
1

Database Management Systems, S. Chakravarthy 1

Transaction Management

Chapters 16 and 17

Instructor: Sharma Chakravarthy
sharma@cse.uta.edu

The University of Texas @ Arlington

Database Management Systems, S. Chakravarthy 2

Concurrency

control

DBMS Architecture

Query Optimization
and Execution

(parser, optimizer,
Plan executor)

Files and Access Methods

Buffer Management

Disk Space Management

DB

Recovery

Manager

Transaction

Manager

Lock

Manager

SQL commands from applications

System catalog, data files,

Index files
Log

MODEULE 2

MODEULE I

MODEULE 2

MODEULE IV

Database Management Systems, S. Chakravarthy 3

What is a Transaction or Tx?
� A transaction is a program or application written

in some programming language that includes
reading and modifying a database.
– An SQL query
– An SQL Insert/delete/update
– Applications with embedded SQL
– Stored procedures
– User defined functions
- Your registration on MyMav is a Tx
- …

� No restriction on the size of a Tx
� No synchronization primitives are used for

writing applications!
Database Management Systems, S. Chakravarthy 4

Concurrency control and Recovery
� Concurrency Control

– the activity of coordinating the actions of processes that
operate concurrently (at the same time), access shared data,
and therefore potentially can interfere with each other

� Recovery
– the activity of ensuring that software and hardware failures

do not corrupt persistent data (make it inconsistent)
– Bottom line: the database contains all the effects of

committed transactions and none of the effects of
uncommitted transactions

� Parallel and concurrent executions are not the same
– Parallel implies no switch (typically on different processors)
– Concurrent means sharing a processor by switching tasks

� DBMSs also do parallel processing using multiple
processors

1 2

3 4

2

Database Management Systems, S. Chakravarthy 5

Relationship with the mutual exclusion

� Mutual exclusion is from OS
� OS does concurrent scheduling of tasks and

manage multiple users!

� In multi-threaded applications, synchronization
need to be managed by the person writing the
code.
– In a DBMS, applications are not even aware of it.
– It has to be managed by the DBMS

� MyMav registration is a good example

Database Management Systems, S. Chakravarthy 6

ACID Properties of transactions
� Atomicity: all or nothing property

– Who is responsible for this?
� Consistency: consistent DB state + correct

transactions  consistent DB state!!
– Who is responsible for this?

� Isolation: Even though transactions execute
concurrently, it appears to each transaction, T,
that others executed either before T or after T,
but not both.
– Who is responsible for this?

� Durability: Once a transaction completes
successfully (or commits), its changes to the DB
survive any kind of failure.
– Who is responsible for this?

Database Management Systems, S. Chakravarthy 7

Requirements of TM Systems

� High Performance – measured in transactions
per second (TPS); dollars per transactions ($/tx)

� High Availability – ability to provide access to
users all the time (24 x 7 operation)

� Correctness – ability to provide correct results
even in the face of failures (of any kind)

� Support various levels (degrees) of consistency
� For replicated databases, mutual consistency

should also be maintained

Database Management Systems, S. Chakravarthy 8

Why Concurrency Control ?
� Concurrency control can

– increase processor utilization (why?)
– increase total transaction throughput (why?)
– may increase response time (slightly) for

individual transactions! Why?
– Short transactions do not get delayed due to long

running transactions Why?
� The above is especially important in a DBMS

where transactions access data from
secondary storage devices (CPU is waiting
for a disk read to complete!!)
– Remember impedance mismatch!

5 6

7 8

3

Database Management Systems, S. Chakravarthy 9

Why Recovery ?
� Needed to accommodate various kinds of

failures
– logical errors (abort by the transaction/application)
– system errors (abort by the system – due to

deadlock)
– system crashes: losing the contents of volatile

storage

– Power failures
– loss of non-volatile storage (or media failure) ??
– Others (disasters)

� Mitigation: Mirroring, hot standby!

Database Management Systems, S. Chakravarthy 10

Terminology

� Both concurrency control and recovery are
applied to transactions - an arbitrary
collection of database operations (read/write
operations) specified by an application.

� A transaction is an execution of a program
that accesses a shared database

Database Management Systems, S. Chakravarthy 11

The goal of Concurrency control and
Recovery

� is to ensure that transactions execute
atomically, meaning that:

– each transaction accesses shared data without
interfering with other transactions (isolation), and

– if a transaction terminates normally, then all its
effects are made permanent; otherwise it has no
effect at all.

Database Management Systems, S. Chakravarthy 12

Operations
� The ACID properties are usually ensured by

combining two different sets of algorithms
– Concurrency control protocols

� Ensure isolation property, and
� Consistency of Tx execution (based on atomicity)

– Recovery protocols
� Ensure atomicity, and
� Durability

� What about consistency of a Tx?
– Who is responsible for the consistency of a Tx?

9 10

11 12

4

Database Management Systems, S. Chakravarthy 13

Operations on a DB
� Read, Write, Commit, Abort

– Each transaction is assumed to be self contained;
i.e., there is no direct communication with other
transactions. However, transactions do
communicate indirectly by manipulating shared
data in the database.

– Executing a transaction’s commit constitutes a
guarantee by the DBMS that it will not abort that
transaction and that the transaction’s effects will
survive subsequent failures of the system

� Txs are not interactive
� Txs are independent

– no dependency between transactions
– However, DB state may be Tx order dependent!

Database Management Systems, S. Chakravarthy 14

Operations contd.
� When a transaction T aborts (by its own choice

or done by the system), the system must wipe
out all of its effects; there are two kinds of
effects:
– i) On data: That is, values that T wrote in the

database and
– ii) On other transactions. That is, transactions (if

any) that read values written by T.
– Both (i) and (ii) should be dealt with
– ii) may, in turn, cause other transactions to be

aborted leading to a phenomenon termed
cascading aborts.

Database Management Systems, S. Chakravarthy 15

Concurrency Problems
� Arise due to interleaved execution of

transactions.
� If transactions are executed sequentially one

after another (i.e., serially), then there is no
problem as each transaction is assumed to
preserve the consistency of the database.

� Clearly understand the difference between
– Serial/sequential executions and
– Serialized or serializable (not serial, but behaves

like serial) execution!

Database Management Systems, S. Chakravarthy 16

Example:

Consider T1 and T2.

T1: read(a)
a:=a-50
write(a)
read(b)
b:= b+50
write(b)

Transfers 50 from
account a to account b

T2: read(a)
temp = a*0.1
a = a-temp
write (a)
read (b)
b = b+temp
write (b)

Transfers 1% from account a to
account b

Assume a = 1000; b=1000
Correctness: a+b should be 2000 at
the end of execution of execution
of T1 and T2 (T1 followed by T2 or
T2 followed by T1 or interleaved!)

13 14

15 16

5

Database Management Systems, S. Chakravarthy 17

Shedule 1: T1 followed by T2
read(a)

a:=a-50
write(A)
read(b)
b:= b+50
write(b)

a = 855

read(a)
temp = a*0.1
a = a-temp
write (a)
read (b)
b = b+temp
write (b)

b = 1145

Is this correct?
If so why?

This is a serial
execution
(schedule) !!

Is this a serializable
execution
(schedule) ?

a+b is 2000

Database Management Systems, S. Chakravarthy 18

Shedule 2: T2 followed by T1

read(a)
a:=a-50
write(A)
read(b)
b:= b+50
write(b)

a = 850

read(a)
temp = a*0.1
a = a-temp
write (a)
read (b)
b = b+temp
write (b)

b = 1150

Is this Correct?
If so why?

This is a serial
schedule !!

Is this a
serializable
schedule ?a+ b is 2000

Database Management Systems, S. Chakravarthy 19

Schedule 3: an interleaved schedule of T1 and T2

T1
read(a)
a:=a-50
write(A)

read(b)
b:= b+50
write(b)

a = 855

T2

read(a)
temp = a*0.1
a = a-temp
write (a)

read (b)
b = b+temp
write (b)

b = 1145

Is this correct?
If so why?

Is this is a
serializable
schedule ?

Is every
serializable
schedule
equivalent to
a serial
schedule?

a+b is still 2000

Database Management Systems, S. Chakravarthy 20

Shedule 4: another interleaved schedule of T1 and T2
read(a)
a:=a-50

write(a)
read(b)
b:= b+50
write(b)

a = 950

read(a)
temp = a*0.1

a = a-temp
write (a)
read(b)

b = b+temp
write (b)

b = 1100

Is this correct?
If so why?

Is this is a
serializable
schedule ?

Why are we
interested in
serializable and non-
serializable
schedules?
Instead of serial
schedules!

a+b is 2050

17 18

19 20

6

Database Management Systems, S. Chakravarthy 21

Concurrency Problems

� The inconsistency of the intermediate states is
the source of concurrency control problems

R W W

W dependencies W  R dependencies
A R W
C

R  R

A and C will play a role in recovery, also need
to be taken into account for concurrency!

Database Management Systems, S. Chakravarthy 22

Concurrency Problems
� Lost update problem

– If transaction T2 updates an object previously updated
by a transaction T1, commit of T2 will undo the update
of T1.

– Even if T1 aborts, T2’s update is lost due to rollback
(also, T2 would have read an uncommitted value!!)

– Even if T1 commits earlier than T2, there is a problem
– This is called write write dependency

update(y) abort/commit
T1 x
There may or may not be a read update(y) commit
T2 x x

time

There may or may not be a read

Database Management Systems, S. Chakravarthy 23

Concurrency Problems contd.
� Dirty read/temporary update problem

– Reading uncommitted data
� Write  Read dependency

T1 T2
Read(x)
x=x-N
write(x)

Read(x)
x=x+M
write(x)

Read/write(y)
time
Transactions can create inconsistent state before they commit.
Even if both transactions commit, T2 has read an inconsistent
value and acted upon it.

In the previous case,
data is lost due to

abort. Here, it is
about reading a
value that is
inconsistent!

Database Management Systems, S. Chakravarthy 24

Concurrency Problems contd.
� Unrepeatable read problem
� Read Write Dependency
�

T1 T2
Read(x)
Print(x)

Read(x)
x=x+M
Write(x)

Read(x) .
Print(x) .

T1 reads a value of x different from the value of x read
earlier (although x has not been changed by T1)

21 22

23 24

7

Database Management Systems, S. Chakravarthy 25

Concurrency Problems contd.

� In the absence of concurrent execution, none
of the above anomalies would arise.

� Note: there is no problem with Read Read
dependency as reads do not change value.
They commute; i.e., order of reads do not
change the database state

� Hence, many readers can allowed in a critical
section, but only one writer!

Database Management Systems, S. Chakravarthy 26

Jim Gray’s Laws

� First Law of concurrency Control
– Concurrent execution should not cause

application programs to malfunction

� Second law of concurrency Control
– Concurrent execution should not result in lower

throughput or much higher response time than
serial execution

Use simple algorithms !!

Database Management Systems, S. Chakravarthy 27

Consistency levels
� Transaction T sees degree 3 consistency (serializability) if

– 1. T does not overwrite dirty data of other transactions
(avoids w-w dependency)

– 2. T does not read dirty data from other transactions
(avoids w-r dependency)

– 3. Other transactions do not dirty any data read by T before T
completes (avoids r-w dependency)

– 4. T does not make visible (commit) any writes until it completes
all its writes (i.e., until the end of transaction (EOT))

� Transaction T sees degree 2 consistency (cursor stability) if
– 1. T does not overwrite dirty data of other transactions (w-w)
– 2. T does not read dirty data from other transactions (w-r)
– 4. T does not commit any writes before EOT.

Database Management Systems, S. Chakravarthy 28

Consistency levels contd.
� Transaction T sees degree 1 consistency (browse)

if:
– 1. T does not overwrite dirty data of other

transactions. (w-w)
– 4. T does not commit any writes before EOT.

� Transaction T sees degree 0 consistency (anarchy)
if:
– 1. T does not overwrite dirty data of other

transactions (w-w)
i.e., you wait for other transactions to commit ONLY for

writing. Dirty reads ok. Unrepeatable reads also ok.

Of course, a higher degree of Consistency
encompasses all the lower degrees

25 26

27 28

8

Database Management Systems, S. Chakravarthy 29

A Comment on Degree of Consistency
� All DBMSs support all the 4 degrees and you can

indicate degree with each Tx

� It is felt that supporting degree 3 which is needed for some
applications (e.g., banking, airline reservation, payroll) is not
needed for all applications

� NoSQL DBMSs trade of ACID properties with CAP
(consistency, availability, and partitioning) functionality

� Eventual consistency (different from mutual consistency) is
supported for partitions!

� Recovery may also be done in a less stringent manner! As
fault tolerance!

Database Management Systems, S. Chakravarthy 30

Serializability

� One way to avoid interference is to NOT
allow transactions to be interleaved at all. An
execution in which no two transactions are
interleaved is called serial or sequential

� More precisely, an execution is called serial,
if, for every pair of transactions, all of the
operations of one transaction execute before
any of the operations of the other

Database Management Systems, S. Chakravarthy 31

Serializability contd.
� A serial execution provides atomic (all or nothing)

processing of transactions (assuming recovery)
� Serial executions are correct by definition because

each transaction individually is correct (by
assumption) and transactions that execute serially
cannot interfere with each other.

� Not all serial executions produce the same effect on
the database state
– e.g. (i) T1 followed by T2 and (ii) T2 followed by T1 (see earlier

example)
– T1, T2 gave a=855, b = 1145; T2, T1 gave a=850, b=1150!

Although (i) and (ii) produce different database states, both are
equally correct and acceptable

– This is different from expert systems/AI where conflict resolution
strategies are used to choose the order of evaluation!

Database Management Systems, S. Chakravarthy 32

Serializability contd.

� The class of allowable executions can be
broadened to include executions that have the
same effect as serial ones. Such executions are
called Serializable.

� More precisely, an execution of a set of
transactions is serializable if it produces the
same output and has the same effect on the
database as some serial execution of the same
set of transactions.

29 30

31 32

9

Database Management Systems, S. Chakravarthy 33

Serializability contd.

� Since all serial executions are correct, and
since each serializable execution has the same
effect as a serial execution, serializable
executions are correct too.

� All serializable executions are equally correct.
Therefore, the DBMS may execute
transactions in any order, as long as the effect
is the same as that of some serial order.

� Serial execution is used as the ground truth!

Database Management Systems, S. Chakravarthy 34

ABSTRACT SYSTEM MODEL
T1 T2 ... Tn

Transaction Manager

Scheduler responsible for
concurrency control

Recovery Manager responsible for ensuring the
semantics of commit and
abort actions

Buffer Manager manages data movement
between volatile and stable
storage (e.g. Fetch, Flush)

Database

Database Management Systems, S. Chakravarthy 35

States of a transaction
read, write

Begin Active end partially
transaction transaction committed

commit

committed

failed abort
Terminated

Database Management Systems, S. Chakravarthy 36

Serializability Theory

� It is a mathematical tool that allows us to
prove whether or not a schedule works
correctly. For this, we represent a concurrent
execution of a set of transactions by a
structure called History (also known as
schedule/log/audit)

– It is essentially a partial order of Tx’s operations!

33 34

35 36

10

Database Management Systems, S. Chakravarthy 37

Schedule
� Definition: A schedule for a set of

transactions {T1, T2, ..., Tn} is a sequence of
actions constructed by merging the actions of
T1, T2, ..., Tn while respecting the order of the
actions making up each transaction

T1: a11, a12
T2: a21, a22

S1 = a11, a21, a22, a12 a correct schedule
(may or may not be a serializable schedule)

S2 = a12, a21, a22, a11 Not a correct schedule
We will not consider incorrect schedules! (Why?)

Database Management Systems, S. Chakravarthy 38

Serial Schedule
� Serial Schedule: A schedule of a set of

transactions {T1,T2,...,Tn} is a serial schedule
if there exists a permutation  of {1,2,...,n}
such that S = <T(1), T (2), ..., T (n) >
– How many serial schedules are there for n

transactions?

� Serializable schedule: A schedule of a set of
transactions T1,T2, ..., Tn is serializable if it
yields exactly the same results (database
state) as a serial schedule of {T1, T2, ..., Tn}.
– Is this number more than the # of serial

schedules?

Database Management Systems, S. Chakravarthy 39

Number of Serial and Interleaved Schedules

� Given n Txs {T1,T2,...,Tn}
1. How many serial schedules (SS) are there?

n!
2. How many interleaved (legal or not)
schedules are there? (assume k ops in each T)

(nk)! >> n! (let us say IS)
3. How many correct/legal interleaved
schedules are there?

between n! and IS (let us say CIS, closer to n!)
4. How many Serializable schedules are there?
between n! and n*k! (this is of interest to us, CIS)

n! << CIS << n*k!
Database Management Systems, S. Chakravarthy 40

Venn Diagram of serializability

Serializable schedules

All legal Schedules

All interleaved schedules (t1 + t2 + … + tn)!
ti is the number of operations in Ti

Serial schedules n!

37 38

39 40

11

Database Management Systems, S. Chakravarthy 41

Selializability flavors
� Serializability: only says that the execution

should be equivalent to some serial execution.
That is, gives the same result (actually DB state)
as that of some serial schedule. An abstraction!

� Conflict serializability is based on the notion of
conflicting operations! A read operation conflicts
with write (on the same object) and a write
conflicts with both read and write (on the same
object). For practical use!

� View seriallizability: based on what each Tx
reads and writes (sees) in a schedule. Turns out
to be stronger than conflict serializability and
weaker than serializability. Not used in industry!

Database Management Systems, S. Chakravarthy 42

Selializability flavors

� Serializability: no easy way to check! (why?)

� Conflict serializability: can be checked using the
notion of conflicting operations.
– Two operations are said to conflict if they both operate

on the same data item and at least one of them is a
write. Thus

Read (x) conflicts with Write(x), while
Write(x) conflicts with both Read(x) and

Write(x)
Read does not conflict with another Read

� View serializability: there are well-defined
conditions for checking for this.

Database Management Systems, S. Chakravarthy 43

Selializability flavors
� Serializability flavors are not the same.

– Every conflict serializable schedule is serializable
(important)

– However, the converse is not true. (not so important)
(Why?)
� Conflict serializability is sufficient but not necessary for

serializability (example coming up)

– Every conflict serializable schedule is also view
serializable. However, the converse is not true (see
example)

– Also, every view serializable schedule is serializable.
However, the converse is not true (see example)

Database Management Systems, S. Chakravarthy 44

Venn Diagram of serializability

Conflict Serializable

View serializable

Serializable

All legal Schedules
All interleavings

Serial

Acyclic precedence
graph

41 42

43 44

12

Database Management Systems, S. Chakravarthy 45

Definition for serializability flavors
� A schedule is serializable if it is equivalent to

some serial schedule (i.e., produces the same
result)

� A schedule is conflict serializable if it is
conflict equivalent to some serial schedule.
– Conflict equivalent means that all pairs of

conflicting operations appear in the same order in
both schedules!

� A schedule is view serializable if it is view
equivalent to some serial schedule. That is,
satisfies 3 conditions of view serializability

Database Management Systems, S. Chakravarthy 46

Example 1 (serializable without being conflict equivalent)

� Consider the following schedules: serial (T1, T2, T3)
� T1: R(A) T1: R(A)

T2: W(A) W(A)
Commit commit

W(A) T2: W(A)
Commit commit

T3: W(A) T3: W(A)
commit commit

� The above is NOT conflict serializable as conflicting
operations T2:W(A) and T1:W(A) are not in the same
order!

� However, the above is equivalent to a serial schedule [(T1,
T2, T3) or (T2, T1, T3)]

� Shows that serializability does not imply conflict
serializability. However, the converse is true

� Blind writes creates this problem!

Database Management Systems, S. Chakravarthy 47

View Serializability
� A schedule is view serializable if it is view equivalent to

some serial schedule
� Two schedules S1 and S2 on Ti and Tj are view equivalent:

1. If Ti reads the initial value of object A in S1, it must
also read the initial value of A in S2

2. If Ti reads a value of A written by Tj in S1, it must
also read the value of A written by Tj in S2

3. For each data object A, the transaction (If any) that
performs the final write on A in S1 must also perform
the final write on A in S2

� Previous example is view serializable, but NOT conflict
serializable. It can be shown that any view serializable
schedule that is NOT conflict serializable contains a blind
write.

Database Management Systems, S. Chakravarthy 48

Example 1 (view serializable without being conflict serializable)

� Consider the following schedules:
� T1: R(A) T1: R(A)

T2: W(A) W(A)
Commit commit

W(A) T2: W(A)
Commit commit

T3: W(A) T3: W(A)
commit commit

� The above is NOT conflict serializable as conflicting
operations T2:W(A) and T1:W(A) are not in the same
order!

� However, the above is view serializable as it satisfies all 3
conditions: 1) A is read by T1 in both; 3)A is the last item
written in both; 3) no one reads a value written by others!

� Shows that view serializability does not imply conflict
serializability.

45 46

47 48

13

Database Management Systems, S. Chakravarthy 49

Example 2

� T1: R(A)
T2: W(A)
Commit

T3: W(A)
commit

W(A)
Commit

1. The above is not view serializable (with any schedule:
T1;T2;T3, T1;T3;T2, T2;T1;T3, T2:T3;T1, T3;T1;T2, T3:T2;T1)

2. Possible candidates are those ending with T1; but the read
by T1 makes it not view serializable

3. However, it is serializble with a serial schedule whose last
Tx is T1 As T1 write prevails

For view
serializability, T1
needs to be first to
satisfy cond 1.
however, it will
violate cond 3! See
2 for other cases.

Database Management Systems, S. Chakravarthy 50

Example 3
� A view serializable schedule that is NOT conflict serializable

� S1: R1(A) S2: R1(A)
W2(A) W1(A)
Commit2 Commit1
W1(A) W2(A)
Commit1 Commit2
W3(A) W3(A)
commit3 commit3

Cond i) A is read by T1 in both schedules
Cond ii) no read on a value written by another Tx
Cond iii) T3 performs the final write in both

Hence S1 is view serializable; it is view equivalent to S2 (a serial
schedule)

However, S1 is NOT conflict serializable because two conflicting
operations w2(a) w1(a) in S1 is not in the same order in S2

Database Management Systems, S. Chakravarthy 51

Serializability summary

� Conflict serializability is what is enforced by
all DBMSs (by using locking protocols)

� Enforcing or testing view serializability turns
out to be more difficult (computationally
expensive and of little practical use).

� There are tests to determine view and conflict
serializability

� But there is no simple test for serializability!!

Database Management Systems, S. Chakravarthy 52

Histories and serialization graph

T1 = r1[x] -> w1[x] -> C1
T3 = r3[x] -> w3[y] -> w3[x] -> C3
T4 = r4[y] -> w4[x] -> w4[y] -> w4[z] -> C4

A complete History over {T1, T3, T4} is

r3[x] w3[y] w3[x] C3

H1 = r4[y] w4[x] w4[y] w4[z] C4

r1[x] w1[x] C1

49 50

51 52

14

Database Management Systems, S. Chakravarthy 53

Conflict Serializable Histories

� Equivalence:
We define two histories H and H’ to be equivalent () if
(1) they are defined over the same set of transactions

and have the same operations; and
(2) they order conflicting operations of non-aborted

transactions in the same way; that is, for any
conflicting operations pi and qj belonging to
transactions Ti and Tj (respectively) where ai, aj  H,
if pi < H qj then pi < H’ qj

Database Management Systems, S. Chakravarthy 54

Examples
w1[y]

H2 = r1[x] r1[y] C1

w1[x]

r2[x] w2[y]

w2[x] C2

H3 = r1[x] r1[y] w1[x] w1[y] c1

r2[x] w2[y]

w2[x] c2

H2 and H3 are equivalent

Database Management Systems, S. Chakravarthy 55

Examples contd.

w1[x]
H4 r1[x] r1[y] C1

w1[y]

r2[x] w2[y]

w2[x] C2
H4 is not equivalent to either H2 or H3

Database Management Systems, S. Chakravarthy 56

Serialization Graph(SG)

� Let H be a history over T = {T1, T2, ... Tn}. The
serialization graph (SG) for H, denoted SG(H)
is a directed graph whose nodes are the
transactions in T that are committed in H and
whose edges are all Ti � Tj (ij) such that one
of Ti’s operations precedes and conflicts with
one of Tj’s operations in H. For example:

53 54

55 56

15

Database Management Systems, S. Chakravarthy 57

Serialization Graph(SG) contd.

r3[x] w3[x] C3

H5 = r1[x] w1[x] w1[y] C1

r2[x] w2[y] C2
r2[x] < w3[x]

SG(H5) = T2 T1 T3

r2[x] < w1[x] w1[x] < r3[x]

w2[y] < w1[y]

Database Management Systems, S. Chakravarthy 58

The Serializability Theorem

� A history H is serializable (or conflict
serializable based on the notion of conflicts) if
SG(H) is acyclic.

� Proof sketch:
– (if) Since SG(H) is acyclic, it can be topologically

sorted. The sorted history will be equivalent to a
serial history.

– (only if) Serial history implies acyclicity.

Database Management Systems, S. Chakravarthy 59

Transitivity does not necessarily hold in
a Serialization Graph(SG)

� In general, the existence of edges Ti � Tj and
Tj � Tk in an SG does not necessarily imply
the existence of edge Ti � Tk (Transitivity).

For example, with w3[z] replacing w3[x] in T3,
SG(H5) becomes

T2 T1 T3

The transitive edge is not there.

Database Management Systems, S. Chakravarthy 60

Serialization Graph(SG) contd.

r3[x] w3[x] C3

H5 = r1[x] w1[x] w1[y] C1

r2[x] w2[y] C2
r2[x] < w3[x]

SG(H5) = T2 T1 T3

r2[x] < w1[x] w1[x] < r3[x]

w2[y] < w1[y]
Transitivity does not
Necessarily hold!

57 58

59 60

16

Database Management Systems, S. Chakravarthy 61

Serialization Graph(SG) contd.

r3[x] w3[z] C3

H5 = r1[x] w1[x] w1[y] C1

r2[x] w2[y] C2
r2[x] < w3[z]

SG(H5) = T2 T1 T3

r2[x] < w1[x] w1[x] < r3[x]
w2[y] < w1[y]

Database Management Systems, S. Chakravarthy 62

Recoverable Histories

� To ensure correctness in the presence of
failures the schedule must produce
executions that are not only serializable but
also recoverable. Other desirable features are:
– preventing cascading aborts
– loss of before images

� Like serializability, recoverability can be
conveniently formulated in terms of histories.

Database Management Systems, S. Chakravarthy 63

Cascading Aborts
� Is a situation where transaction T2

needs to be aborted because
transaction T1 aborts

� This is necessary as T2 reads a value
written by transaction T1

� If you want to avoid cascading aborts (ACA)
such schedules should not be allowed!

� What is the easiest way to avoid such a situation?
� Postpone read until the Tx from which u want to

read commits/aborts!

T1 T2

R(A)
W(A)

R(A)
W(A)

Abort

Abort

Database Management Systems, S. Chakravarthy 64

Recoverable Schedules

� Abort of T1 requires abort of T2!
– But T2 has already committed!

� A recoverable schedule is one in
which this cannot happen.

� What is the easiest way to avoid this?
– i.e., a Xact commits only after all the Xacts it “depends

on” (i.e., it reads from or overwrites) commit.
– ACA implies Recoverable (but not vice-versa!).

� Real systems typically ensure that only
recoverable schedules arise (through locking).

� Histories allow us to do serialization (conflict),
ACA, and recoverability using one formalism!

T1 T2

R(A)

W(A)

R(A)

W(A)

commit

abort

61 62

63 64

17

Database Management Systems, S. Chakravarthy 65

Recoverable Histories contd.

� A transaction Ti reads data item x from Tj if Tj was
the transaction that had last written into x but had
not aborted at the time Ti reads x. More precisely, we
say that Ti reads x from Tj in history H if
– (1) wj[x] < ri[x] < means precedes (not less than!)
– (2) aj </ ri[x] and
– (3) if there is some wk[x] such that

Wj[x] < Wk[x] < ri[x], then ak < ri[x]
– Note that a transaction can read a data item from itself. i.e.,

Wi[x] < ri[x]

Database Management Systems, S. Chakravarthy 66

Recoverable and ACA Histories
� A history is recoverable if each transaction

commits after the commit of all transactions
(other than itself) from which it read.

� A history H is called Recoverable (RC) if,
whenever Ti reads from Tj (i  j) in H and Ci 
H, Cj < Ci (or Ci waits till Cj commits).

� A history H avoids cascading aborts (ACA) if,
whenever Ti reads x from Tj (i  j), Cj < ri[x].
– i.e., transactions may read only those values that

are written by committed transactions or by itself.

Database Management Systems, S. Chakravarthy 67

Strict Histories

� A history H is strict (ST) if whenever wj[x] <
Oi[x] (i  j) , either aj < Oi[x] or cj < Oi[x],
where Oi[x] is ri[x] or wi[x].

� That is, no data item may be read or
overwritten until the transaction that
previously written into it (note: not read by it)
terminates, either by aborting or committing.
– This is much stronger than the read by a Tx

definition!

Database Management Systems, S. Chakravarthy 68

Examples
T1 = w1[x] w1[y] w1[z] C1
T2 = r2[u] w2[x] r2[y] w2[y] C2

H7 = w1[x] w1[y] r2[u] w2[x] r2[y] w2[y] C2 w1[z] C1

H8 = w1[x] w1[y] r2[u] w2[x] r2[y] w2[y] w1[z] C1 C2

H9 = w1[x] w1[y] r2[u] w2[x] w1[z] C1 r2[y] w2[y] C2

H10 = w1[x] w1[y] r2[u] w1[z] C1 W2[x] r2[y] w2[y] C2

H11 = w1[x] r2[y] w1[y] r2[u] w1[z] C1 W2[x] w2[y] C2 serializable?

H7 is not RC: T2 reads y from T1 but C2 < C1. Also not ACA
H8 is RC: T2 commits after T1 from which it read,
but not ACA: T2 reads y from T1 before T1 is committed.
H9 is ACA but not ST because T2 overwrites the value written

into x by T1 before the latter terminates
H10 is ST

65 66

67 68

18

Database Management Systems, S. Chakravarthy 69

ST  ACA  RC

i.e Recoverability, avoiding cascading aborts, and strictness
are increasingly restrictive properties

Proof:

Let H  ST. Suppose Ti reads X from Tj in H (ij). Then we
have wj [X] < ri[X] and aj ¬< ri[X]. Thus by definition of ST,
Cj < ri[X]

Hence ST  ACA. By the example shown ST  ACA. Hence
ST  ACA.

Similarly, for ACA  RC

Theorem

Database Management Systems, S. Chakravarthy 70

Venn Diagram of serializability

Conflict Serializable

View serializable

Serializable

All legal Schedules
All interleavings

Serial

Acyclic precedence
graph

Database Management Systems, S. Chakravarthy 71

CSR intersects all of the sets RC, ACA and ST, but is
incompatible with each of them. Two sets are incompatible
if neither is contained in the other.

Venn Diagram illustrating relationships between histories

H11

Database Management Systems, S. Chakravarthy 72

A ST history that is not CSR

H10 = w1[x] w1[y] r2[u] w1[z] C1 W2[x] r2[y] w2[y] C2

The above is ST and CSR (no cycles in the conflict graph)

Is ST, but NOT CSR

Why?
ST is satisfied if oi does Not follow w (but NOT read)

without a or c

H11 = w1[x] w1[y] r2[u] w1[z] W1[u] C1
W2[x] r2[y] w2[y] C2

69 70

71 72

19

Database Management Systems, S. Chakravarthy 73

Summary of Concurrency control
� Concurrency control key to a DBMS.

– More than just mutexes!

� Transactions and the ACID properties:
– C & I are handled by concurrency control.
– A & D coming soon with logging & recovery.

� Conflicts arise when two Xacts access the
same object, and one of the Xacts is
modifying it.

� Serial execution is our model of correctness.

Database Management Systems, S. Chakravarthy 74

Summary, cont.

� Serializability allows us to “simulate” serial execution
with better performance.

� 2PL: A simple mechanism to get serializability.
– Strict 2PL also gives us recoverability.
– Conservative 2PL requests all locks at the beginning

� Lock manager automates 2PL so that only the access
methods worry about it.
– Lock table is a big main-memory hash table

� Deadlocks are possible, and typically a deadlock
detector is used to solve the problem.

Database Management Systems, S. Chakravarthy 75

Thank You !

73 74

75

