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Operations Beyond reads and Writes

So far, Read and Write are the only operations that transactions 
were performing on a database

What happens to serializability theory when new operations are 
considered ??

Good news: The theory is based only on the notion of  conflicting 
operations

Hence extend the definition of conflict to cover the new operations

Note: Two operations conflict if, in general, the computational effect 
of their execution depends on the order in which they are processed

Note that conditions for RC, ACA, and ST remain the same; they are 
based on read, abort, commit

How do you check for conflicts:

Commutativity:  op1(x)  op2 (x) <> op2 (x) op1 (x)
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Serializability: handling new operations 
Increment and decrement

Conflict table Read Write Increment Decrement

Read
No Yes

write
Yes Yes

Increment

Decrement
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Serializability: handling new operations 
Increment and decrement

Conflict table Read Write Increment Decrement

Read
No Yes Yes

write
Yes Yes

Increment

Decrement
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Serializability: handling new operations 
Increment and decrement

Conflict table Read Write Increment Decrement

Read
No Yes Yes

write
Yes Yes Yes 

Increment

Decrement
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Serializability: handling new operations 
Increment and decrement

Conflict table Read Write Increment Decrement

Read No Yes Yes

write Yes Yes Yes 

Increment Yes Yes No

Decrement Yes Yes Yes No
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Serializability: handling new operations 
Increment and decrement

Conflict table Read Write Increment Decrement

Read No Yes Yes Nes

write Yes Yes Yes Yes 

Increment Yes Yes No No

Decrement Yes Yes Yes No
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• The job of a scheduler is to create schedules that 
guarantee conflict serializability

• How can this be done?

• By making sure that the schedule generated will 
never have cycles in the precedence graph.

• This has to be done not by generating all schedules and 
testing for cycles! This is not practical

• This has to be done by generating a schedule on the fly 
that is guaranteed to not have cycles

• 2PL or two-phase locking theory does this

• 2PL algorithm implements the theory (project 2)

Scheduler
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1. Locking Algorithms (sweet spot)

• Based on the operating system method of allocating 
resources to tasks (shared data is a resource)

• Prone to deadlocks (and some aborts)

• Deadlocks have to be detected!

2. Timestamp-based Algorithms (pessimistic)

• Ordering and marking transactions before they are 
executed (No deadlocks, but incurs aborts)

3. Timestamp-based and other Algorithms (Optimistic)

�Certification/Validation

�Read, Validate, and Write phases.

�No deadlocks, but lots of aborts!

Techniques for achieving Conflict Serializability
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Aggressive and Conservative Schedulers

Recall that a scheduler has 3 options when it receives 
an operation from a Transaction Manager

1. Immediately Schedule it

2. Delay it

3. Reject it

An Aggressive Scheduler tends to schedule it 
immediately (avoids delaying operations)

A Conservative Scheduler on the other hand tends to 
delay operations (serial execution is an extreme case of 
Conservative Scheduling)

Think of MyMav
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Basic Two Phase Locking

1. Locking for synchronizing access to shared data

2. Each data item has a lock associated with it (conceptually)

3. Before a transaction Ti accesses a data item, the scheduler 
examines the associated lock; if another transaction Tj holds the 
lock then Ti has to wait until Tj gives up the lock.

– This is what we do for a critical section as well!

� You have primitives for acquiring and releasing a lock

� If you are interested in understanding the details, the CACM 
(1976) paper by  K. Eswaran  is the original paper to read on 
this.

� As I said earlier, although Txs were implemented earlier and 
working, the theory or abstraction came much later!
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Notation

� Two types of locks on data items : Read (Shared) and Write 
(Exclusive) 

rl[x] denotes a read lock on data item x. Similarly wl[x]

rli[x] ( wli[x] ) is used to indicate that the read (write) lock 
has been obtained by transaction Ti

oli[x] denotes a lock type O (read or write) by Ti on x

Two locks pli[x] and qlj[y] conflict if x=y , ij and 
operations p and q conflict (reduce the notion of conflict 

on objects to locks)

rui[x] (wui[x]) denote the operation by which Ti releases its 
read (write) lock on x

rli[x] ( wli[x] ) is also used to denote the operation by which 
Ti sets or obtains a read (write) lock on x

9 10
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Rules used by a  basic 2PL scheduler

 get a lock before doing an operation (read or write) on object x

if someone is holding a lock on x, wait for that lock to be released 
(makes sense; done in applications as well)

Note : Locks need to be set and released atomically  (important)

what do we use for that?

 Always hold the lock for the duration of the operation (not Tx)!

(also makes sense; done in applications as well)

Steps 1 and 2 are easy to understand and is used for any critical section!

 Once the scheduler has released a lock for a transaction, it may not
subsequently obtain any more locks for that transaction (on any data item)

• This seems strange and not done is applications. Hence needs 
to be understood clearly!!
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Rule 1 prevents two transactions from concurrently accessing a 
data item in conflicting modes. Thus, conflicting operations are 
scheduled in the order in which  locks are obtained

Rule 2 supplements Rule 1 to make sure locks are not released 
before the operation is completed

Rule 3 called the two phase rule, connotes the technique of two 
phase locking

Each transaction may be divided into two phases:

A growing phase during which it obtains/acquires locks 

A shrinking phase during which it releases locks

Informally, the function of rule 3 is to guarantee 3 anomalies we 
discussed earlier are avoided  and generate a conflict serializable 
schedule (to ensure serializability)
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Two-Phase Locking (2PL)

� 2PL (rules 1, 2, and 3):
– If T wants to read an object, first obtains an S lock.
– If T wants to modify an object, first obtains X lock.
– If T releases any lock, it can acquire no new locks!

� Locks are automatically obtained by DBMS.
� Guarantees serializability!

– Why?

� Does not guarantee RC 
Or ACA!!
– Why?

Time

# of
locks

lock release
point

growing phase

shrinking
phase
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Recoverable Schedules

� Abort of T1 requires abort of T2!
– But T2 has already committed!

� A recoverable schedule is one in
which this cannot happen.
– i.e., a Xact commits only after all the Xacts it “depends 

on” (i.e., it reads from or overwrites) commit.
– ACA implies Recoverable (but not vice-versa!).

� Real systems typically ensure that only 
recoverable schedules arise (through locking).

T1 T2

R(A)

W(A)

R(A)

W(A)

commit

abort
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Strict 2PL
� Strict 2PL:

– If T wants to read an object, first obtains an S lock.
– If T wants to modify an object, first obtains X lock.
– Hold all locks until end of transaction (either 

commit or abort)

� Guarantees serializability, and recoverability, 
too!
– also avoids WW problems!
– Also ACA

Time

# of
locks

End of Tx

growing phase

lock release
point
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Example: Does not obey the two phase rule
T1 ; r1[x] w1[y] c1

T2 : w2[x] w2[y] C2

H1: T1 T2

rl1[x]

r1[x] T1 T2

ru1[x]

wl2[x]

w2[x] r1[x] < w2[x]

wl2[y] w2[y]< w1[y]

w2[y]

wu2[x]

wu2[y]

C2

wl1[y]

w1[y]

wu1[y]

Time C1

Schedule is not 
Serializable!
Not even talking about 
Recoverability or ACA!
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Since r1[x] < w2[x] and w2[y] < w1[y], SG(H1) consists of the cycle

T1 T2. Thus H1 is not SR

Problem : T1 released a lock ( ru1[x] ) and subsequently set a lock (wl1[y]) 
in violation of the two phase rule. Between ru1[x] and wl1[y] another 
transaction T2 wrote into both x and y, thereby appearing to follow T1 with 
respect to x and precede it with respect to y. Had H1 obeyed the two 
phase rule, this “window” between ru1[x] and wl1[y] would not have 
opened and T2 could not have executed as it did in H1

Now let us construct a history for T1 and T2 that obeys the two phase rule
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H2 : T1 T2

rl1[x]

r1[x]

wl1[y]

w1[y]

C1

ru1[x]

wu1[y]

wl2[x]

w2[x]

wl2[y]

w2[y]

C2

wu2[x]

wu2[y]

H is serial and therefore SR

17 18
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Another Example:

T3:  w[a]  r[b]  c3

T4:  w[b]  w[c]  c4

T3 T4

wl3[a] T3               T4

w3[a]

wl4[b]

w4[b]

wl4[c]

w4[c]

C4

wu4[b]

wu4[c]

rl3[b]

r3[b]

C3

wu3[a]

ru3[b]

This is a Serializable Schedule (but not a serial schedule)
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Correctness of Basic two phase locking

To prove  a schedule is correct, we have to prove that all histories 
representing executions that could be produced by it are in SR

First, we characterize the properties of all histories that a 
scheduler produces (SG of any history produced by 2PL is acyclic)

Then we show that any history these properties is serializable

From the rules of 2PL, we know 

� oli [x] < oi [x] …. Rule (1)

� oi [x] < oui [x] …. Rule (2)

� In particular, if o[x] belongs to a committed transaction, we have 
oli [x] < oi [x] < oui [x]
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Proposition 1

Let H be a history produced by a 2PL scheduler. If oi [x] is in C(H), 
then oli [x] and oui [x] are in C(H), and oli [x] < oi [x] < oui [x]

Suppose we have two operations pi [x] and qi [x] that conflict. The 
locks corresponding to these operations also conflict. By rule(1) of 
2PL, only one of these locks can be held at a time

Therefore in terms of histories, we  must have 

pui [x] < qli [x] or qui [x] < pli [x]
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Proposition 2

Let H be a history produced by 2PL scheduler. If pi [x] and qj [x] (ij) 
are conflicting operations in C(H), then

either

pui [x] < qlj [x] or quj [x] < pli [x]

Proposition 3

Let H be a complete history produced by 2PL scheduler. If pi [x] and qj

[x] are in C(H), then

pli [x] < quj [x]

i.e. every lock operation of a transaction executes before any unlock 
operation of that transaction -- rule(3)

Using the above propositions, we show that every 2PL history H has 
an acyclic SG

21 22
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1 If Ti Tj is in SG(H), then one of the Ti’s operations on some data 
item, say x, executed before and conflicted with one of Tj’s 
operations. Therefore Ti must have released its locks on x before Tj

set its lock on x

wi [y] ri [x] wj [y] wj [x]

2 Suppose Ti Tj Tk is a path in SG(H). From step(1), Ti

released some lock before Tj set some lock and similarly Tj released 
some lock before Tk set some lock. Moreover, by the 2 phase rule Tj

set all of its locks before it released any of them. Therefore by 
transitivity, Ti released some lock before Tk set some lock. By 
induction, this argument extends to arbitrary long paths in SG(H). i.e. 
for any path T1 T2 .... Tn, T1 released some lock before 
Tn set some lock.
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3 Suppose SG(H) had a cycle 
T1 T2 ꞏꞏꞏꞏ Tn T1. Then by step two, T1

released a lock before T1 set a lock. But then T1 violated the two 
phase rule. Therefore, a cycle cannot exist in a 2PL history. Since 
SG(H) has no cycles, the serializability theorem implies that H is SR

Notice that in step(2), the lock that Ti releases may not necessarily 
conflict with the one that Tk set, and in general they do not.

For e.g. the history that leads to the path 

Ti Tj Tn could be 

ri [x] wj [x] wj [y] rk [y]

Tj’s lock on x does not conflict with Tk’s lock on y
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Theorem
Every 2PL history H is  serializable

Example: 2PL is not necessary, but sufficient!

T1: r1 [F], w1 [H as F+1], C1

T2: r2 [G], w2 [F as G+1], C2 Initial state : F:= H:= G:= 0

T1 T2 results in F=1;G=0;H=1; and T2 T1 results in F=1;G=0;H=2;

rl1 [F]

r1 [F] T1             T2

ru1 [F]

rl2 [G]

r2 [G]

wl2 [F]

w2 [F]

wu2 [F]

ru2 [G]

C2

wl1 [H]

w1 [H]

wu1 [H] result is the same as T1; T2: F=1;H=1;G=0

C1                                                 But not 2PL
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2PL Summary
� It is only necessary to hold write locks until after a transaction 

commits or aborts to ensure strictness

� Read locks may be released earlier subject to the 2PL rules to 
ensure serializability

� Pragmatically, read locks can be released when the transaction 
terminates, but write locks must be held until after the 
transaction commits or aborts

Strict histories have nice properties

� They are recoverable

� They avoid cascading aborts

� They are conflict serializable

� Abort can be implemented by restoring before images

25 26
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Locking: A Technique for CC

� Concurrency control usually done via locking.
� Lock info maintained by a “lock manager”:

– Stores (XID, RID, Mode) triples. 
� This is a simplistic view; suffices for now.

– Mode  {S,X}
– Lock compatibility table:

� If a Xact can’t get a lock, it is 
suspended on a wait queue. 

-- S X

--

S

X







 


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Lock Manager Implementation
� Question 1: What are we locking?

– Tuples, pages, or tables?
– Finer granularity increases concurrency, but also increases 

locking overhead.

� Question 2: How do you “lock” something?

� Lock Table: A hash table of Lock Entries.
– Lock Entry:

� OID
� Mode
� List: Xacts holding lock
� List: Wait Queue
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Handling a Lock Request (a la project 2)
Lock Request (XID, OID, Mode)

Currently Locked by another XID?

Grant Lock

Currently locked by another Tx?

Wait queue  empty?

Mode==X
Mode==S

No

Yes

Yes, by a R/W Tx Yes, by a R  only Tx

Put on Queue
(semaphore)

No

yes

Grant Lock

OID Locked by the same XID?

YesNo

This is  based on whether you want to
Give preference to read only Txs!
(fairness can be achieved using FIFO, 
Starvation can also be avoided!!

No

How do you do this for the project?

What do you need to do before this?
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More Lock Manager Logic

� On lock release (OID, XID):
– Update list of Xacts holding lock.

� Examine head of wait queue.
� If Xact there can run, add it to list of Xacts holding lock 

(change mode as needed).
� Repeat for all waiting Txs

� Note: Lock request handled atomically!
– via latches (i.e. semaphores/mutex; OS stuff).
– A latch is a lightweight synchronization object
– Cost of acquiring is low compared to a lock

29 30
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Tx Mgr used for project 2

Next: pointer to next obj in the same bucket
Nextp: pointer to obj held by the SAME Tx

PID is the thread id; SGNO is set to 1
OBNO is the item number
OPTIME for simulating read and write
Obj array: shared objects
SEQNUM: for ordering ops WITHIN a Tx
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Lock Upgrades

� Think about this scenario:
– T1 locks A in S mode, T2 requests X lock on A, T3 requests S lock 

on A.  should we allow T3 or make it wait? 
– S1(A), X2(A), S3(A)
– Fairness vs. Starvation vs. deadlock!  (read only vs. read/write Txs)
– If T3 is  given the lock

� It is NOT fair to T2; can lead to starvation of T2
� It will ALSO prevent upgrade for T1. may lead to deadlock
� If we know T1 is read only, previous situation does not happen. Only fairness is the 

issue

� In contrast: 
– T1 locks A in S mode, T2 requests X lock on A, T1 requests X lock 

on A.  What should we do? 
– S1(A), X2(A), X1(A)
– If T1 waits, it may never get a chance to proceed! (waiting on itself)
– Deadlock situation
– Hence should allow upgrade!
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Lock Upgrades
� Should we allow such upgrades to supersede lock 

requests?
– Yes!!

� Of course, there are genuine deadlocks when 2Pl is 
followed
– S1(A), W2(B), W1(B), W2(A)
– Classic deadlock situation

note: in project 2, due to race conditions, this may not      
happen

if T1 does ALL its operations and commits, T2 can 
proceed. that is essentially a serial execution

We know serial executions can never result in a 
deadlock!
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Lock upgrades and Deadlocks

� Lock downgrade approach
– Acquire locks in x mode first
– Downgrade to S mode when we know that the object is not going 

to be modified
– E.g.,  a tuple does not satisfy the where condition
– CC is reduced as we are taking the lock initially in X mode
– 2PL can be modified to accommodate this
– Commercial systems use this as throughput is increased and 

deadlocks are avoided!

� Deadlock can occur even without upgrades:
– X1(A), X2(B), S1(B), S2(A)  standard deadlock scenario

� How do we deal with deadlocks?
– Deadlock detection (wait for graphs)
– Deadlock  prevention (wound-wait and wait-die)

� Aborts Txs to prevent deadlocks (and release resources)

33 34
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Conservative 2PL
� A Tx obtains all locks it will ever need at the beginning or waits 

for these locks to become available  (Baker’s algorithm by 
Dijkstra)

� Avoids deadlocks totally
� Once started Txs do not wait for locks
� If lock contention is heavy, conservative 2PL can reduce the 

time that locks are held on average
� Not used in practice! Why?
� Knowing read and write sets is a problem!!

� Summary:
– Conservative 2PL
– 2PL
– Strict 2PL
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Summary

� Serializability allows us to “simulate” serial execution 
with better performance. 

� 2PL: A simple mechanism to get serializability.
– Strict 2PL also gives us recoverability and avoids cascading 

aborts
– Conservative 2PL requests all locks at the beginning

� Lock manager module automates 2PL so that only the 
access methods worry about it.
– Lock table is a big main-memory (actually shared memory) 

hash table

� Deadlocks are possible, and typically a deadlock 
detector is used to solve the problem.
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Summary, cont.
� Does serialization provide higher throughput? 

– Yes!!

� What if we do not want to implement 2PL?
– What is the alternative?
– What is the consequence?

� If Transactions DO NOT HAVE overlap, whet does 
2PL do?
– It will reduce the schedule to a serial execution  with some 

overhead!
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Deadlocks

An important and unfortunate property of 2PL schedulers is that they are 
subject to deadlocks

T1 : r1 [x] w1 [y] C1

T3 : w3 [y] w3 [x] C3

rl1 [x]

r1 [x]

wl3 [y]

w3 [y]

wl3 [x] delayed/made to wait

delayed wl1 [y]

Each is waiting for the other to release lock(s)

Note that each Tx is following the 2PL protocol!

37 38
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Before either of these two processes can proceed, one must release 
a resource that the other needs to proceed

This situation can also arise when transactions try to escalate read 
locks into write locks (also known as  lock conversion or lock 
upgrade)

T4: r4 [x] w4 [x] C4

T5: r5 [x] w5 [x] C5

rl4 [x]

r4 [x]

rl5 [x]

r5 [x]

conflicts with rl5 [x] wl4 [x]

wl5 [x] conflicts with rl4 [x]

This situation arises when a transaction scans a large number of data 
items and then decides to update specific data items. If it sets a read 
lock during the scanning phase which it then tries to strengthen into a 
write lock during update.

Database Management Systems, S. Chakravarthy 42

1. Detection  -- needs a representation

� Timeout

� Detecting Cycles

2. Prevention (at run time)

� WAIT-DIE

� WOUND-WAIT methods

3. Avoidance

� allocating all the resources required by a transaction first

Representation

� Wait-for graph (WFG)

� resource Allocation graph

Dealing with Deadlocks
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Representation

� Wait-for Graph (WFG)

The scheduler maintains a 
WFG. Nodes represent 
transactions. There is an edge Ti

Tj, iff transaction Ti is 
waiting for  transaction Tj to 
release some lock (some 
resource)

� Allocation Graph

A graph consisting of 
transactions and granules (of 
data). Arcs (edges) represent 
lock(s) requested on granules by 
transactions for specific 
operations
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Deadlock Detection Strategies

� Timeout

Scheduler is waiting too long for a lock. Then a deadlock situation is 
assumed and the transaction is aborted

May end up aborting transactions that are not involved in deadlock, but 
are long. Involves performance penalty; has no bearing on correctness.

If a long timeout is used to overcome the above, the scheduler is likely to 
abort transactions that are likely (actually) to be involved in deadlock

Also, the transaction involved in deadlock loses time as a consequence

Hence, the timeout period is a parameter that needs to be tuned. This 
activity is tricky, but manageable, as evidenced by its use in several 
commercial products (e.g. Tandem)

41 42
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Deadlock Detection

� Create a wait-for graph:
– Nodes are transactions
– There is an edge from Ti to Tj if Ti is waiting for Tj 

to release a lock

� Periodically check for cycles in the wait-for 
graph
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� Cycle detection in WFG

The scheduler detects deadlocks by checking for cycles in WFG. 

All transactions belonging to a cycle are deadlocked. Moreover, a 
transaction waiting for a deadlocked transaction is itself deadlocked.

Example

T1 T4

T2 T3 T5

Relationship between SG and WFG

Ti waits for a transaction Tj implies Tj precedes Ti in SG. However, the 
precedence relation does not generally imply the wait relation. Reversing 
the edges of the wait-for graph yields a sub-graph of the precedence graph.

w1[x]  wu1 [x]  r2 [x]
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Deadlock Detection (Continued)

Example:

T1:  S(A), R(A), S(B)
T2: X(B),W(B) X(C)
T3: S(C), R(C) X(A)
T4: X(B)

T1 T2

T4 T3

T1 T2

T3 T3
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Note that the WFG is dynamically constructed and maintained by 
the scheduler (based on lock and unlock operations)

How often should the scheduler check for cycles in WFG?

� Every time a new edge is added  (lock request does not go thru or 
in set_lock method in our project scenario)

� after n edges have been added (n>1)

� periodically

� whenever a Tx waits for a resource

Note that all cycles need to be found, not just those involving the 
most recently added edge(s)

45 46
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Choosing the Victim

When the scheduler discovers a deadlock, it must break the 
deadlock by aborting a transaction. The abort, in turn, will delete 
all the transaction’s nodes from the WFG. Among the transactions 
involved in the deadlock cycle in WFG, the scheduler should 
select a victim whose abortion costs the least. Factors used to 
determine the victim are :

� Effort already invested in the transaction (# of operations 
performed)

� Cost of aborting the transaction (e.g. # of updates performed)

� The amount of effort to complete the transaction (requires 
predicting the time required for completion)

� The number of cycles that contain the transaction. Aborting a 
transaction breaks all cycles that contains the transaction
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Deadlock prevention

A cautious/conservative scheme is another approach in which the 
scheduler aborts a transaction when it determines that a deadlock 
might occur. In a sense, the timeout technique can be viewed as a 
deadlock prevention scheme. The system does not know that 
there is a deadlock, but suspects there might be one and 
therefore aborts a transaction

Another deadlock prevention method is to run a test at the time 
the scheduler is about to block Ti because it is requesting a lock 
that conflicts with one owned by Tj. The test should guarantee that 
if the scheduler allows Ti to wait for Tj, then deadlock cannot result

Consists of eliminating one of the conditions that allows the 
possibility of deadlock when designing the concurrency control 
algorithm
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Wait-Die and Wound-Wait (deadlock prevention schemes)

The basic idea is to avoid the creation of a cycle in the 
wait-for-graph. Such avoidance is achieved, not by 
creating and inspection of the graph, but by introducing 
a suitable protocol that makes such cycles impossible!

These two are considered locking techniques, although 
time stamps are used for the purposes of choosing the 
victim. Assumptions: 

� Every transaction gets a unique time-stamp, implies

– No two transactions are started simultaneously

� Priority is the inverse of its time-stamp. Thus the 
older a transaction, the higher its priority
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Suppose the scheduler discovers that a transaction Ti may not 
obtain a lock because some other transaction TJ has a conflicting 
lock, The scheduler can use the following:

if ts(Ti) < ts(TJ) // Tj holds the lock; Ti is older
then Ti waits //  older Tx waits
else abort Ti //  younger Tx is aborted

Older transaction has a smaller timestamp

1. Only the younger of the two transactions is aborted

2. The aborted transaction uses its old timestamp when restarted

Both (1) and (2) together avoid livelock/Permanent 
rollback/starvation

Why does it work? 

Sooner or later, a transaction becomes the oldest transaction in the 
system and aborts all younger Txs that come in its way

WAIT-DIE
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Suppose the scheduler discovers that a transaction Ti may not 
obtain a lock because some other transaction TJ has a conflicting 
lock, The scheduler can use the following:

if ts(Ti) < ts(TJ)                 // Tj holds the lock; Ti is older 

then try to abort TJ // younger Tx is wounded

else Ti waits // younger Tx waits

Younger transaction is either wounded (may die subsequently) or is 
made to wait

If TJ has already committed, then it will not be aborted 
(unsuccessful kill attempt, hence the name wound), nevertheless  
avoids deadlock. The wounded transaction releases its locks 
whether it commits or aborts

Wound-wait
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Behavior of Wound-wait and Wait-die

In Wound-wait

� The older transaction Ti pushes itself through the system, 
wounding every younger transaction Tj that conflicts with it

� Even if Tj has nearly terminated and has no more locks to 
request, it is still vulnerable to Tj

� After Ti aborts Tj and Tj restarts, Tj may again conflict with Ti, 
but this time Tj waits

In Wait-die

� An older transaction Ti waits for each younger transaction it 
encounters

� As Ti ages, it tends to wait for more younger transactions

�However, once it becomes the oldest, it does not wait for any 
younger Tx

Database Management Systems, S. Chakravarthy 55

Summary

� Wait-die favors younger transactions while wound-
wait favors older transactions

� In wait-die, a transaction may get aborted several 
times till it becomes ‘oldest’ (disadvantage over 
wound-wait)

� In wait-die, 

once a transaction has become old or

Has obtained all of its locks, 

it will not be aborted for deadlock reasons (advantage 
over wound-wait)
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Deadlock Avoidance

� Transaction Scheduling

– requires the knowledge of each transaction’s data 
requirements

– lock all the data required at the beginning of a transaction

� Bankers algorithm by Dijkstra

� Starvation or Permanent blocking

– prevents from executing (but not in deadlock)

� Livelock or cyclic restart

– does not prevent from executing, but prevents from 
completing

� Thrashing - (similar to OS thrashing)

– resource contention thrashing

– data contention thrashing
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Conservative 2PL

It is possible to construct a 2PL scheduler that never aborts transaction. This 
technique is called conservative 2PL or static 2PL

Avoids deadlocks by requiring each transaction to obtain all of its locks 
before any operations are submitted to DM

This can be achieved by having each transaction predeclare its readset and 
writeset

Alternatively, transactions can be preanalyzed (conservatively, of course) to 
obtain its readset and writeset

The scheduler tries to set all of the locks needed by Ti. If all the locks cannot 
be obtained then Ti is made to wait

Every time the scheduler releases the locks of a completed transaction, it 
examines the waiting queue to see if it can grant all of the lock requests of 
any waiting transaction

�In conservative 2PL, transactions that are waiting hold no locks             
Hence no deadlock and no aborts due to deadlock
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� Almost all commercial implementations of 2PL use a 
variant called strict 2PL

� In strict 2PL, the scheduler releases all of a 
transaction’s locks together, when the transaction 
terminates. Specifically, Ti’s locks are released after 
DM acknowledges the processing of ci or ai

� To release lock(s) prior to the termination, the 
scheduler must know (to release oli [x]) :

1. Ti has set all the locks it will ever need, and

2. Ti will not subsequently issue operations that refer to x

Termination satisfies (1) and (2)

It is not easy to derive (1) and (2) before termination, in 
general

Strict 2PL
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Actually,

� It is only necessary to hold write locks until after a 
transaction commits or aborts to ensure strictness

� Read locks may be released earlier subject to the 2PL 
rules to ensure serializability

� Pragmatically, read locks can be released when the 
transaction terminates, but write locks must be held 
until after the transaction commits or aborts

Strict histories have nice properties

� They are recoverable

� They avoid cascading aborts

� Abort can be implemented by restoring before images
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� The Phantom Problem

– Concurrency control problem for dynamic 
databases

� The convoy phenomenon

– A preemptive scheduler preempting a process 
requiring a high traffic resource can create a 
convoy (Interaction between OS scheduler and 
high traffic resource)

� Hot spot

– heavy write traffic data items e.g. lock manager, 
total of branch accounts, log, etc.

� Halloween problem  please look it up as an exercise

Miscellany
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Dynamic Databases
� Consider the Sailors relation from the textbook.  

Assume that the oldest sailor with rating 1 (S1) is 71 
and the oldest sailor  with the rating 2 (S5) is 80.

� Now, consider the following 2 transactions:
� T1: retrieve oldest sailors with rating 1 or 2. 

– Should give the result:  S1 71 and S5 80

� T2: Insert a new sailor S8 with rating 1 with 
age 96 and delete the oldest sailor with rating 
2 (i.e., S5)

� T1; T2 should give: S1 71 and S5 80
� T2; T1 should give:  S8 96  and S9 63 (oldest 

sailor with rating 2)
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Dynamic Databases (2)
� If we relax the assumption that the DB is a fixed 

collection of objects, even Strict 2PL will not assure 
serializability:
– T1 locks all pages containing sailor records with rating = 1, 

and finds oldest sailor (say, age = 71).
– Next, T2 inserts a new sailor; rating = 1, age = 96.
– T2 also deletes oldest sailor with rating = 2 (and, say, age = 

80), and commits.
– T1 now locks all pages containing sailor records with rating

= 2, and finds oldest (say, age = 63).

� The above yields S1 71 and  S9 63
� T1, then T2 yields S1 71 and S5 80
� T2, then T1 yields S8 96 and S9 63
� Hence the above is not a serializable although it is ST.
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What is the Problem?

� T1 implicitly assumes that it has locked the 
set of all sailor records with rating = 1.
– Assumption only holds if no sailor records are 

added while T1 is executing!
– Need some mechanism to enforce this 

assumption.  (Index locking and predicate 
locking.)

� Example shows that conflict serializability 
guarantees serializability only if the set of 
objects is fixed!
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Another Example

Accounts Ac# Location Balance

339 Marlboro 750
914 Tyngsboro 2308
22 Tyngsboro 1550

Assets Location Total

Marlboro 750
Tyngsboro 3858

select sum(balance)   from accounts where location = “Tyngsboro”

T1: reads all of the accounts in Tyngsboro from the accounts file, adds up 
their balance, and compares that sum to the total assets in Tyngsboro

T2: adds a new account [99 Tyngsboro,50] by inserting a new record into 
the accounts file and then adding the balance of that account to the total 
assets in Tyngsboro

Insert into Accounts
values (“99,’Tyngsboro’,50”)
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Another example (2)

One possible execution :

Read1 (Accounts[339], Accounts[914],Accounts[22]);
Sum(-----)
Insert2 (Accounts[99,Tyngsboro,50];
Read2 (Assets[Tyngsboro]); /* returns 3858 */
Write2 (Assets[Tyngsboro]); /*writes 3908 */
Read1 (Assets[Tyngsboro]); /*returns 3908 */

The above execution could have resulted from an execution in which both 
T1 and T2 are 2 phase locked

The above is not serializable. The total of T1 and T2 are not equivalent to 
either T1 T2 or T2 T1

Solution : Prevent other transactions from creating new tuples in Accounts 
relation with location=“Tyngsboro”
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� Use of  coarse granularity locks

� Index locking

� Any transaction that inserts a tuple into a relation must 
insert information into every index maintained on the 
relation. The phantom problem is eliminated by 
imposing a locking protocol for indices

� The index-locking protocol takes advantage of indices 
on a relation by turning instances of the phantom 
phenomenon into conflicts on locks on index buckets

� Another way to look at it is to say that the end of file 
(or end of relation) is not locked. Hence, insertion of 
new tuples are possible even when the entire relation 
is locked.

Approaches to overcome the Phantom Problem
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The Convoy phenomenon

� There is interaction/interplay between 
synchronization and scheduling (OS 
scheduling that is)
– OS scheduler controls which runnable thread runs 

on each processor
– Synchronization actions determine which threads 

are runnable!

� They interfere in two ways
– Priority inversion (subverts prioritization of 

threads)
– Convoy phenomenon (increases context switching 

rate and hence decreases system throughput)
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Priority inversion

� When a priority-based scheduler is used, a 
high priority thread should not have to wait 
for a low-priority thread.

� If threads of different priority levels share 
mutexes (or other synchronuzation 
primitives), this can happen! 

� It is also possible for medium priority threads 
to block a high priority thread for a long time

65 66

67 68



18

Database Management Systems, S. Chakravarthy 69

Convoy phenomenon

� Some data structures in databases are hot 
spots: lock table, log record etc.

� These are typically protected by a mutex and 
each thread locks the mutex, operates, and 
unlocks the mutex.

� A thread may get preempted while it held the 
mutex

� If the processor is dividing its time among N 
runnable threads of same priority level, the 
thread holding the mutex will not get its turn 
for N * context switching time, even if all 
other threads immediately block!
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Convoy phenomenon (2)

� Eventually, the thread holding the mutex will 
get its turn; however a long line of threads is 
waiting for that mutex

� It will execute and release the mutex; but it 
will soon need it as it is a hot spot. But now 
this thread goes to the back of the convoy!!

� This can happen repeatedly pushing threads 
to the back of the convoy and not getting 
much work done

� This is convoy phenomenon!!
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Convoy phenomenon (3)

� Two problems with this:
– Context switch rate goes up; instead of one 

context switch per time slice, it is now one context 
switch per attempt to acquire lock; this switching 
overhead will reduce system throughput

– This comes in the way of scheduler’s policy for 
choosing the thread to run; even with priority 
scheduling, high priority threads are waiting on 
the mutex; hence not runnable!

� Solution
– Do not use FIFO scheduling on hot spots.
– Do not allow processes to be preempted when 

they are using a hotspot object
Database Management Systems, S. Chakravarthy 72

Other things

� Latches: lightweight lock
� Spin locks: spins or tries to get a lock by busy 

waiting!

� Also, please read the section on concurrency 
control of indexes
– It is includes for test 2
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Thank You !
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