
1

Database System II
Preliminaries

Instructor: Sharma Chakravarthy
sharma@cse.uta.edu

The University of Texas at Arlington

A Few Tips and Suggestions
 Purpose of doing MS or getting a degree and its implications!

 Get prepared for the next 30+ years of real-world job
 Is your Goal getting A’s and a GPA of 4.0? Or learning to evolve, adapt,

and deal with whatever comes your way
 A good GPA does not necessarily mean you are prepared for the job!

− Answering test questions is different from solving real-world problems!
 Industry needs problem solvers; not people who can memorize and answer tests

and do well on exams
 Key is: Independent analytical thinking & ability to apply theory/principles to

practical problems that you might have not seen before

 You can do BOTH: by understanding the concepts and
intuitions/insights behind them
 And how to think on your toes! Critically needed to ace interviews

 You know how the interview process has changed over the years and
what the employers are looking for!
 Think about how to Succeed in your Career! And learn how to enjoy what you do

along the way!
 Understand the tradeoff between confidence and correctness in interviews!

A Few Tips and Suggestions (2)
 Rather than thinking this as a course in which you learn ONLY DBMS

systems details
 Think of various concepts you are learning and how it is relevant to

problem solving and data analysis in general.
 Think of

 Technologies (skill sets) you are acquiring
 Underpinnings of those technologies
 How, why, and where they can be used
 How to match tools to the problem at hand!

 Most people get lost in theory, but never understand where and
when it is appropriate and how to apply what you have learnt

 Why, what, and how are important in that order
 Why do you want to use this specific approach or solution
 What is the context and can you quantify the relevance
 How to do it in the best possible way

 If you master the above three, you are in business

4

Preparing for your Career
 You must be aware of how our lives (especially your careers) are going to

change in the next 30 to 40 years due to progress in Computer Science
(including AI)

 You are not going to replace robots and AI!
 Now, you must also deal with ChatGPT competing with you!

 Robots and AI are here to stay, and you need to get prepared for that!
 E.g., RazorSQL, tuning tools (both reduced the need for developers and DBAs)
 ChatGPT can answer a lot of questions, even write code, and will challenge you every

step of the way in your career!

 You must figure out a way to SURVIVE AI and automation!

 You need to become good at what computers does not or cannot do
 Analysis, design, problem solving, independent thinking!
 Generating new ideas based on needs
 Matching solutions to problems, thinking in a broader perspective!
 Not just coding, running a program/package, and generating output/results

 Hence, you need to continuously update your skill sets to stay afloat and figure
out how to survive

 I am NOT trying to scare you! you need to be prepared for the reality

5

This is what I want to accomplish

 Hello Professor,

 How are you? I hope you are doing well in this pandemic and are safe. I am doing

well and keeping myself safe. It's been more than a year working at Discover and
it's been going really well. I have been solving many Natural Language related
problems here and learning a lot in the process. I always remember one thing
out of so many things I learnt from you is, anybody can code given an algorithm,
but coming up with an algorithm or idea or way of solving a complex problem is
important. This has helped me many times. Thank you very much.


 Many students who graduated in 2019 and 2020 took grad walks this year, but I

could not do so. I always wanted my parents to attend my grad walk and also
meet you at that time, which did not happen. Definitely we would want to meet
you whenever my parents are here.


 Hoping to hear from you soon.

 Dated 5/16/2021

Applications
 Computation intensive applications

 E. g., finite element analysis, Computer aided design, wind tunnel testing,
simulations, numerical analysis

 Data intensive applications (DBMSs, Data Analytics & Science)
 E. g., library of congress book management, Walmart point of sales

database, Amazon inventory database, airline reservations, Homeland
security database and applications, inverted index used by Google, Edgar
database. Patent database

 Computation & data intensive applications
 Data mining, drill down and exploration of data warehouse, dimensional

analysis, Google search, stream/sensor data processing, scientific
computations…

 Mining very large volumes of unstructured data: cloud computing, NoSQL
processing, Map/Reduce paradigm

 Neural network algorithms, machine learning

Applications (contd.)
 We are familiar with CPU intensive applications. They

keep most/all data in main memory for processing (Java
projects, data structures projects).

 The files you used were very small! AND could be stored
in main memory!

 We know how to design these algorithms and
applications (algorithms and software engineering)

 Design and implementation of data intensive
applications is VERY different from main memory
applications.

 We deal with designing a database in cse 3330/5330
 What is the equivalent of UML for data modeling?
 In fact, EER (1976) came way earlier than UML (Unified Modeling

Language) (1994)!

Applications (contd.)
 What applications are likely to be data intensive?

 Online shopping: Netflix user rentals, Amazon, ebay, …
 Online information: Google, Yahoo, Wiki, …
 Online services: credit cards, banking, …
 Others: library book search, comparative shopping, EDGAR

database, Facebook database, …
 Enterprise databases: …

 For these application, we not only have to design the
computational part, but we have to design the data to be
represented and managed efficiently on non-volatile or
persistent storage (or disks)!

Applications (Contd.)
 In CPU intensive applications, representation of data was

assumed to be simpler of the two (algorithm vs. data
storage)

 The choice was in the identification of one of the main-
memory data structures (arrays, lists, trees, hash tables,
linked lists, etc.)

 You load the data once. You may write files as output. But
you do not go back and forth!

 The focus was on the main-memory algorithm, its
correctness and efficiency (or complexity)

 The compiler did a lot of your code optimization!

In Data intensive Applications
 We need to stage data back and forth between persistent

storage and memory. (Why?)
 Hence, we focus on DBMS architecture and its

components
 Storage and indexing

− Buffer Management
 Transaction management

− Concurrency control and Recovery (second project)
 Cloud computing and Map/Reduce (third project)
 Query Optimization (Homework for grade)

 Projects will be implemented in a realistic setting
 We will also look at new approaches, such as

− Non-relational or NoSQL DBMSs (time permitting)
− Their relationship with the others

What Is a DBMS?

 Briefly, A very large, integrated, persistent collection of
data.

 Models a real-world enterprise.
 Entities

− e.g., students, courses, buildings, websites, products
 Relationships

− e.g., Billy Joel performs at UTA, students take courses, lenders issue
mortgages, an employee manages a department, students submit
projects

 A Database Management System (DBMS) is a software
system designed to store, access, and facilitate access to
relevant contents (i.e., databases)

DBMS overall Architecture

Concurrency
control

Query Optimization
and Execution

(parser, optimizer,
Plan executor)

Files and Access Methods
Buffer Management
(replacement policy)

Disk Space Management

DB

Recovery

Manager

Transaction

Manager

Lock

Manager

SQL commands from applications

System catalog, data files,
Index files

Log

Computer Systems: Then

Database Systems: Today

From Friendster.com on-line tour

Other Ways Databases Make Life Better?
• “Players could finally

sign up for the Star
Wars Galaxies game
last week as Sony
opened up registration
to the public.”

• “Once players got in to
the game they found
that the game servers
were offline because of database problems.”

• “Some players spent hours tuning their in-
game characters only to find that crashes
deleted all their hard work.”

• Source: BBC News Online, July 1, 2003.

Other databases you may use

http://www.amazon.com/exec/obidos/subst/home/redirect.html/ref=nh_gateway/002-7972088-5679262

Is the WWW a DBMS?
• Fairly sophisticated search available

– crawler indexes pages on the web
– Keyword-based search for pages

• But, currently
– data is mostly unstructured and untyped
– search only:

• can’t modify the data
• can’t get summaries, complex combinations of data

– few guarantees provided for freshness of data, consistency
across data items, fault tolerance, …

– Web sites typically have a DBMS in the background to provide
these functions.

• The picture is changing
– New standards e.g., XML, Semantic Web can help data

modeling
– Research groups (e.g., at Berkeley) are working on providing

some of this functionality across multiple web sites.

=

Q: How do you write
programs over a
subsystem when it
promises you only “???” ?
A: Very, very carefully!!

Is a File System a DBMS?

• Thought Experiment 1:
– You and your project partner are editing the same file.
– You both save it at the same time.
– Whose changes survive?

=

•Thought Experiment 2:
–You’re updating a file.
–The power goes out.
–Which of your changes survive?

A) Yours B) Partner’s C) Both D) Neither E) ???

A) All B) None C) All Since Last Save D) ???

19

Why Use a DBMS?

 Data independence and efficient access.
 Reduced application development time.
 Data integrity and security.
 Uniform data administration.
 Concurrent access, recovery from crashes.
 Persistence, scalability, portability

20

Why Study Databases??
 Shift from computation to
 information management to
 Big Data analytics

– at the “low end”: ad hoc data, spread sheet
– at the “high end”: scientific data management

 Datasets increasing in diversity and volume.
– Digital libraries, interactive video, Human

Genome project, EOS project, multi-media dbms
– ... need for DBMS is exploding

 DBMS study encompasses all aspects of CS
– OS, languages, theory, AI, multimedia, logic

?

21

Current Commercial Outlook
 A major part of the software industry:

– Oracle, IBM, Microsoft, Sybase
– Also, Informix (now IBM), Teradata
– smaller players: java-based dbms, devices, OO, …

 Well-known benchmarks (esp. TPC)
 Lots of related industries

– data warehouse, document management, storage, backup,
reporting, business intelligence, app integration

 Relational products dominant and evolving
– adapting for extensibility (user-defined types), adding

native XML support.

 Open Source coming on strong
– MySQL, PostgreSQL, BerkeleyDB (has been acquired by

Oracle)

22

What’s the intellectual content?
 representing information

– data modeling
 languages and systems for querying data

– complex queries with real semantics*
– over massive data sets

 concurrency control for data manipulation
– controlling concurrent access
– ensuring transactional semantics

 reliable data storage (recovery)
– maintain data semantics even if you pull

the plug
* semantics: the meaning or relationship of meanings of a sign or set of signs

23

Evolution of DBMSs

Modeling
Semantics
Program
Tx Mgmt

Application

File I/O

[Adapted from Peter Lyngbaek:OOPSLA:1991]

Modeling
Semantics
Program

Application

Tx Mgmt
File I/O

DBMS

Non-relational (1970)

Application
Modeling

Semantics

Query Opt
Tx Mgmt
File I/O

DBMS

Relational (1980)

Application

Modeling
(static/dynamic)

Query Opt
Tx Mgmt
File I/O

DBMS

OODBMS (1990)

Pre 1970’s

24

Moving On …
Application

Stream Processing
Mining

XML support
Workflow support

Modeling
(static/dynamic)

Query Opt
Tx Mgmt
File I/O

DSMS

Mining
XML support

Workflow support
Modeling

(static/dynamic)
Query Opt
Tx Mgmt
File I/O

Application

DBMS [2000] [2009]

….

Non-DBMS
Applications

[2013]

25

Where are we headed?
 Without understanding the past, it is very

difficult to appreciate the present and plan for
the future!

 Technology provides solutions; it does NOT
necessarily solve problems!

Sharma Chakravarthy8/20/2025

19901980 2000 20101970

25

19901980 2000
Relational

DBMS

Consistency,
Multiple Users,

Durability,
Atomicity

Concurrency
Control,

Recovery,
Query

optimization

Data
Warehouse

s

Data
Mining

Stream
Data

Processing

Vertical
Integration,

Multi-
dimensional

Analysis,
Data freshness

Wrappers,
View

Maintenance,
Data Cleaning

and
transformatio

n

Unsupervised
Learning,

Market-basket
Analysis,

Taxonomy

Apriori
Property,

Confidence,
 Support,
Negative
Border

QoS
Specification

(Latency,
Memory,

Throughput),
Continuous
Monitoring
Real-time
Response

One-pass
Algorithms,
Scheduling,

Load Shedding,
Capacity

Modeling,
Window

Abstraction

Big Data Analytics/Science

Handle large Data
corresponding to 4 V’s, Multiple

Models,
Holistic Analysis, actionable

knowledge

Map/
Reduce

paradigm
,

Shuffling

Video
as

Stream,
Extende
d Data
represe
ntation

and
CQL

Multiplex
modeling,
compositio

n

20101970

26

Impedance mismatch
 If you are studying DBMS, you have to

understand this very clearly
 CPU is way faster than disk access. In fact, it

is a Million or more times faster
– CPU accesses are in nano secs and disk accesses

are still in milli secs!
 Because of this speed difference, it takes

much longer to bring data from a disk
 So, CPU is waiting/idling most of the times

for data (if not architected properly)!

 This is called impedance mismatch!

27

Performance Issues
 There are many sources of performance

problems
– Improving existing abstraction/adding new

functionality
– Increase in data volume without any other

changes
– Or both of the above!

 In the absence of the above, we can continue
to improve performance (improvements are
offset by the increase in data or additional
software needed for supporting the
abstraction)

28

Solutions
 There are several solutions

– Doubling of CPU speed every 12 months or sooner (Moore’s
Law) Have you heard of Neuromorphic computing?

– Increase in disk i/o throughput
– Use of multiple processors (Map/Reduce leverages this on a

large scale)
 The above CANNOT completely address the

problems mentioned earlier
 New algorithms/techniques, optimization are critical

(e.g., data structures, indexes, concurrent processing,
…)

 The introduction of SSDs (solid state disks) are
warranting a re-examination of some of the above
issues
– No impedance mismatch!!

31

Data Models
 A data model is a collection of concepts for

describing data.
 A schema is a description of a particular

collection of data, using the a given data
model.

 The relational model of data is the most widely
used model today.
– Main concept: relation, basically a table with rows

and columns.
– Every relation has a schema, which describes the

columns, or fields.

32

Levels of Abstraction

 Many views,
 single conceptual (logical)

schema and physical
schema.
– Views describe how users

see the data.
– Conceptual schema defines

logical structure
– Physical schema describes

the files and indexes used.

 Schemas are defined using DDL; data is modified/queried using DML.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

33

Example: University Database

 Conceptual schema:
– Students(sid: string, name: string, login: string,
 age: integer, gpa:real)
– Courses(cid: string, cname:string, credits:integer)
– Enrolled(sid:string, cid:string, grade:string)

 Physical schema:
– Relations stored as unordered files.
– Index on first column of Students.

 External Schema (View):
– Course_info(cid:string,enrollment:integer)

34

Data Independence

 Applications insulated from how data is
structured and stored.

 Logical data independence: Protection from
changes in logical structure of data.

 Physical data independence: Protection from
changes in physical structure of data.

 One of the most important benefits of using a DBMS!

35

DBMS Components
 Architecture – typically client/server
 DDL, DML parsing, processing
 Physical DB design (files, indexing, access methods)
 Query processing, optimization
 Buffer management
 Concurrency control
 Recovery
 Utilities – backup, archiving, exporting, OLAP,

report generator, physical design wizards, access to
multiple DBMSs, designer tools, tuning of
parameters, etc. etc.

36

Concurrency
control

DBMS Architecture

Query Optimization
and Execution

(parser, optimizer,
Plan executor)

Files and Access Methods

Buffer Management

Disk Space Management

DB

Recovery

Manager

Transaction

Manager

Lock

Manager

SQL commands from applications

System catalog, data files,
Index files

Log

37

Query Processing

 Need an expressive Query Language over a
simple data model

 Non-procedural query language
– Burden of optimization on the system (not on the

user as in hierarchical and network databases)
– Query representation should not affect query

optimization
 Need for report generation

38

Concurrency Control

 Concurrent execution of user programs is
essential for good DBMS performance.
– Because disk accesses are frequent, and relatively slow, it is

important to keep the CPU humming by working on several
user programs concurrently.

 Interleaving actions of different user programs can lead
to inconsistency: e.g., check is cleared while account
balance is being computed.

 DBMS ensures such problems do not arise: users can
pretend they are using a single-user system.

39

Transaction: An Execution of a DB Program
 Key concept is transaction, which is an atomic

(either all or nothing) sequence of database
actions (reads/writes).

 Each transaction, executed completely, must
leave the DB in a consistent state if DB is
consistent when the transaction begins.

40

The Log

 The following actions are recorded in the log:
– Ti writes an object: the old value and the new value.

 Log record must go to disk before the changed page!
– Ti commits/aborts: a log record indicating this action.

 Log records chained together by Xact id, so it’s easy to
undo a specific Xact (e.g., to resolve a deadlock).

 Log is often archived on “stable” storage.
 All log related activities (and in fact, all CC related

activities such as lock/unlock, dealing with deadlocks
etc.) are handled transparently by the DBMS.

41

Databases make these folks happy ...

 End users and DBMS vendors
 DB application programmers

– E.g. smart webmasters
 Database administrator (DBA)

– Designs logical /physical schemas
– Handles security and authorization
– Data availability, crash recovery
– Database tuning as needs evolve

Must understand how a DBMS works!

42

Why Study the Relational Model?
 Most widely used model.

– Vendors: IBM (Informix), Microsoft, Oracle,
Sybase, etc.

 “Legacy systems” in older models
– e.g., IBM’s IMS
– Network models are not used today

 More recently, NoSQL systems
– Based on different data models
– Key-store, document store, graph
– Tradeoffs in functionality ACID vs. CAP (or

BASE)

43

Competitors
 Earlier Competitor: Object-Oriented model

– ObjectStore, Versant, Ontos
– a synthesis: object-relational model

 Informix Universal Server, UniSQL, O2, Oracle

 More recent competitor: Map/reduce, NoSQL
– Works on unstructured data
– Useful for one-time processing as opposed to data

management
– Overhead is low, however, programming level is

high
– Less expensive, use of commodity machines!!

44

Relational Database: Definitions

 Relational database: a set of relations.
 Relation: made up of 2 parts:

– Instance : a table, with rows and columns. #rows =
cardinality, #fields = degree / arity

– Schema : specifies name of relation, plus name and
type of each column.
 E.g. Students(sid: string, name: string, login: string,

age: integer, gpa: real)

 Can think of a relation as a set of rows or
tuples. (i.e., all rows are distinct)

45

Example Instance of Students Relation

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

 Cardinality = 3, degree = 5 , all rows distinct

 Do all columns in a relation instance have to
 be distinct?

46

Creating Relations in SQL

 Creates the Students
relation. Observe that the
type (domain) of each field
is specified, and enforced by
the DBMS whenever tuples
are added or modified.

 As another example, the
Enrolled table holds
information about courses
that students take.

CREATE TABLE Students
 (sid: CHAR(20),
 name: CHAR(20),
 login: CHAR(10),
 age: INTEGER,
 gpa: REAL)

CREATE TABLE Enrolled
 (sid: CHAR(20),
 cid: CHAR(20),
 grade: CHAR(2))

47

Adding and Deleting Tuples

 Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (‘53688’, ‘Smith’, ‘smith@ee’, 18, 3.2)

 Can delete all tuples satisfying some
condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

 Powerful variants of these commands are available; more later!

48

Integrity Constraints (ICs)

 IC: condition that must be true for any instance
of the database; e.g., domain constraints.
– ICs are specified when schema is defined.
– ICs are checked when relations are modified.

 A legal instance of a relation is one that satisfies
all specified ICs.
– DBMS should not allow illegal instances.

 If the DBMS checks ICs, stored data is more
faithful to real-world meaning.
– Avoids data entry errors, too!

49

Relational Query Languages

 A major strength of the relational model:
supports simple, powerful querying of data.

 Queries can be written intuitively, and the
DBMS is responsible for efficient evaluation.
– The key: precise semantics for relational queries.
– Allows the optimizer to extensively re-order

operations, and still ensure that the answer does
not change.

50

The SQL Query Language

 The most widely used relational query
language. Current standard is SQL-2011.

 To find all 18 year old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

•To find just names and logins, replace the first line:

SELECT S.name, S.login

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2

51

Relational Model: Summary

 A tabular representation of data.
 Simple and intuitive, currently the most

widely used.
 Integrity constraints can be specified by the

DBA, based on application semantics. DBMS
checks for violations.
– Two important ICs: primary and foreign keys
– In addition, we always have domain constraints.

 Powerful and natural query languages exist.

52

Relational Model: Summary (contd.)

 ACID properties are important
– Atomicity, consistency, isolation, and durability

 Concurrency control and Recovery together
guarantee ACID properties

53

Other data models
 The older hierarchical and network models

are not used much (although they are in use)

 However, several non-relational data models
have been proposed and currently used in
specific contexts

 They are called NoSQL DBMSs
– Key-value store
– Document
– graph

54

Thank You !

☞54© Sharma Chakravarthy ©

	Database System II�Preliminaries
	A Few Tips and Suggestions
	A Few Tips and Suggestions (2)
	Preparing for your Career
	This is what I want to accomplish
	Applications
	Applications (contd.)
	Applications (contd.)
	Applications (Contd.)
	In Data intensive Applications
	What Is a DBMS?
	DBMS overall Architecture
	Computer Systems: Then
	Database Systems: Today
	Other Ways Databases Make Life Better?
	Other databases you may use
	 Is the WWW a DBMS?
	 Is a File System a DBMS?
	Why Use a DBMS?
	Why Study Databases??
	Current Commercial Outlook
	What’s the intellectual content?
	Evolution of DBMSs
	Moving On …
	Where are we headed?
	Impedance mismatch
	Performance Issues
	Solutions
	Data Models
	Levels of Abstraction
	Example: University Database
	Data Independence
	DBMS Components
	DBMS Architecture
	Query Processing
	Concurrency Control
	Transaction: An Execution of a DB Program
	The Log
	Databases make these folks happy ...
	Why Study the Relational Model?
	Competitors
	Relational Database: Definitions
	Example Instance of Students Relation
	Creating Relations in SQL
	Adding and Deleting Tuples
	Integrity Constraints (ICs)
	Relational Query Languages
	The SQL Query Language
	Relational Model: Summary
	Relational Model: Summary (contd.)
	Other data models
	Slide Number 54

