management Systems, S. Chakravarthy 2

ABSTRACT SYSTEM MODEL

T1 T2 ... Tn

Transaction Manager
R, W, C, A

Scheduler R, W, C , A   

Recovery Manager
Fetch, Flush
pin, unpin  

Cache Manager R, W
R,W

Cache

log
Stable DB

Restart

Usually, on separate disks

Database Management Systems, S. Chakravarthy 3

The Big Picture:  What’s Stored Where

DB

Data pages
each
with a
pageLSN

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

BM manages pages
When in RAM

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecords

RAMLOG

master record
has Last checkpt 

Record lsn

Database Management Systems, S. Chakravarthy 4

Comments

� Scheduler orders the operations so that the 
execution is serializable and recoverable

� The log contains records of the form [Ti, x, 
before_val, after_val] – Ti has written value 
after_val for data item x which had value 
before_val

� We deal with recovery when the volatile storage 
fails (abort rollback is easier than recovery)
– Last committed value of x
– Committed database state
– Before (for undo) and after images (for redo) of x

1 2

3 4



2

Database Management Systems, S. Chakravarthy 5

Recoverability

� When is recoverability required 
– When an aborted Tx writes to stable storage (DB) 

� If a system failure occurs at this point, the DB contains 
the effects of an aborted tx

� These effects must be undone (UNDO)

� Remember a Tx never writes to disk; only the BM
– If a tx commits and does not write all of its 

updates to the DB
� This can happen if the buffer has not yet flushed the 

page to disk!!
� If a system failure occurs at this point, the DB does NOT 

contain the effects of the committed tx
� These effects must be redone (REDO)

Database Management Systems, S. Chakravarthy 6

Motivation

� Atomicity: 
– Transactions may abort (“Rollback”).

� Durability:
– What if DBMS stops running?  (Causes?)

crash!
� Desired Behavior after 

system restarts:
– T1, T2 & T3 should be 

durable.
– T4 & T5 should be 

aborted (effects not seen).

T1
T2
T3
T4
T5

Database Management Systems, S. Chakravarthy 7

Recovery Techniques

1. Incremental log with deferred updates (redo / no undo)

– No writes before commit. Hence no undo. Redo is 
needed as committed Txs might not have written to disk

2. Incremental log with immediate (in place)  updates (redo / 
undo)

– If  updates are happening in place,  uncommitted Txs 
have written to disk by bm; hence undo.

– If commit is not atomic, you need redo.

3. Shadow Paging (alternative to log‐based crash recovery ‐ no 
undo/no redo)

– Pointers are swapped atomically!!  

Database Management Systems, S. Chakravarthy 8

Shadow paging

5 6

7 8



3

Database Management Systems, S. Chakravarthy 9

Recovery
� Tx UNDO: removes all the effects of this Tx only

� Global Undo: when recovering from a system 
failure, the effects of all incomplete Txs have to 
be rolled back

� Partial REDO: when recovering from a system 
failure, results of committed Txs have to be 
redone (because some of the committed results 
are still in the buffer)

� Global REDO: archive recovery. Apply all 
committed Txs to a backup copy to bring it to 
current state.

Database Management Systems, S. Chakravarthy 10

Assumptions

� Concurrency control is in effect. 
– Strict 2PL, in particular.

� Updates are happening “in place” (immediate)
– i.e., data is overwritten on (deleted from) the disk.
– As we have seen, this is done by the buffer 

manager and applications/TM do not have any 
control over it

� Looking for a  simple scheme to guarantee 
Atomicity & Durability?

Database Management Systems, S. Chakravarthy 11

Recoverability

� When is recoverability required 
– When an aborted Tx writes to stable storage (DB) 

� If a system failure occurs at this point, the DB contains 
the effects of an aborted tx

� These effects must be undone (UNDO)

– If a tx commits and does not write all of its 
updates to the DB
� This can happen if the buffer has not yet flushed the 

page to disk!!
� If a system failure occurs at this point, the DB does NOT 

contain the effects of the committed tx
� These effects must be redone (REDO)

Database Management Systems, S. Chakravarthy 12

Buffer Management and undo

� Replacement algorithms write dirty pages to disk. 
This is controlled solely by the buffer manager.
– If no dirty pages are written back to disk, transaction undo 

can be limited to buffer operations

� Disadvantage: requires very large buffers.

� Steal: modified buffer pages can be written to disk 
(due to buffer replacement)  at any time (even before 
commit)

� No Steal: modified pages are kept in buffer at least 
until the end of the transaction (EOT)
– Unrealistic; requires large and varying size buffer space!

9 10

11 12



4

Database Management Systems, S. Chakravarthy 13

Buffer Management and Redo
� When a tx commits, all its pages must be written to 

disk. Otherwise, durability has to be guaranteed in 
some other way (redo). 
– If  all dirty pages are written  at the end of Tx (still need to 

be atomic), no logging is required and hence no redo.

� Disadvantage: requires too many I/O’s and waiting 
for EOT to finish writing. 

� Force: All modified buffer pages are written at EOT
– Commit has to wait for I/O to finish; increases response 

time
– System failure can still occur during commit process

� No Force: No writing is triggered at the time of EOT 
(only decided by the BM)

Database Management Systems, S. Chakravarthy 14

Handling the Buffer Pool

� Force writes to disk just 
before commit?
– Poor response time.
– But provides durability.
– No redo

� Steal buffer-pool frames from 
uncommited Txs?
– If not, need very large buffers
– If so, how can we ensure 

atomicity?
– undo

Force

No Force

No Steal Steal

Trivial
(if commit is 
atomic)

Desired
Need both
Redo/undo

Undo/ 
no redo

Redo/ 
no undo

Database Management Systems, S. Chakravarthy 15

More on Steal and Force

� STEAL (why enforcing Atomicity is hard)
– To steal frame F:  Current page in F (say P) may be written to 

disk; some Xact may hold lock on P.
� What if the Xact with the lock on P aborts? (locking is different 

from pinning)
� Must remember the old value of P at steal time (to support 

UNDOing the write to page P).

� NO FORCE (why enforcing Durability is hard)
– What if system crashes before a modified page (of a 

committed Tx) is written to disk?
– Write as little as possible, in a convenient place (log), at 

commit time, to support REDOing modifications.

Database Management Systems, S. Chakravarthy 16

Basic Idea: Logging

� Record REDO and UNDO information, for every
update (insert/delete/modify), in a log.
– Sequential writes to log (put it on a separate disk).
– Minimal info (diff) written to log, so multiple 

updates fit in a single log page.

� Log: An ordered list of REDO/UNDO actions
– Log record contains: 

<XID, pageID, offset, length, old value, new value> 
– and additional control info (which we’ll see soon).

13 14

15 16



5

Database Management Systems, S. Chakravarthy 17

Write-Ahead Logging (WAL)

� The Write-Ahead Logging (WAL) Protocol:
– Do not flush an uncommitted update to the stable 

database (or storage) until the log record 
containing its before image has been flushed to the 
log.
� Otherwise, you cannot undo it!!

– That is, must force the log record for an update 
before the corresponding data page gets to disk.

� Guarantees Atomicity (using undo or rollback)

Database Management Systems, S. Chakravarthy 18

The Force-at-commit Rule

� The Force-at-Commit Protocol:
– Do not commit a Tx until the after images of all its 

updated pages (as log) are in stable storage.
� Otherwise, cannot do redo!!

– That is, must write/flush all log records for a Xact 
before commit is declared!

� Guarantees Durability (by doing redo or roll 
forward)

� NOTE: only write all log records before commit, 
not data pages!!
– Log information is much smaller!

Database Management Systems, S. Chakravarthy 19

Info needed for undo and redo

� All the implementations observe the above two 
rules to ensure that sufficient (and minimal) 
information is stored in the log:
– UNDO Rule (WAL) : log/store  the value of x in a 

stable storage before overwriting it by an 
uncommitted value (store before image)
� Each update is logged!

– REDO Rule (Force-at-Commit) : Before a tx 
commits, the value it wrote for each data item 
must be logged/stored in a stable storage (store 
committed image).

Database Management Systems, S. Chakravarthy 20

Types of Recovery algorithms

� Both Undo/Redo 
– corresponds to steal/no force

� Undo/no-redo 
– corresponds steal/Force

� No-undo/redo 
– corresponds to no steal/No force

� No-undo/no-redo 
– corresponds to no steal/force
– Shadow paging (used in early System R)

� Most/all  commercial systems use both 
undo/redo algorithms

17 18

19 20



6

Database Management Systems, S. Chakravarthy 21

Atomicity of Commit

T1: start …. Write(p) ….. Commit (takes finite amount of time)

� One of (Undo, Redo) cannot be avoided unless 
commit is made atomic. That is exactly what shadow 
paging did by making it an atomic pointers swap. 
Not realistic for large databases

Flush all of T1’s updates
Before commit to avoid redo

Flush all of T1’s
Updates only after
Commit to avoid undo

Database Management Systems, S. Chakravarthy 22

Shadow paging

Database Management Systems, S. Chakravarthy 23

Restart
� Restart requires a fair bit of book keeping

– It needs to know which  txs were active at the time of failure –
so it can abort them – that is, it can undo them

– It needs to know which updates of committed Txs were not 
written to the stable db – so it can redo them

� Moreover, restart must be fault-tolerant. That is, if the 
system fails when  restart is running, it must be possible 
to re-execute restart (as many times as needed) and get the 
correct result (DB state)
– Hence the restart algorithm Must be idempotent
– property of certain operations in mathematics and computer 

science, that can be applied multiple times without changing 
the result beyond the initial application.

� Idempotent operators: absolute fn, multiplication by 1, max
� Non-idempotent operators: general addition, multiplication

Database Management Systems, S. Chakravarthy 24

Recovery characteristics

� Recovery should add as little overhead to normal 
processing as possible
– Avoid excessive flushing (I/O)
– Avoid logging too much data

� Recovery should be done  quickly
– So system is down for a short period
– High availability

� This is even more critical today due to 24/7 
availability expectation!

21 22

23 24



7

Database Management Systems, S. Chakravarthy 25

Log Records
Possible log record types:
� Update (includes insert/delete)
� Commit
� Abort
� End (signifies end of commit or 

abort)

� Each log record has a unique, 
non-decreasing id

� Both WAL and Force-at-commit 
are being followed!

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

update
records
only

Database Management Systems, S. Chakravarthy 26

Recovery actions

� In the case of the DB being modified by 
incomplete Txs (steal policy by BM), to what 
extent (how far back)  does the log have to be 
processed for UNDO recovery?

� Oldest incomplete transaction

crash!
T1
T2
T3
T4
T5

Database Management Systems, S. Chakravarthy 27

Recovery actions
� If the DBMS does not use a force (no-force by BM) 

discipline, how much of the log (how far back) has to 
be processed for REDO recovery?

� Depends on when the buffer replaces the page

� You can have a page in the buffer that has been modified 
by many committed and some uncommitted txs for a long 
time! crash!

T1
T2
T3
T4
T5

Database Management Systems, S. Chakravarthy 28

Redo Recovery (how far back should we go in the log)

� Depends on when the buffer replaces the page

� If there is a hot spot, the buffer page for that hot spot 
will contain changes of many committed 
transactions.

� Hence redo recovery will have to go back very far in 
the log (expensive)

� Depends on the interval between crashes
� Higher the availability of the system, the more costly 

recovery will become.

� Hence, Need checkpoints:  to limit the scope of redo
� Note that there is no way to limit scope of undo 

except to limit Tx to a certain size!

25 26

27 28



8

Database Management Systems, S. Chakravarthy 29

Checkpointing
� Any activity that is done during  normal 

processing to reduce the amount of work to do 
after recovery.

� Involves 3 steps
– Write a begin_checkpoint record to the  log file
– Write all checkpoint data to the log file (shall see 

soon)
– Write an end_checkpoint record to the log file

� In fact, SQL allows you to checkpoint a 
transaction using the CHECKPOINT statement!

� All DBMSs do checkpointing periodically (even 
if not explicitly specified) to reduce recovery 
time

Database Management Systems, S. Chakravarthy 30

Tx-oriented checkpointing

� FORCE discipline can be seen as checkpointing 
at the Tx level
– That is, writing all modified pages at commit!

� Disadvantages:
– Large number of I/O’s at EOT
– Hotspots have to be written to disk very often.

Database Management Systems, S. Chakravarthy 31

Tx-consistent checkpointing
� Global in nature
� Creates a transaction consistent database
� Requires all update activity be quiescent

– All incomplete tx are completed and new ones are 
not admitted

– The checkpoint is actually generated when the last 
update is completed

� After the end_checkpoint record has been 
written, normal operation resumes 

� Stop the pipeline temporarily, empty all Txs, and 
resume!

� Not realistic!

Database Management Systems, S. Chakravarthy 32

Cache consistent checkpointing

� Also known as action-consistent checkpt
� Stops processing any new operations 

(temporarily leave an active tx in blocked state)
� Flushes all the dirty pages in the cache/buffer
� Places markers at the end of the log and abort list 

to indicate that the flushes took place.
� Response time increases, not realistic!

ckpt

End of log

29 30

31 32



9

Database Management Systems, S. Chakravarthy 33

Goals of ARIES* 
� ARIES is an “industrial strength” buffer management 

and logging/recovery scheme developed at IBM 
Almaden Research (by C. Mohan and others)
– Used by most commercial DBMSs today!
– no constraints on buffer fetch and eviction

� steal
� support for long-running transactions

– fast commit
� no-force

– on-line incremental “fuzzy” checkpointing
� fully concurrent with automatic log truncation

– fast recovery, re-startable (or idempotent)  if the 
system fails while recovering

*Algorithms for Recovery and Isolation Exploiting Semantics (or ARIES)
Database Management Systems, S. Chakravarthy 34

WAL & the Log

� Each log record has a unique Log Sequence Number 
(LSN).
– LSNs always increasing (global counter)

� Each data page contains a pageLSN.
– The LSN of the most recent log record                                             

for an update to that page.

� System keeps track of flushedLSN.
– The max LSN flushed (written to log) so far.

� WAL protocol: Before a page is written to disk,
– pageLSN flushedLSN
(log record is in stable storage before
Flushing the data page)

� Force-at-commit is also in place
– lastLSN (of that Tx) flushedLSN
– lastLSN: latest log record of a Tx

LSNs

DB

pageLSNs

RAM

flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
in RAM

Database Management Systems, S. Chakravarthy 35

ARIES Data Structures

LSN 11
XID 18
start

LSN 12
XID 18
page p

LSN 15
XID 18
commit

...

LSN 14
XID 18
page r

LSN 13
XID 17
page q

....
17
18
....

transaction
Log start/

commit/abort
events.

lastLSN
....
13
15
....

status
....

active
committing

....

memory
buffer manager

page q
descriptor

pageLSN  13
recoveryLSN

transaction 
table 

per-page state for dirty pages
recoveryLSN = earliest log record updating this page
pageLSN = latest log record updating this pageRedo/undo 

records
pertain to pages,

with page ID 
and

entire contents.

dirty page list

Log contains a 
back-linked list

of all records for 
a given 

transaction.

Database Management Systems, S. Chakravarthy 36

Introduction to ARIES

� 1. Every log record is tagged with a monotonically 
increasing Log Sequence Number (LSN).

� At recovery, log records can be retrieved efficiently by LSN.

� 2. Keep a transaction table in memory, with a record 
for each active transaction.

� Keep each transaction’s lastLSN of its most recent log record.

� 3. Maintain a backward-linked list (in the log) of log 
records for each transaction (prevLSN)

� (Write the transaction’s current lastLSN into each new log 
record.)

� 4. Each record in the log pertains to exactly one 
page, whose ID is logged as part of the record.
– Means cannot have records spanning a page!

33 34

35 36



10

Database Management Systems, S. Chakravarthy 37

Log Records

Possible log record types:
� Update
� Commit
� Abort
� End (signifies end of 

commit or abort)
� Compensation Log 

Records (CLRs)
– for UNDO actions
– Used internally

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

update
records
only

Database Management Systems, S. Chakravarthy 38

Types of log records
1. Updating a page

– After modifying a page, an update record with 
before and after image is appended to the log buffer

– The pageLSN of the modified page (in the buffer) 
is set to the LSN of the log record

– The page must be pinned before modifying the page 
and unpinned after

2. Commit
– This log record is written when a commit is 

encountered/started (not yet finished!)
– This and previous log records are force written to 

the log file (force-at-commit rule)
– Note that commit is not complete until further book-

keeping actions (e.g., removing Tx from Tx table)

Database Management Systems, S. Chakravarthy 39

Types of log records (2)

3. Abort
– This log record is written when an abort is encountered 

and undo is initiated
– Remember that abort takes finite amount of time to finish

4. End
– When a Tx is aborted and committed, some additional 

actions are necessary. After these additional actions are 
done, an end type log record is appended to the log

5. Undoing an update
– when a Tx is rolled back (either for abort or for rollback), 

its updates are undone. When the action described by an 
update record is undone, a CLR is written. It will have 
only the before image for redoing it.
� CLR’s are redone but never undone!

Database Management Systems, S. Chakravarthy 40

Other Log-Related State (in main memory)
� Transaction Table (TxT):

– One entry per active Xact.
– Contains XID, status (running/committed/aborted), and 

lastLSN (used to point to the previous LSN of the SAME 
transaction)

� Dirty Page Table (DPT):
– One entry per each dirty page in buffer pool.
– Contains recoveryLSN – the LSN of the log record which 
first caused the page to be dirty (not the same as dirty bit)

� In addition, note that each page has  pageLSN – the 
latest log record that modified that page
– Useful when it is written to disk;  we know that the log 

was flushed up to that pageLSN before writing the page to 
disk (dirty page)

37 38

39 40



11

Database Management Systems, S. Chakravarthy 41

ARIES Data Structures

LSN 11
XID 18
start

LSN 12
XID 18
page p

LSN 15
XID 18
commit

...

LSN 14
XID 18
page r

LSN 13
XID 17
page q

....
17
18
....

transaction
Log start/

commit/abort
events.

lastLSN
....
13
15
....

status
....

active
committing

....

memory
buffer manager

page q
descriptor

pageLSN  13
recoveryLSN

transaction 
table 

per-page state for dirty pages
recoveryLSN = earliest log record updating this page
pageLSN = latest log record updating this pageRedo/undo 

records
pertain to pages,

with page ID 
and

entire contents.

dirty page list

Log contains a 
back-linked list

of all records for 
a given 

transaction.

Database Management Systems, S. Chakravarthy 42

Normal Execution of a Tx

� Series of reads & writes, followed by commit or 
abort.
– We will assume that write is atomic on disk.

� In practice, additional details need to be worked out to deal 
with non-atomic writes.

� Some provide atomic writes, Writing and reading back to 
make sure it is correct!

� Strict 2PL. 
� STEAL, NO-FORCE buffer management, with Write-

Ahead Logging and force-at-commit.

Database Management Systems, S. Chakravarthy 43

The Big Picture:  What’s Stored Where?

DB

Data pages
each
with a
pageLSN

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

BM manages pages
When in RAM

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecords

RAMLOG

master record
has Last begin 

checkpt 
Record lsn

Database Management Systems, S. Chakravarthy 44

Checkpointing  (important)
� Periodically, the DBMS creates a checkpoint to minimize 

the time taken to recover in the event of a system crash.  
Write to log:
– begin_checkpoint record:  Indicates when chkpt began.
– end_checkpoint record:  Contains current Xact table and dirty page 

table.  This is a `fuzzy checkpoint’ because:
� Other Xacts continue to run; so these tables are accurate only as of the 

time of the begin_checkpoint record.
� No attempt to force dirty pages to disk; effectiveness of checkpoint 

limited by oldest unwritten change to a dirty page. (So, it’s a good idea 
to periodically flush dirty pages to disk!) helps for redo!

– After writing the end checkpoint record, Store/write LSN of begin 
chkpt record in a safe/known  place (master record). Implications?

� Can also fail BEFORE writing the master record!

� Note the difference between fuzzy checkpointing and others 
discussed earlier
– Normal operations continue during checkpointing

41 42

43 44



12

Database Management Systems, S. Chakravarthy 45

Simple Transaction Abort
� For now, consider an explicit abort of a Xact.

– No crash involved.
– Memory not lost!!

� We want to “play back” the log in reverse order, 
UNDOing updates.
– Before starting UNDO, write an Abort log record 

(not the end record)  //need not flush as well
� For recovering from crash during UNDO!

– Get lastLSN of Xact from Xact table.
– Follow chain of log records backward via the 

prevLSN field (until null prevLSN is encountered)
– Can have a crash while doing this abort!!

Database Management Systems, S. Chakravarthy 46

Abort, cont.

� To perform UNDO, must have a lock on data record!
– No problem!  (Why?)
– May need to bring that page from disk To  BM  (why?)
– Do you need a lock on the log record page? Yes/no and why?
– Do you need to pin it? (why?)

� Before restoring old value of a page, write a CLR (has only 
before image): (we will use this later for redo)
– You continue logging (CLRs) while you UNDO!!
– CLRs prevLSN is interpreted as: undonextLSN

� Points to the next LSN to undo (i.e., the prevLSN of the record 
we’re currently undoing).

– CLRs never Undone (but they might be Redone when 
repeating history. guarantees Atomicity!)

� At end of all UNDO operations, write an “end abort” log 
record and flush it to the log

Database Management Systems, S. Chakravarthy 47

Transaction Commit
� Write commit record (NOT end) to log and flush

– no need to flush  buffer pages (because of steal)
� All log records up to Xact’s lastLSN are flushed.

– Guarantees that flushedLSN  lastLSN.
– Note that log flushes are sequential, synchronous 

writes to disk.
– Many log records per log page.

� Commit() returns. // commit record has also been flushed

� Write end commit record to log.
– End record need not be flushed!
– This flushing may save abort of  an almost 

committed Tx
– Correctness is not affected by not flushing! (Why?)

� Avoids abort if flushed in case there is a failure!

Database Management Systems, S. Chakravarthy 48

Crash Recovery: Big Picture
� Start from a begin checkpoint

(found via master record).
� Three phases.  Need to:

– Figure out which Xacts have 
committed since checkpoint

– which Xacts have failed 
(Analysis).

– REDO all actions.
� (repeat history)

– UNDO effects of failed Xacts.

� Why redo before undo?

Oldest log 
rec. of Tx 
active at crash

Smallest 
recLSN in 
dirty page 
table after 
Analysis

Master begin 
chkpt

CRASH

A R U
Relative positions of A, R, and U
May be different than shown

45 46

47 48



13

Database Management Systems, S. Chakravarthy 49

Recovery Phases
� Restart-Analysis phase: identifies dirty pages in the 

buffer pool (i.e., changes that have not been written to 
disk) and active Txs at the time of crash
– Starts with the last begin checkpt record
– There may be log recs between begin and end checkpt 

� There can also be begin chkpt record without matching end 
chkpt records

� There can also be pairs of begin/end chkpt records

– Analysis phase may write “end” records if missing 
for aborted Txs! (if undonextLSN is null)

� Redo: Repeat all actions, starting from an appropriate 
point in the log, and restore the db state to what it 
was at the time of crash
– Can be skipped if no pages in dirty page table! (all 

committed Tx values are on the disk)

Database Management Systems, S. Chakravarthy 50

Recovery Phases

� Undo: Undoes the actions of transactions that did not 
commit, so that the db reflects only the actions of 
committed transactions. Also writes CLRs
– Skips logs based on CLR’s; CLR’s have been  handled 

by redo!

Database Management Systems, S. Chakravarthy 51

Log Records

Possible log record types:
� Update
� Commit
� Abort
� End (signifies end of 

commit or abort)
� CLR (Compensation Log 

Records)
– for UNDO actions

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

update
records
only

Database Management Systems, S. Chakravarthy 52

Example of a log (simplified)

update: T1 writes P5

update T2 writes P3

T2 commit

T2 End

update: T3 writes P1

update: T3 writes P3

CRASH

LSN         LOG

00

05

10

20

30

40

T1 and T3 were active at the time of crash. Hence need to be undone; T2 is a 
committed Tx, and all its actions need to be written to disk; and P1, P3, and P5 
are potentially dirty pages 

Note: we do not write
A begin tx type log record

49 50

51 52



14

Database Management Systems, S. Chakravarthy 53

Recovery: What happens in the Analysis Phase?
� Reconstruct state at checkpoint via end_checkpoint 

record. That is, to determine
– From where to do Redo?
– Dirty pages at the time of crash
– Txs to be undone (those active at the time of crash)

� Scan log forward from checkpoint. 
– End record: Remove Xact from Xact table (if there) (Why?)
– Other records (c, a, u, clr): Add Xact to Xact table, 

� set lastLSN=LSN, change Xact status to C on commit, A on abort, else u

– Redoable (Update or CLR) record: 
� If P not in Dirty Page Table         //do nothing if it is in DPT

– Add P to DPT., set its recLSN=LSN (because we are 
coming from the ckpoint side; done only once!)

– P not in DPT means that it was brought into memory after 
the end checkpoint was created

� If CLR prevLSN is null, write end abort log record

� At the end of the Analysis phase, we have 
reconstructed Tx table and DPT in memory!

Database Management Systems, S. Chakravarthy 54

Example of a log

update: T1 writes P5

update T2 writes P3

T2 commit

T2 End

update: T3 writes P1

update: T3 writes P3

CRASH

LSN         LOG

00

05

10

20

30

40

T1 and T3 were active at the time of crash. Hence need to be undone; T2 is a 
committed Tx, and all its actions need to be written to disk; and P1, P3, and P5 
are potentially dirty pages 

DPT

Page         recLSN
-----------------------------
P5 00
P3 05
P1 30

Tx Table
Tx      lastLSN   status
---------------------------
T1        00             u
T2        05, 10        c    X
T3        30, 40         u

Txt and DPT are 
assumed 
empty at checkpoint

Database Management Systems, S. Chakravarthy 55

Recovery: The REDO Phase (important)

� We repeat History to reconstruct state at crash:
– Reapply all updates (even of aborted Xacts!), redo CLRs.

� Scan forward from log rec containing smallest recLSN in 
DPT. For each CLR or update log record LSN, REDO the 
action unless:  
1. Affected page is not in the Dirty Page Table (may be in BM!), or
2. Affected page is in DPT (and in BM) but has recLSN > LSN, or
3. in DPT but not in BM (page must be retrieved from DB)

And pageLSN (in DB) LSN. 

� To REDO an action:
– Reapply logged action.
– Set pageLSN to LSN of the log record.  No additional logging!

� At the end of REDO phase, end type records are written 
for all Txs with status C, and are removed from the Tx
table.  All committed Txs have been restored!  Why is this true?

recLSN = earliest log record updating this page   (present only in the main memory DPT table) 
pageLSN = latest log record updating this page    (present  in every page in disk/buffer)

Database Management Systems, S. Chakravarthy 56

Recovery: The UNDO Phase (important)

ToUndo={ l | l is the  lastLSN of a “loser” Xact}
//from the Tx table constructed
Repeat:

– Choose largest LSN among ToUndo.
– If this LSN is a CLR and undonextLSN==NULL

� Write an End record for this Xact.
– If this LSN is a CLR, and undonextLSN != NULL

� Add undonextLSN to ToUndo 
– Else this LSN is an update.  Undo the update, write a CLR, 

add prevLSN to ToUndo.

Until ToUndo is empty.

53 54

55 56



15

Database Management Systems, S. Chakravarthy 57 Database Management Systems, S. Chakravarthy 58

Example of Recovery

begin_checkpoint

end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10 NULL

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

LSN         LOG

00

05

10

20

30

40

45

50

60

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

prevLSNs

RAM

UndonextLSN

Page         recLSN
-----------------------------
P5 10
P3 20
P1 50

Tx                lastLSN
---------------------------
T1 30
T2 60
T3 50

Database Management Systems, S. Chakravarthy 59

Example: Crash During Restart!

begin_checkpoint, end_checkpoint

update: T1 writes P5

update T2 writes P3

T1 abort

CLR: Undo T1 LSN 10, T1 End

update: T3 writes P1

update: T2 writes P5

CRASH, RESTART

CLR: Undo T2 LSN 60

CLR: Undo T3 LSN 50, T3 end

CRASH, RESTART

CLR: Undo T2 LSN 20, T2 end

LSN         LOG
00,05

10

20

30

40,45

50

60

70

80,85

90,95

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

undonextLSN

RAM

Page         recLSN
-----------------------------
P5 10
P3 20
P1 50

Tx                lastLSN
---------------------------
T1 10
T2 70
T3 50

Database Management Systems, S. Chakravarthy 60

Evaluating ARIES
� The ARIES logging/recovery algorithm has several 

advantages over other approaches:

– steal/no-force with few constraints on buffer 
management
� Steals act as incremental, nonintrusive checkpoints.

– synchronous “fuzzy” checkpoints are fast and 
nonintrusive

– minimizes recovery work
� makes forward progress in failures during recovery

– repeating history redo supports logical undo 
logging and alternative locking strategies (e.g., 
fine-grained locking)

� But: ARIES requires WAL with undos, LSNs written with 
every page, and redo records restricted to a single page.

57 58

59 60



16

Database Management Systems, S. Chakravarthy 61

Additional Crash Issues (idempotency)
� What happens if system crashes 

During Analysis?
– nothing has changed; do analysis again!
During REDO?
– things might have changed on disk; But we are going 

to REDO and restore it to the correct consistent state!!
During UNDO
– Whatever undo has been done they are NOT repeated 

again. Instead, REDO takes care of that. A successful 
undo is done only once!!!

� How do you limit the amount of work in REDO?
– Flush asynchronously in the background.
– Watch “hot spots”!

� How do you limit the amount of work in UNDO?
– Cannot, except avoiding long-running Xacts.

Database Management Systems, S. Chakravarthy 62

Summary of Logging/Recovery

� Recovery Manager guarantees Atomicity & 
Durability.

� Use WAL to allow STEAL/NO-FORCE without 
sacrificing correctness.

� LSNs identify log records; linked backwards for 
each Tx (via prevLSN).

� pageLSN allows comparison of data page and 
log records.

Database Management Systems, S. Chakravarthy 63

Summary, Cont.

� Checkpointing: A quick way to limit the amount 
of log to scan on recovery. 

� Recovery works in 3 phases:
– Analysis: Forward from checkpoint.
– Redo: Forward from oldest recLSN.
– Undo: Backward from end to first LSN of oldest 

Xact alive at crash.
� While performing  Undo, write CLRs.
� Redo “repeats history”: Simplifies the logic!

Database Management Systems, S. Chakravarthy 64

Thank You !

61 62

63 64


