
1

Database Management Systems, S. Chakravarthy 1

Transaction Management (Contd.)

Chapters 16 and 17

Instructor: Sharma Chakravarthy
sharma@cse.uta.edu

The Univ. of Texas @ Arlington

Database Management Systems, S. Chakravarthy 2

Operations Beyond reads and Writes

So far, Read and Write are the only operations that transactions
were performing on a database

What happens to serializability theory when new operations are
considered ??

Good news: The theory is based only on the notion of conflicting
operations

Hence extend the definition of conflict to cover the new operations

Note: Two operations conflict if, in general, the computational effect
of their execution depends on the order in which they are processed

Note that conditions for RC, ACA, and ST remain the same; they are
based on read, abort, commit

How do you check for conflicts:

Commutativity: op1(x) op2 (x) <> op2 (x) op1 (x)

Database Management Systems, S. Chakravarthy 3

Serializability: handling new operations
Increment and decrement

Conflict table Read Write Increment Decrement

Read
No Yes

write
Yes Yes

Increment

Decrement

Database Management Systems, S. Chakravarthy 4

Serializability: handling new operations
Increment and decrement

Conflict table Read Write Increment Decrement

Read
No Yes Yes

write
Yes Yes

Increment

Decrement

1 2

3 4

2

Database Management Systems, S. Chakravarthy 5

Serializability: handling new operations
Increment and decrement

Conflict table Read Write Increment Decrement

Read
No Yes Yes

write
Yes Yes Yes

Increment

Decrement

Database Management Systems, S. Chakravarthy 6

Serializability: handling new operations
Increment and decrement

Conflict table Read Write Increment Decrement

Read No Yes Yes

write Yes Yes Yes

Increment Yes Yes No

Decrement Yes Yes Yes No

Database Management Systems, S. Chakravarthy 7

Serializability: handling new operations
Increment and decrement

Conflict table Read Write Increment Decrement

Read No Yes Yes Nes

write Yes Yes Yes Yes

Increment Yes Yes No No

Decrement Yes Yes Yes No

Database Management Systems, S. Chakravarthy 8

• The job of a scheduler is to create schedules that
guarantee conflict serializability

• How can this be done?

• By making sure that the schedule generated will
never have cycles in the precedence graph.

• This has to be done not by generating all schedules and
testing for cycles! This is not practical

• This has to be done by generating a schedule on the fly
that is guaranteed to not have cycles

• 2PL or two-phase locking theory does this

• 2PL algorithm implements the theory (project 2)

Scheduler

5 6

7 8

3

Database Management Systems, S. Chakravarthy 9

1. Locking Algorithms (sweet spot)

• Based on the operating system method of allocating
resources to tasks (shared data is a resource)

• Prone to deadlocks (and some aborts)

• Deadlocks have to be detected!

2. Timestamp-based Algorithms (pessimistic)

• Ordering and marking transactions before they are
executed (No deadlocks, but incurs aborts)

3. Timestamp-based and other Algorithms (Optimistic)

�Certification/Validation

�Read, Validate, and Write phases.

�No deadlocks, but lots of aborts!

Techniques for achieving Conflict Serializability

Database Management Systems, S. Chakravarthy 10

Aggressive and Conservative Schedulers

Recall that a scheduler has 3 options when it receives
an operation from a Transaction Manager

1. Immediately Schedule it

2. Delay it

3. Reject it

An Aggressive Scheduler tends to schedule it
immediately (avoids delaying operations)

A Conservative Scheduler on the other hand tends to
delay operations (serial execution is an extreme case of
Conservative Scheduling)

Think of MyMav

Database Management Systems, S. Chakravarthy 11

Basic Two Phase Locking

1. Locking for synchronizing access to shared data

2. Each data item has a lock associated with it (conceptually)

3. Before a transaction Ti accesses a data item, the scheduler
examines the associated lock; if another transaction Tj holds the
lock then Ti has to wait until Tj gives up the lock.

– This is what we do for a critical section as well!

� You have primitives for acquiring and releasing a lock

� If you are interested in understanding the details, the CACM
(1976) paper by K. Eswaran is the original paper to read on
this.

� As I said earlier, although Txs were implemented earlier and
working, the theory or abstraction came much later!

Database Management Systems, S. Chakravarthy 12

Notation

� Two types of locks on data items : Read (Shared) and Write
(Exclusive)

rl[x] denotes a read lock on data item x. Similarly wl[x]

rli[x] (wli[x]) is used to indicate that the read (write) lock
has been obtained by transaction Ti

oli[x] denotes a lock type O (read or write) by Ti on x

Two locks pli[x] and qlj[y] conflict if x=y , ij and
operations p and q conflict (reduce the notion of conflict

on objects to locks)

rui[x] (wui[x]) denote the operation by which Ti releases its
read (write) lock on x

rli[x] (wli[x]) is also used to denote the operation by which
Ti sets or obtains a read (write) lock on x

9 10

11 12

4

Database Management Systems, S. Chakravarthy 13

Rules used by a basic 2PL scheduler

 get a lock before doing an operation (read or write) on object x

if someone is holding a lock on x, wait for that lock to be released
(makes sense; done in applications as well)

Note : Locks need to be set and released atomically (important)

what do we use for that?

 Always hold the lock for the duration of the operation (not Tx)!

(also makes sense; done in applications as well)

Steps 1 and 2 are easy to understand and is used for any critical section!

 Once the scheduler has released a lock for a transaction, it may not
subsequently obtain any more locks for that transaction (on any data item)

• This seems strange and not done is applications. Hence needs
to be understood clearly!!

Database Management Systems, S. Chakravarthy 14

Rule 1 prevents two transactions from concurrently accessing a
data item in conflicting modes. Thus, conflicting operations are
scheduled in the order in which locks are obtained

Rule 2 supplements Rule 1 to make sure locks are not released
before the operation is completed

Rule 3 called the two phase rule, connotes the technique of two
phase locking

Each transaction may be divided into two phases:

A growing phase during which it obtains/acquires locks

A shrinking phase during which it releases locks

Informally, the function of rule 3 is to guarantee 3 anomalies we
discussed earlier are avoided and generate a conflict serializable
schedule (to ensure serializability)

Database Management Systems, S. Chakravarthy 15

Two-Phase Locking (2PL)

� 2PL (rules 1, 2, and 3):
– If T wants to read an object, first obtains an S lock.
– If T wants to modify an object, first obtains X lock.
– If T releases any lock, it can acquire no new locks!

� Locks are automatically obtained by DBMS.
� Guarantees serializability!

– Why?

� Does not guarantee RC
Or ACA!!
– Why?

Time

of
locks

lock release
point

growing phase

shrinking
phase

Database Management Systems, S. Chakravarthy 16

Recoverable Schedules

� Abort of T1 requires abort of T2!
– But T2 has already committed!

� A recoverable schedule is one in
which this cannot happen.
– i.e., a Xact commits only after all the Xacts it “depends

on” (i.e., it reads from or overwrites) commit.
– ACA implies Recoverable (but not vice-versa!).

� Real systems typically ensure that only
recoverable schedules arise (through locking).

T1 T2

R(A)

W(A)

R(A)

W(A)

commit

abort

13 14

15 16

5

Database Management Systems, S. Chakravarthy 17

Strict 2PL
� Strict 2PL:

– If T wants to read an object, first obtains an S lock.
– If T wants to modify an object, first obtains X lock.
– Hold all locks until end of transaction (either

commit or abort)

� Guarantees serializability, and recoverability,
too!
– also avoids WW problems!
– Also ACA

Time

of
locks

End of Tx

growing phase

lock release
point

Database Management Systems, S. Chakravarthy 18

Example: Does not obey the two phase rule
T1 ; r1[x] w1[y] c1

T2 : w2[x] w2[y] C2

H1: T1 T2

rl1[x]

r1[x] T1 T2

ru1[x]

wl2[x]

w2[x] r1[x] < w2[x]

wl2[y] w2[y]< w1[y]

w2[y]

wu2[x]

wu2[y]

C2

wl1[y]

w1[y]

wu1[y]

Time C1

Schedule is not
Serializable!
Not even talking about
Recoverability or ACA!

Database Management Systems, S. Chakravarthy 19

Since r1[x] < w2[x] and w2[y] < w1[y], SG(H1) consists of the cycle

T1 T2. Thus H1 is not SR

Problem : T1 released a lock (ru1[x]) and subsequently set a lock (wl1[y])
in violation of the two phase rule. Between ru1[x] and wl1[y] another
transaction T2 wrote into both x and y, thereby appearing to follow T1 with
respect to x and precede it with respect to y. Had H1 obeyed the two
phase rule, this “window” between ru1[x] and wl1[y] would not have
opened and T2 could not have executed as it did in H1

Now let us construct a history for T1 and T2 that obeys the two phase rule

Database Management Systems, S. Chakravarthy 20

H2 : T1 T2

rl1[x]

r1[x]

wl1[y]

w1[y]

C1

ru1[x]

wu1[y]

wl2[x]

w2[x]

wl2[y]

w2[y]

C2

wu2[x]

wu2[y]

H is serial and therefore SR

17 18

19 20

6

Database Management Systems, S. Chakravarthy 21

Another Example:

T3: w[a]  r[b]  c3

T4: w[b]  w[c]  c4

T3 T4

wl3[a] T3 T4

w3[a]

wl4[b]

w4[b]

wl4[c]

w4[c]

C4

wu4[b]

wu4[c]

rl3[b]

r3[b]

C3

wu3[a]

ru3[b]

This is a Serializable Schedule (but not a serial schedule)
Database Management Systems, S. Chakravarthy 22

Correctness of Basic two phase locking

To prove a schedule is correct, we have to prove that all histories
representing executions that could be produced by it are in SR

First, we characterize the properties of all histories that a
scheduler produces (SG of any history produced by 2PL is acyclic)

Then we show that any history these properties is serializable

From the rules of 2PL, we know

� oli [x] < oi [x] …. Rule (1)

� oi [x] < oui [x] …. Rule (2)

� In particular, if o[x] belongs to a committed transaction, we have
oli [x] < oi [x] < oui [x]

Database Management Systems, S. Chakravarthy 23

Proposition 1

Let H be a history produced by a 2PL scheduler. If oi [x] is in C(H),
then oli [x] and oui [x] are in C(H), and oli [x] < oi [x] < oui [x]

Suppose we have two operations pi [x] and qi [x] that conflict. The
locks corresponding to these operations also conflict. By rule(1) of
2PL, only one of these locks can be held at a time

Therefore in terms of histories, we must have

pui [x] < qli [x] or qui [x] < pli [x]

Database Management Systems, S. Chakravarthy 24

Proposition 2

Let H be a history produced by 2PL scheduler. If pi [x] and qj [x] (ij)
are conflicting operations in C(H), then

either

pui [x] < qlj [x] or quj [x] < pli [x]

Proposition 3

Let H be a complete history produced by 2PL scheduler. If pi [x] and qj

[x] are in C(H), then

pli [x] < quj [x]

i.e. every lock operation of a transaction executes before any unlock
operation of that transaction -- rule(3)

Using the above propositions, we show that every 2PL history H has
an acyclic SG

21 22

23 24

7

Database Management Systems, S. Chakravarthy 25

1 If Ti Tj is in SG(H), then one of the Ti’s operations on some data
item, say x, executed before and conflicted with one of Tj’s
operations. Therefore Ti must have released its locks on x before Tj

set its lock on x

wi [y] ri [x] wj [y] wj [x]

2 Suppose Ti Tj Tk is a path in SG(H). From step(1), Ti

released some lock before Tj set some lock and similarly Tj released
some lock before Tk set some lock. Moreover, by the 2 phase rule Tj

set all of its locks before it released any of them. Therefore by
transitivity, Ti released some lock before Tk set some lock. By
induction, this argument extends to arbitrary long paths in SG(H). i.e.
for any path T1 T2 Tn, T1 released some lock before
Tn set some lock.

Database Management Systems, S. Chakravarthy 26

3 Suppose SG(H) had a cycle
T1 T2 ꞏꞏꞏꞏ Tn T1. Then by step two, T1

released a lock before T1 set a lock. But then T1 violated the two
phase rule. Therefore, a cycle cannot exist in a 2PL history. Since
SG(H) has no cycles, the serializability theorem implies that H is SR

Notice that in step(2), the lock that Ti releases may not necessarily
conflict with the one that Tk set, and in general they do not.

For e.g. the history that leads to the path

Ti Tj Tn could be

ri [x] wj [x] wj [y] rk [y]

Tj’s lock on x does not conflict with Tk’s lock on y

Database Management Systems, S. Chakravarthy 27

Theorem
Every 2PL history H is serializable

Example: 2PL is not necessary, but sufficient!

T1: r1 [F], w1 [H as F+1], C1

T2: r2 [G], w2 [F as G+1], C2 Initial state : F:= H:= G:= 0

T1 T2 results in F=1;G=0;H=1; and T2 T1 results in F=1;G=0;H=2;

rl1 [F]

r1 [F] T1 T2

ru1 [F]

rl2 [G]

r2 [G]

wl2 [F]

w2 [F]

wu2 [F]

ru2 [G]

C2

wl1 [H]

w1 [H]

wu1 [H] result is the same as T1; T2: F=1;H=1;G=0

C1 But not 2PL

Database Management Systems, S. Chakravarthy 28

2PL Summary
� It is only necessary to hold write locks until after a transaction

commits or aborts to ensure strictness

� Read locks may be released earlier subject to the 2PL rules to
ensure serializability

� Pragmatically, read locks can be released when the transaction
terminates, but write locks must be held until after the
transaction commits or aborts

Strict histories have nice properties

� They are recoverable

� They avoid cascading aborts

� They are conflict serializable

� Abort can be implemented by restoring before images

25 26

27 28

8

Database Management Systems, S. Chakravarthy 29

Locking: A Technique for CC

� Concurrency control usually done via locking.
� Lock info maintained by a “lock manager”:

– Stores (XID, RID, Mode) triples.
� This is a simplistic view; suffices for now.

– Mode  {S,X}
– Lock compatibility table:

� If a Xact can’t get a lock, it is
suspended on a wait queue.

-- S X

--

S

X







 



Database Management Systems, S. Chakravarthy 30

Lock Manager Implementation
� Question 1: What are we locking?

– Tuples, pages, or tables?
– Finer granularity increases concurrency, but also increases

locking overhead.

� Question 2: How do you “lock” something?

� Lock Table: A hash table of Lock Entries.
– Lock Entry:

� OID
� Mode
� List: Xacts holding lock
� List: Wait Queue

Database Management Systems, S. Chakravarthy 31

Handling a Lock Request (a la project 2)
Lock Request (XID, OID, Mode)

Currently Locked by another XID?

Grant Lock

Currently locked by another Tx?

Wait queue empty?

Mode==X
Mode==S

No

Yes

Yes, by a R/W Tx Yes, by a R only Tx

Put on Queue
(semaphore)

No

yes

Grant Lock

OID Locked by the same XID?

YesNo

This is based on whether you want to
Give preference to read only Txs!
(fairness can be achieved using FIFO,
Starvation can also be avoided!!

No

How do you do this for the project?

What do you need to do before this?

Database Management Systems, S. Chakravarthy 32

More Lock Manager Logic

� On lock release (OID, XID):
– Update list of Xacts holding lock.

� Examine head of wait queue.
� If Xact there can run, add it to list of Xacts holding lock

(change mode as needed).
� Repeat for all waiting Txs

� Note: Lock request handled atomically!
– via latches (i.e. semaphores/mutex; OS stuff).
– A latch is a lightweight synchronization object
– Cost of acquiring is low compared to a lock

29 30

31 32

9

Database Management Systems, S. Chakravarthy 33

Tx Mgr used for project 2

Next: pointer to next obj in the same bucket
Nextp: pointer to obj held by the SAME Tx

PID is the thread id; SGNO is set to 1
OBNO is the item number
OPTIME for simulating read and write
Obj array: shared objects
SEQNUM: for ordering ops WITHIN a Tx

Database Management Systems, S. Chakravarthy 34

Lock Upgrades

� Think about this scenario:
– T1 locks A in S mode, T2 requests X lock on A, T3 requests S lock

on A. should we allow T3 or make it wait?
– S1(A), X2(A), S3(A)
– Fairness vs. Starvation vs. deadlock! (read only vs. read/write Txs)
– If T3 is given the lock

� It is NOT fair to T2; can lead to starvation of T2
� It will ALSO prevent upgrade for T1. may lead to deadlock
� If we know T1 is read only, previous situation does not happen. Only fairness is the

issue

� In contrast:
– T1 locks A in S mode, T2 requests X lock on A, T1 requests X lock

on A. What should we do?
– S1(A), X2(A), X1(A)
– If T1 waits, it may never get a chance to proceed! (waiting on itself)
– Deadlock situation
– Hence should allow upgrade!

Database Management Systems, S. Chakravarthy 35

Lock Upgrades
� Should we allow such upgrades to supersede lock

requests?
– Yes!!

� Of course, there are genuine deadlocks when 2Pl is
followed
– S1(A), W2(B), W1(B), W2(A)
– Classic deadlock situation

note: in project 2, due to race conditions, this may not
happen

if T1 does ALL its operations and commits, T2 can
proceed. that is essentially a serial execution

We know serial executions can never result in a
deadlock!

Database Management Systems, S. Chakravarthy 36

Lock upgrades and Deadlocks

� Lock downgrade approach
– Acquire locks in x mode first
– Downgrade to S mode when we know that the object is not going

to be modified
– E.g., a tuple does not satisfy the where condition
– CC is reduced as we are taking the lock initially in X mode
– 2PL can be modified to accommodate this
– Commercial systems use this as throughput is increased and

deadlocks are avoided!

� Deadlock can occur even without upgrades:
– X1(A), X2(B), S1(B), S2(A) standard deadlock scenario

� How do we deal with deadlocks?
– Deadlock detection (wait for graphs)
– Deadlock prevention (wound-wait and wait-die)

� Aborts Txs to prevent deadlocks (and release resources)

33 34

35 36

10

Database Management Systems, S. Chakravarthy 37

Conservative 2PL
� A Tx obtains all locks it will ever need at the beginning or waits

for these locks to become available (Baker’s algorithm by
Dijkstra)

� Avoids deadlocks totally
� Once started Txs do not wait for locks
� If lock contention is heavy, conservative 2PL can reduce the

time that locks are held on average
� Not used in practice! Why?
� Knowing read and write sets is a problem!!

� Summary:
– Conservative 2PL
– 2PL
– Strict 2PL

Database Management Systems, S. Chakravarthy 38

Summary

� Serializability allows us to “simulate” serial execution
with better performance.

� 2PL: A simple mechanism to get serializability.
– Strict 2PL also gives us recoverability and avoids cascading

aborts
– Conservative 2PL requests all locks at the beginning

� Lock manager module automates 2PL so that only the
access methods worry about it.
– Lock table is a big main-memory (actually shared memory)

hash table

� Deadlocks are possible, and typically a deadlock
detector is used to solve the problem.

Database Management Systems, S. Chakravarthy 39

Summary, cont.
� Does serialization provide higher throughput?

– Yes!!

� What if we do not want to implement 2PL?
– What is the alternative?
– What is the consequence?

� If Transactions DO NOT HAVE overlap, whet does
2PL do?
– It will reduce the schedule to a serial execution with some

overhead!

Database Management Systems, S. Chakravarthy 40

Deadlocks

An important and unfortunate property of 2PL schedulers is that they are
subject to deadlocks

T1 : r1 [x] w1 [y] C1

T3 : w3 [y] w3 [x] C3

rl1 [x]

r1 [x]

wl3 [y]

w3 [y]

wl3 [x] delayed/made to wait

delayed wl1 [y]

Each is waiting for the other to release lock(s)

Note that each Tx is following the 2PL protocol!

37 38

39 40

11

Database Management Systems, S. Chakravarthy 41

Before either of these two processes can proceed, one must release
a resource that the other needs to proceed

This situation can also arise when transactions try to escalate read
locks into write locks (also known as lock conversion or lock
upgrade)

T4: r4 [x] w4 [x] C4

T5: r5 [x] w5 [x] C5

rl4 [x]

r4 [x]

rl5 [x]

r5 [x]

conflicts with rl5 [x] wl4 [x]

wl5 [x] conflicts with rl4 [x]

This situation arises when a transaction scans a large number of data
items and then decides to update specific data items. If it sets a read
lock during the scanning phase which it then tries to strengthen into a
write lock during update.

Database Management Systems, S. Chakravarthy 42

1. Detection -- needs a representation

� Timeout

� Detecting Cycles

2. Prevention (at run time)

� WAIT-DIE

� WOUND-WAIT methods

3. Avoidance

� allocating all the resources required by a transaction first

Representation

� Wait-for graph (WFG)

� resource Allocation graph

Dealing with Deadlocks

Database Management Systems, S. Chakravarthy 43

Representation

� Wait-for Graph (WFG)

The scheduler maintains a
WFG. Nodes represent
transactions. There is an edge Ti

Tj, iff transaction Ti is
waiting for transaction Tj to
release some lock (some
resource)

� Allocation Graph

A graph consisting of
transactions and granules (of
data). Arcs (edges) represent
lock(s) requested on granules by
transactions for specific
operations

Database Management Systems, S. Chakravarthy 44

Deadlock Detection Strategies

� Timeout

Scheduler is waiting too long for a lock. Then a deadlock situation is
assumed and the transaction is aborted

May end up aborting transactions that are not involved in deadlock, but
are long. Involves performance penalty; has no bearing on correctness.

If a long timeout is used to overcome the above, the scheduler is likely to
abort transactions that are likely (actually) to be involved in deadlock

Also, the transaction involved in deadlock loses time as a consequence

Hence, the timeout period is a parameter that needs to be tuned. This
activity is tricky, but manageable, as evidenced by its use in several
commercial products (e.g. Tandem)

41 42

43 44

12

Database Management Systems, S. Chakravarthy 45

Deadlock Detection

� Create a wait-for graph:
– Nodes are transactions
– There is an edge from Ti to Tj if Ti is waiting for Tj

to release a lock

� Periodically check for cycles in the wait-for
graph

Database Management Systems, S. Chakravarthy 46

� Cycle detection in WFG

The scheduler detects deadlocks by checking for cycles in WFG.

All transactions belonging to a cycle are deadlocked. Moreover, a
transaction waiting for a deadlocked transaction is itself deadlocked.

Example

T1 T4

T2 T3 T5

Relationship between SG and WFG

Ti waits for a transaction Tj implies Tj precedes Ti in SG. However, the
precedence relation does not generally imply the wait relation. Reversing
the edges of the wait-for graph yields a sub-graph of the precedence graph.

w1[x]  wu1 [x]  r2 [x]

Database Management Systems, S. Chakravarthy 47

Deadlock Detection (Continued)

Example:

T1: S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3: S(C), R(C) X(A)
T4: X(B)

T1 T2

T4 T3

T1 T2

T3 T3

Database Management Systems, S. Chakravarthy 48

Note that the WFG is dynamically constructed and maintained by
the scheduler (based on lock and unlock operations)

How often should the scheduler check for cycles in WFG?

� Every time a new edge is added (lock request does not go thru or
in set_lock method in our project scenario)

� after n edges have been added (n>1)

� periodically

� whenever a Tx waits for a resource

Note that all cycles need to be found, not just those involving the
most recently added edge(s)

45 46

47 48

13

Database Management Systems, S. Chakravarthy 49

Choosing the Victim

When the scheduler discovers a deadlock, it must break the
deadlock by aborting a transaction. The abort, in turn, will delete
all the transaction’s nodes from the WFG. Among the transactions
involved in the deadlock cycle in WFG, the scheduler should
select a victim whose abortion costs the least. Factors used to
determine the victim are :

� Effort already invested in the transaction (# of operations
performed)

� Cost of aborting the transaction (e.g. # of updates performed)

� The amount of effort to complete the transaction (requires
predicting the time required for completion)

� The number of cycles that contain the transaction. Aborting a
transaction breaks all cycles that contains the transaction

Database Management Systems, S. Chakravarthy 50

Deadlock prevention

A cautious/conservative scheme is another approach in which the
scheduler aborts a transaction when it determines that a deadlock
might occur. In a sense, the timeout technique can be viewed as a
deadlock prevention scheme. The system does not know that
there is a deadlock, but suspects there might be one and
therefore aborts a transaction

Another deadlock prevention method is to run a test at the time
the scheduler is about to block Ti because it is requesting a lock
that conflicts with one owned by Tj. The test should guarantee that
if the scheduler allows Ti to wait for Tj, then deadlock cannot result

Consists of eliminating one of the conditions that allows the
possibility of deadlock when designing the concurrency control
algorithm

Database Management Systems, S. Chakravarthy 51

Wait-Die and Wound-Wait (deadlock prevention schemes)

The basic idea is to avoid the creation of a cycle in the
wait-for-graph. Such avoidance is achieved, not by
creating and inspection of the graph, but by introducing
a suitable protocol that makes such cycles impossible!

These two are considered locking techniques, although
time stamps are used for the purposes of choosing the
victim. Assumptions:

� Every transaction gets a unique time-stamp, implies

– No two transactions are started simultaneously

� Priority is the inverse of its time-stamp. Thus the
older a transaction, the higher its priority

Database Management Systems, S. Chakravarthy 52

Suppose the scheduler discovers that a transaction Ti may not
obtain a lock because some other transaction TJ has a conflicting
lock, The scheduler can use the following:

if ts(Ti) < ts(TJ) // Tj holds the lock; Ti is older
then Ti waits // older Tx waits
else abort Ti // younger Tx is aborted

Older transaction has a smaller timestamp

1. Only the younger of the two transactions is aborted

2. The aborted transaction uses its old timestamp when restarted

Both (1) and (2) together avoid livelock/Permanent
rollback/starvation

Why does it work?

Sooner or later, a transaction becomes the oldest transaction in the
system and aborts all younger Txs that come in its way

WAIT-DIE

49 50

51 52

14

Database Management Systems, S. Chakravarthy 53

Suppose the scheduler discovers that a transaction Ti may not
obtain a lock because some other transaction TJ has a conflicting
lock, The scheduler can use the following:

if ts(Ti) < ts(TJ) // Tj holds the lock; Ti is older

then try to abort TJ // younger Tx is wounded

else Ti waits // younger Tx waits

Younger transaction is either wounded (may die subsequently) or is
made to wait

If TJ has already committed, then it will not be aborted
(unsuccessful kill attempt, hence the name wound), nevertheless
avoids deadlock. The wounded transaction releases its locks
whether it commits or aborts

Wound-wait

Database Management Systems, S. Chakravarthy 54

Behavior of Wound-wait and Wait-die

In Wound-wait

� The older transaction Ti pushes itself through the system,
wounding every younger transaction Tj that conflicts with it

� Even if Tj has nearly terminated and has no more locks to
request, it is still vulnerable to Tj

� After Ti aborts Tj and Tj restarts, Tj may again conflict with Ti,
but this time Tj waits

In Wait-die

� An older transaction Ti waits for each younger transaction it
encounters

� As Ti ages, it tends to wait for more younger transactions

�However, once it becomes the oldest, it does not wait for any
younger Tx

Database Management Systems, S. Chakravarthy 55

Summary

� Wait-die favors younger transactions while wound-
wait favors older transactions

� In wait-die, a transaction may get aborted several
times till it becomes ‘oldest’ (disadvantage over
wound-wait)

� In wait-die,

once a transaction has become old or

Has obtained all of its locks,

it will not be aborted for deadlock reasons (advantage
over wound-wait)

Database Management Systems, S. Chakravarthy 56

Deadlock Avoidance

� Transaction Scheduling

– requires the knowledge of each transaction’s data
requirements

– lock all the data required at the beginning of a transaction

� Bankers algorithm by Dijkstra

� Starvation or Permanent blocking

– prevents from executing (but not in deadlock)

� Livelock or cyclic restart

– does not prevent from executing, but prevents from
completing

� Thrashing - (similar to OS thrashing)

– resource contention thrashing

– data contention thrashing

53 54

55 56

15

Database Management Systems, S. Chakravarthy 57

Conservative 2PL

It is possible to construct a 2PL scheduler that never aborts transaction. This
technique is called conservative 2PL or static 2PL

Avoids deadlocks by requiring each transaction to obtain all of its locks
before any operations are submitted to DM

This can be achieved by having each transaction predeclare its readset and
writeset

Alternatively, transactions can be preanalyzed (conservatively, of course) to
obtain its readset and writeset

The scheduler tries to set all of the locks needed by Ti. If all the locks cannot
be obtained then Ti is made to wait

Every time the scheduler releases the locks of a completed transaction, it
examines the waiting queue to see if it can grant all of the lock requests of
any waiting transaction

�In conservative 2PL, transactions that are waiting hold no locks
Hence no deadlock and no aborts due to deadlock

Database Management Systems, S. Chakravarthy 58

� Almost all commercial implementations of 2PL use a
variant called strict 2PL

� In strict 2PL, the scheduler releases all of a
transaction’s locks together, when the transaction
terminates. Specifically, Ti’s locks are released after
DM acknowledges the processing of ci or ai

� To release lock(s) prior to the termination, the
scheduler must know (to release oli [x]) :

1. Ti has set all the locks it will ever need, and

2. Ti will not subsequently issue operations that refer to x

Termination satisfies (1) and (2)

It is not easy to derive (1) and (2) before termination, in
general

Strict 2PL

Database Management Systems, S. Chakravarthy 59

Actually,

� It is only necessary to hold write locks until after a
transaction commits or aborts to ensure strictness

� Read locks may be released earlier subject to the 2PL
rules to ensure serializability

� Pragmatically, read locks can be released when the
transaction terminates, but write locks must be held
until after the transaction commits or aborts

Strict histories have nice properties

� They are recoverable

� They avoid cascading aborts

� Abort can be implemented by restoring before images

Database Management Systems, S. Chakravarthy 60

� The Phantom Problem

– Concurrency control problem for dynamic
databases

� The convoy phenomenon

– A preemptive scheduler preempting a process
requiring a high traffic resource can create a
convoy (Interaction between OS scheduler and
high traffic resource)

� Hot spot

– heavy write traffic data items e.g. lock manager,
total of branch accounts, log, etc.

� Halloween problem please look it up as an exercise

Miscellany

57 58

59 60

16

Database Management Systems, S. Chakravarthy 61

Dynamic Databases
� Consider the Sailors relation from the textbook.

Assume that the oldest sailor with rating 1 (S1) is 71
and the oldest sailor with the rating 2 (S5) is 80.

� Now, consider the following 2 transactions:
� T1: retrieve oldest sailors with rating 1 or 2.

– Should give the result: S1 71 and S5 80

� T2: Insert a new sailor S8 with rating 1 with
age 96 and delete the oldest sailor with rating
2 (i.e., S5)

� T1; T2 should give: S1 71 and S5 80
� T2; T1 should give: S8 96 and S9 63 (oldest

sailor with rating 2)
Database Management Systems, S. Chakravarthy 62

Dynamic Databases (2)
� If we relax the assumption that the DB is a fixed

collection of objects, even Strict 2PL will not assure
serializability:
– T1 locks all pages containing sailor records with rating = 1,

and finds oldest sailor (say, age = 71).
– Next, T2 inserts a new sailor; rating = 1, age = 96.
– T2 also deletes oldest sailor with rating = 2 (and, say, age =

80), and commits.
– T1 now locks all pages containing sailor records with rating

= 2, and finds oldest (say, age = 63).

� The above yields S1 71 and S9 63
� T1, then T2 yields S1 71 and S5 80
� T2, then T1 yields S8 96 and S9 63
� Hence the above is not a serializable although it is ST.

Database Management Systems, S. Chakravarthy 63

What is the Problem?

� T1 implicitly assumes that it has locked the
set of all sailor records with rating = 1.
– Assumption only holds if no sailor records are

added while T1 is executing!
– Need some mechanism to enforce this

assumption. (Index locking and predicate
locking.)

� Example shows that conflict serializability
guarantees serializability only if the set of
objects is fixed!

Database Management Systems, S. Chakravarthy 64

Another Example

Accounts Ac# Location Balance

339 Marlboro 750
914 Tyngsboro 2308
22 Tyngsboro 1550

Assets Location Total

Marlboro 750
Tyngsboro 3858

select sum(balance) from accounts where location = “Tyngsboro”

T1: reads all of the accounts in Tyngsboro from the accounts file, adds up
their balance, and compares that sum to the total assets in Tyngsboro

T2: adds a new account [99 Tyngsboro,50] by inserting a new record into
the accounts file and then adding the balance of that account to the total
assets in Tyngsboro

Insert into Accounts
values (“99,’Tyngsboro’,50”)

61 62

63 64

17

Database Management Systems, S. Chakravarthy 65

Another example (2)

One possible execution :

Read1 (Accounts[339], Accounts[914],Accounts[22]);
Sum(-----)
Insert2 (Accounts[99,Tyngsboro,50];
Read2 (Assets[Tyngsboro]); /* returns 3858 */
Write2 (Assets[Tyngsboro]); /*writes 3908 */
Read1 (Assets[Tyngsboro]); /*returns 3908 */

The above execution could have resulted from an execution in which both
T1 and T2 are 2 phase locked

The above is not serializable. The total of T1 and T2 are not equivalent to
either T1 T2 or T2 T1

Solution : Prevent other transactions from creating new tuples in Accounts
relation with location=“Tyngsboro”

Database Management Systems, S. Chakravarthy 66

� Use of coarse granularity locks

� Index locking

� Any transaction that inserts a tuple into a relation must
insert information into every index maintained on the
relation. The phantom problem is eliminated by
imposing a locking protocol for indices

� The index-locking protocol takes advantage of indices
on a relation by turning instances of the phantom
phenomenon into conflicts on locks on index buckets

� Another way to look at it is to say that the end of file
(or end of relation) is not locked. Hence, insertion of
new tuples are possible even when the entire relation
is locked.

Approaches to overcome the Phantom Problem

Database Management Systems, S. Chakravarthy 67

The Convoy phenomenon

� There is interaction/interplay between
synchronization and scheduling (OS
scheduling that is)
– OS scheduler controls which runnable thread runs

on each processor
– Synchronization actions determine which threads

are runnable!

� They interfere in two ways
– Priority inversion (subverts prioritization of

threads)
– Convoy phenomenon (increases context switching

rate and hence decreases system throughput)

Database Management Systems, S. Chakravarthy 68

Priority inversion

� When a priority-based scheduler is used, a
high priority thread should not have to wait
for a low-priority thread.

� If threads of different priority levels share
mutexes (or other synchronuzation
primitives), this can happen!

� It is also possible for medium priority threads
to block a high priority thread for a long time

65 66

67 68

18

Database Management Systems, S. Chakravarthy 69

Convoy phenomenon

� Some data structures in databases are hot
spots: lock table, log record etc.

� These are typically protected by a mutex and
each thread locks the mutex, operates, and
unlocks the mutex.

� A thread may get preempted while it held the
mutex

� If the processor is dividing its time among N
runnable threads of same priority level, the
thread holding the mutex will not get its turn
for N * context switching time, even if all
other threads immediately block!

Database Management Systems, S. Chakravarthy 70

Convoy phenomenon (2)

� Eventually, the thread holding the mutex will
get its turn; however a long line of threads is
waiting for that mutex

� It will execute and release the mutex; but it
will soon need it as it is a hot spot. But now
this thread goes to the back of the convoy!!

� This can happen repeatedly pushing threads
to the back of the convoy and not getting
much work done

� This is convoy phenomenon!!

Database Management Systems, S. Chakravarthy 71

Convoy phenomenon (3)

� Two problems with this:
– Context switch rate goes up; instead of one

context switch per time slice, it is now one context
switch per attempt to acquire lock; this switching
overhead will reduce system throughput

– This comes in the way of scheduler’s policy for
choosing the thread to run; even with priority
scheduling, high priority threads are waiting on
the mutex; hence not runnable!

� Solution
– Do not use FIFO scheduling on hot spots.
– Do not allow processes to be preempted when

they are using a hotspot object
Database Management Systems, S. Chakravarthy 72

Other things

� Latches: lightweight lock
� Spin locks: spins or tries to get a lock by busy

waiting!

� Also, please read the section on concurrency
control of indexes
– It is includes for test 2

69 70

71 72

19

Database Management Systems, S. Chakravarthy 73

Thank You !

73

