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Abstract

Mining for association rules between items in a large database of sales transactions has
been described as an important database mining problem� In this paper we present an e�cient
algorithm for mining association rules that is fundamentally di�erent from known algorithms�
Compared to the previous algorithms� our algorithm reduces both CPU and I�O overheads� In
our experimental study it was found that for large databases� the CPU overhead was reduced by
as much as a factor of seven and I�O was reduced by almost an order of magnitude� Hence this
algorithm is especially suitable for very large size databases� The algorithm is also ideally suited
for parallelization� We have performed extensive experiments and compared the performance of
the algorithm with one of the best existing algorithms�

� Introduction

Increasingly� business organizations are depending on sophisticated decision�making information

to maintain their competitiveness in today�s demanding and fast changing marketplace� Inferring

valuable high�level information based on large volumes of routine business data is becoming critical

for making sound business decisions� For example� customer buying patterns and preferences� sales

trends� etc� can be learned from analyzing point�of�sales data at supermarkets� This information

may be used for retaining market leadership by tuning to the needs of customers� Database mining

is motivated by such decision support problems and is described as an important area of research

���� ��	�

One of the most di
cult problems in database mining is the large volume of data that needs to

be handled� In a medium sized business� it is not uncommon to collect hundreds of megabytes to

a few gigabytes of data� Database mining applications often perform long�running� complex data

analysis over the entire database� Given the large database sizes� one of the main challenges in

database mining is developing fast and e
cient algorithms that can handle large volumes of data�

Discovering association rules between items over basket data was introduced in ��	� Basket data

typically consists of items bought by a customer along with the date of transaction� quantity� price�

etc� Such data may be collected� for example� at supermarket checkout counters� Association rules

identify the set of items that are most often purchased with another set of items� For example�



an association rule may state that ��� of customers who bought items A and B also bought C

and D�� This type of information may be used to decide catalog design� store layout� product

placement� target marketing� etc�

Many algorithms have been discussed in the literature for discovering association rules ��� �� �	�

One of the key features of all the previous algorithms is that they require multiple passes over

the database� For disk resident databases� this requires reading the database completely for each

pass resulting in a large number of disk reads� In these algorithms� the e�ort spent in performing

just the I�O may be considerable for large databases� For example� a � GB database will require

roughly ������ block reads for a single pass �for a block size of �KB�� If the algorithm takes� say�

�� passes� this results in �������� block reads� Assuming an average readtime of �� ms per page�

the time spent in just performing the I�O is �������� � �� ms� or roughly� � hours�

Apart from poor response times� this approach places a huge burden on the I�O subsystem�

Usually� the data is collected by online transaction processing �OLTP� systems running hundreds

or thousands of transactions per second� Running these algorithms under such workloads will

adversely a�ect the transaction response times and may even disrupt the daily operation� If the

data is retrieved from a central database server over a network such as a LAN� it will create network

congestion problems and poor resource utilization�

In this paper� we describe an algorithm called Partition� that is fundamentally di�erent from all

the previous algorithms in that it reads the database at most two times to generate all signi�cant

association rules� Contrast this with the previous algorithms� where the database is not only

scanned multiple times but the number of scans cannot even be determined in advance� Hence our

algorithm can potentially achieve orders of magnitude savings in I�O� Surprisingly� the savings in

I�O is not achieved at the cost of increased CPU overhead� The Partition algorithm has much lower

CPU overhead compared to the previous algorithms� We have performed extensive experiments

and compared our algorithm with one of the best previous algorithms� Our experimental study

shows that for computationally intensive cases� our algorithm performs better than the previous

algorithm in terms of both CPU and I�O overhead�

Some additional advantages of the Partition algorithm are as follows�

�� Our algorithm can generate approximate results in half the time with no false negatives� This

may be useful when such results are su
cient�

�� The algorithm is inherently parallel in nature and can be parallelized with minimal commu�

nication and synchronization between the processing nodes�

Other related� but not directly applicable work in database mining are reported in ��� ��� �� ��

�� ��� ��	�

The paper is organized as follows� in the next section� we give a formal description of the

problem� In Section �� we describe the problem and give an overview of the previous algorithms� In

section �� we describe our algorithm� Performance results are described in section �� An approach

to parallelizing our algorithm is described in Section � Section � contains conclusion and future

work�
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� Problem Description

This section is largely based on the description of the problem in ��	 and ��	� Formally� the problem

can be stated as follows� Let I � fi�� i�� � � � � img be a set of m distinct literals called items�� D is

a set of variable length transactions over I� Each transaction contains a set of items ii� ij� � � � � ik �

I� A transaction also has an associated unique identi�er called TID� An association rule is an

implication of the form X �� Y � where X� Y � I� and X � Y � �� X is called the antecedent and

Y is called the consequent of the rule�

In general� a set of items �such as the antecedent or the consequent of a rule� is called an

itemset� The number of items in an itemset is called the length of an itemset� Itemsets of some

length k are referred to as k�itemsets� For an itemset X � Y � if Y is an m�itemset then Y is called

an m�extension of X �

Each itemset has an associated measure of statistical signi�cance called support� For an itemset

X � I� support�X� � s� if the fraction of transactions in D containing X equals s� A rule has a

measure of its strength called the con�dence� The con�dence of a rule X �� Y is computed as the

ratio support�X � Y � � support�X��

The problem of mining association rules is to generate all rules that have support and con�

�dence greater than some user speci�ed minimum support and minimum con�dence thresholds�

respectively� This problem can be decomposed into the following subproblems�

�� All itemsets that have support above the user speci�ed minimum support are generated�

These itemset are called the large itemsets� All others are said to be small�

�� For each large itemset� all the rules that have minimum con�dence are generated as follows�

for a large itemset X and any Y � X � if support�X��support�X�Y � 	 minimum con�dence�

then the rule X � Y �� Y is a valid rule�

For example� let T� � fA�B�Cg� T� � fA�B�Dg� T� � fA�D�Eg and T� � fA�B�Dg be

the only transactions in the database� Let the minimum support and minimum con�dence be ��

and ��� respectively� Then the large itemsets are the following� fAg� fBg� fDg� fABg� fADg and

fABDg� The valid rules are B �� A and D �� A�

The second subproblem� i�e�� generating rules given all large itemsets and their supports� is

relatively straightforward� However� discovering all large itemsets and their supports is a nontrivial

problem if the cardinality of the set of items� j I j� and the database� D� are large� For example�

if j I j � m� the number of possible distinct itemsets is �m� The problem is to identify which of

these large number of itemsets has the minimum support for the given set of transactions� For

very small values of m� it is possible to setup �m counters� one for each distinct itemset� and count

the support for every itemset by scanning the database once� However� for many applications m

can be more than ������ Clearly� this approach is impractical� It should be noted that only a very

small fraction of this exponentially large number of itemsets will have minimum support� Hence� it

is not necessary to test the support for every itemset� Even if practically feasible� testing support

for every possible itemset results in much wasted e�ort� To reduce the combinatorial search space�

all algorithms exploit the following property� any subset of a large itemset must also be large�

For example� if a transaction contains itemset ABCD� then it also contains A� AB� BC� ABC� etc�

�In this paper we use the terminology introduced by ���
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Conversely� all extensions of a small itemset are also small� Therefore� if at some stage it is found

that itemset ADE is small� then none of the itemsets which are extensions of ADE� i�e�� ADEF�

ADEFG� etc�� need be tested for minimum support�

All existing algorithms for mining association rules are variants of the following general ap�

proach� initially support for all itemsets of length � ���itemsets� are tested by scanning the entire

database� The itemsets that are found to be small are discarded� A set of ��itemsets called candi�

date itemsets are generated by extending the large ��itemsets generated in the previous pass by one

���extensions� and their support is tested by scanning the entire database� Many of these itemsets

may turn out to be small� and hence discarded� The remaining itemsets are extended by � and

tested for support� This process is repeated until no more large itemsets are found� In general�

some kth iteration contains the following steps�

�� The set of candidate k�itemsets is generated by ��extensions of the large �k � ���itemsets

generated in the previous iteration�

�� Supports for the candidate k�itemsets are generated by a pass over the database�

�� The itemsets that do not have the minimum support are discarded and the remaining itemsets

are designated large k�itemsets�

Therefore� only extensions of those itemsets that are found to be large are considered in sub�

sequent passes� This process is stopped when in some iteration n� no large itemsets are generated�

The algorithm� in this case� makes n database scans�

��� Previous Work

The problem of generating association rules was �rst introduced in ��	 and an algorithm called AIS

was proposed for mining all association rules� In ��	� an algorithm called SETM was proposed to

solve this problem using relational operations in a relational database environment� In ��	� two new

algorithms called Apriori and AprioriTid were proposed� These algorithms achieved signi�cant

improvements over the previous algorithms and were speci�cally applicable to large databases� In

��	� the rule generation process was extended to include multiple items in the consequent and an

e
cient algorithm for generating the rules was also presented�

The algorithms vary mainly in �a� how the candidate itemsets are generated� and �b� how the

supports for the candidate itemsets are counted� In ��	� the candidate itemsets are generated on

the �y during the pass over the database� For every transaction� candidate itemsets are generated

by extending the large itemsets from previous pass with the items in the transaction such that the

new itemsets are contained in that transaction� In ��	 candidate itemsets are generated using only

the large itemsets from the previous pass� It is performed by joining the large itemset with itself�

The resulting set is further pruned to exclude any itemset whose subset is not contained in the

previous large itemsets� This technique produces a much smaller candidate set than the former

technique�

To count the supports for the candidate itemsets� for each transaction the set of all candidate

itemsets that are contained in that transaction are identi�ed� The counts for these itemsets are

then incremented by one� In ��	 the authors do not describe the data structures used for this

subset operation� Apriori and AprioriTid di�er based on the data structures used for generating

the supports for candidate itemsets�

�



In Apriori� bitmaps are generated for transactions as well as the candidate itemsets� To de�

termine whether a candidate itemset is contained in a transaction� the corresponding bitmaps are

compared� A hash tree structure is used to restrict the set of candidate itemsets compared so that

subset testing is optimized� In AprioriTid� after every pass� an encoding of all the large itemsets

contained in a transaction is used in place of the transaction� In the next pass� candidate itemsets

are tested for inclusion in a transaction by checking whether the large itemsets used to generate the

candidate itemset are contained in the encoding of the transaction� In Apriori� the subset testing

is performed for every transaction in each pass� However� in AprioriTid� if a transaction does not

contain any large itemsets in the current pass� that transaction is not considered in subsequent

passes� Consequently� in later passes� the size of the encoding of the transactions can be much

smaller than the actual database� However� in initial passes the size of the encoding can be larger

than the database� A hybrid algorithm is proposed which uses Apriori for initial passes and switches

to AprioriTid for later passes�

� Partition Algorithm

The idea behind Partition algorithm is as follows� Recall that the reason the database needs to

be scanned multiple number of times is because the number of possible itemsets to be tested for

support is exponentially large if it must be done in a single scan of the database� However� suppose

we are given a small set of potentially large itemsets� say a few thousand itemsets� Then the support

for them can be tested in one scan of the database and the actual large itemsets can be discovered�

Clearly� this approach will work only if the given set contains all actual large itemsets�

Partition algorithm accomplishes this in two scans of the database� In one scan it generates

a set of all potentially large itemsets by scanning the database once� This set is a superset of all

large itemsets� i�e�� it may contain false positives� But no false negatives are reported� During the

second scan� counters for each of these itemsets are set up and their actual support is measured in

one scan of the database�

The algorithm executes in two phases� In the �rst phase� the Partition algorithm logically

divides the database into a number of non�overlapping partitions� The partitions are considered

one at a time and all large itemsets for that partition are generated� At the end of phase I� these

large itemsets are merged to generate a set of all potential large itemsets� In phase II� the actual

support for these itemsets are generated and the large itemsets are identi�ed� The partition sizes are

chosen such that each partition can be accommodated in the main memory so that the partitions

are read only once in each phase�

We assume the transactions are in the form hTID� ij� ik� � � � � ini� The items in a transaction are

assumed to be kept sorted in the lexicographic order� Similar assumption is also made in ��	� It is

straight�forward to adapt the algorithm to the case where the transactions are kept normalized in

hTID� itemi form� We also assume that the TIDs are monotonically increasing� This is justi�ed

considering the nature of the application� We further assume the database resides on secondary

storage and the approximate size of the database in blocks or pages is known in advance� The items

in an itemset are also kept sorted in lexicographic order�

De�nition A partition p 
 D of the database refers to any subset of the transactions contained in

the database D� Any two di�erent partitions are non�overlapping� i�e�� pi� pj � �� i �� j� We de�ne





Notation Meaning

cpk A local candidate k�itemset in partition p

lpk A local large k�itemset in partition p

sp�l� Support for an itemset l within partition p

Cp
k Set of local candidate k�itemsets in partition p

L
p

k Set of local large k�itemsets in partition p

CG
k Set of global candidate k�itemsets

CG Set of all global candidate itemsets

LG
k Set of global large k�itemsets

sG�l� Support for a global itemset l

Table �� Notation used in this paper

local support for an itemset as the fraction of transactions containing that itemset in a partition�

We de�ne a local large itemset as an itemset whose local support in a partition is at least the user

de�ned minimum support�� In other words� a local large itemset is large only in the context of a

partition �i�e�� consider the entire database as consisting of only that partition�� A local candidate

itemset is an itemset that is being tested for minimum support within a given partition� A local

large itemset may or may not be large in the context of the entire database�

We de�ne the global support� global large itemset� and global candidate itemset as above except

they are in the context of the entire database D� Clearly� our goal is to �nd all global large itemsets�

We use the notation shown in Table � in this paper� Individual itemsets are represented by

small letters and sets of itemsets are represented by capital letters� When there is no ambiguity we

omit the partition number when referring to a local itemset� We use the notation c��	�c��	� � �c�k	 to

represent a k�itemset c consisting of items c��	� c��	� � � �� c�k	�

Algorithm The Partition algorithm is shown in Figure �� Initially the database D is logically

partitioned into n partitions� Phase I of the algorithm takes n iterations� During iteration i only

partition pi is considered� The function gen large itemsets takes a partition pi as input and gen�

erates local large itemsets of all lengths� Li
�
� Li

�
� � � � � Li

l as the output� In the merge phase the local

large itemsets of same lengths from all n partitions are combined to generate the global candidate

itemsets� The set of global candidate itemsets of length j is computed as CG
j � �i�������nL

i
j � In

phase II� the algorithm sets up counters for each global candidate itemset and counts their support

in all n partitions� It outputs itemsets that have the minimum global support along with their

support�

The algorithm reads the entire database once during phase I and once during phase II�

Correctness The key to correctness of the above algorithm is that any potential large itemset

appears as a large itemset in at least one of the partitions� Since the global candidate set is the

union of all local large itemsets and the algorithm counts the support for every global candidate

�The minimum support is speci�ed as a ratio� e�g�� � 	� 
�

��� etc
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�� P � partition database�D�
�� n � Number of partitions

�� Phase I
�� for i � � to n do begin

�� read in partition�pi � P �
� Li � gen large itemsets�pi�
�� end

�� Merge Phase

�� for �i � �� Lj
i �� �� j � �� �� � � � � n� i  � do begin

�� CG
i � �j���������nL

j
i

�� end
�� Phase II

��� for i � � to n do begin

��� read in partition�pi � P �
��� for all candidates c � CG gen count�c� pi�
��� end
��� LG � fc � CGjc�count 	 minSupg
�� Answer � LG

Figure �� Algorithm Partition

itemset� all large itemsets are found� We illustrate the proof as follows�

Let L be the set of actual large itemsets in the database� Since the global large itemsets are

generated by counting the support for every itemset in CG� it is su
cient to show that CG  L�

Assume there exists an itemset l that is actually large but does not appear in CG� i�e�� l � L

but l �� CG� But CG � �i�������nL
i
j � Hence l �� Li for i � �� �� � � � � n�

Let txi be the number of transactions in partition pi� Let txi�l� be the number of transaction

containing the itemset l in partition pi�

Since l �� Li for i � �� �� � � � � n� it must be true that

tx��l��tx� � minSup � tx��l��tx� � minSup� � � �� txn�l��txn � minSup� ���

or

tx��l� � minSup� tx� � tx��l� � minSup� tx� � � � �� txn�l� � minSup� txn� ���

This is equivalent to

tx��l�  tx��l�  � � � txn�l� � minSup� �tx�  tx�  � � � txn�� ���

But tx�  tx�  � � � txn is the total number of transactions in the database and tx��l�  tx��l�  

� � � txn�l� is the total number of transactions containing l in the database� Therefore support�l�

� minSup and so l �� L� But this is a contradiction�

�



procedure gen large itemsets�p� database partition�
�� L

p
�
� flarge ��itemsets along with their tidlistsg

�� for � k � �� Lp
k �� �� k  � do begin

�� forall itemsets l� � Lp

k��
do begin

�� forall itemsets l� � Lp

k��
do begin

� if l���	 � l���	� l���	 � l���	 � � � �� l��k � �	 � l��k � �	 then
�� c � l���	 � l���	 � � �l��k � �	 � l��k � �	
�� if c cannot be pruned then
�� c�tidlist � l��tidlist�l��tidlist
�� if jc�tidlist j � jpj 	 minSup then
��� Lp

k � Lp
k � fcg

��� end

��� end
��� end

��� return �kL
p
k

Figure �� Procedure gen large itemsets

��� Generation of Local Large Itemsets

The procedure gen large itemsets takes a partition and generates all large itemsets �of all

lengths� for that partition� The procedure is shown in Figure �� Lines ��� show the candidate

generation process� The prune step is performed as follows�

prune�c� k�itemset�

forall �k � ���subsets s of c do

if s �� Lk�� then

return �c can be pruned�

The prune step eliminates extensions of �k � ���itemsets which are not found to be large� from

being considered for counting support� For example� if Lp
�
is found to be ff� � �g� f� � �g� f� � �g�

f� � g� f� � �gg� the candidate generation initially generates the itemsets f� � � �g and f� � � g�

However� itemset f� � � g is pruned since f� � g is not in Lp
�
� This technique is same as the one

described in ��	 except in our case� as each candidate itemset is generated� its count is determined

immediately�

The counts for the candidate itemsets are generated as follows� Associated with every itemset�

we de�ne a structure called as tidlist� A tidlist for itemset l contains the TIDs of all transactions

that contain the itemset l within a given partition� The TIDs in a tidlist are kept in sorted order�

We represent the tidlist for an itemset l by l�tidlist� Clearly� the cardinality of the tidlist of an

itemset divided by the total number of transactions in a partition gives the support for that itemset

in that partition�

Initially� the tidlists for ��itemsets are generated directly by reading the partition� The tidlist for

a candidate k�itemset is generated by joining the tidlists of the two �k� ���itemsets that were used

to generate the candidate k�itemset� For example� in the above case the tidlist for the candidate

itemset f� � � �g is generated by joining the tidlists of itemsets f� � �g and f� � �g�

�



procedure gen �nal counts�CG� global candidate set� p� database partition�
�� forall ��itemsets do
�� generate the tidlist
�� for� k � �� CG

k �� �� k  � do begin

�� forall k�itemset c � CG
k do begin

� templist � c��	�tidlist �c��	�tidlist � � � �� c�k	�tidlist
�� c�count � c�count  j templist j
�� end

�� end

Figure �� Procedure gen �nal counts

Correctness It has been shown in ��	 that the candidate generation process correctly produces

all potential large candidate itemsets� Therefore� it is su
cient to show that steps ��� correctly

generate the support for an itemset in a partition� This can be shown by induction� By de�nition

the tidlists of all ��itemsets contain only the transactions that contain those itemsets� Assume that

it is correct for some iteration k � �� Steps � to � generate a candidate itemset by extending a

large �k � ���itemset� l�� with an item from another large �k � ���itemset� l�� Hence the candidate

k�itemset contains only the items in l� and l�� The transactions that contain this k�itemset are

ones that contain l� and ones that contain l�� i� e�� intersection of tidlists of l� and l��

��� Generation of Final Large Itemsets

The global candidate set is generated as the union of all local large itemsets from all partitions� In

phase II of the algorithm� global large itemsets are determined from the global candidate set� This

phase also takes n �number of partitions� iterations� Initially� a counter is set up for each candidate

itemsets and initialized to zero� Next� for each partition� tidlists for all ��itemsets are generated�

The support for a candidate itemset in that partition is generated by intersecting the tidlists of

all ��subsets of that itemset� The cumulative count gives the global support for the itemsets� The

procedure gen final counts is given in Figure �

Correctness As shown earlier� steps �� generate the support for an itemset in the given par�

tition� Since the partitions are non�overlapping� a cumulative count over all partitions gives the

support for an itemset in the entire database�

��� Discovering Rules

Once the large itemsets and their supports are determined� the rules can be discovered in a straight

forward manner as follows� if l is a large itemset� then for every subset a of l� the ratio support�l�

� support �a� is computed� If the ratio is at least equal to the user speci�ed minimum con�dence�

them the rule a �� �l� a� is output� A more e
cient algorithm is described in ��	�

As mentioned earlier� generating rules given the large itemsets and their supports is much

simpler compared to generating the large itemsets� Hence we have not attempted to improve this

step further�

�



Number of Size of largest Average size of Size of Global
Partitions Local Large Set Local Large set Candidate Set

� �� ���� ��

� ��� ��� ���

� ��� ���� ���

�� ��� ����� ���

�� ��� ����� ���

�� ��� ����� ���

Table �� Variation of Global and Local sets against the number of partitions�

��� Size of the Global Candidate Set

Our algorithm is based on the premise that the size of the global candidate set is considerably

smaller than the set of all possible itemsets� But in practice� how large is this set!

It is not possible to answer this question with certainty as the number of local and global

large itemsets depends on many factors such as the data characteristics and the speci�ed minimum

support� We try to give only an intuitive answer here� The global candidate set is equal to the

union of all locally large itemsets� Hence its size is bounded by n times the size of the largest such

set� where n is the number of partitions�

The local large itemsets are generated for the same minimum support as speci�ed by the user�

Hence this is equivalent to generating large itemsets with that minimum support for a database

which is same as the partition� So� for su
ciently large partition sizes� the number of local large

itemsets is likely to be comparable to the number of large itemsets generated for the entire database�

Additionally� if the data characteristics are uniform across partitions� then a large number of

the itemsets generated for individual partitions may be common� Hence the global candidate set

may be smaller than the above limit�

In Table � we show the variation in the size of the local large itemsets and the global can�

didate sets for varying the number of partitions from � to ��� The database contained �������

transactions�� The minimum support was set at ��� �� The number of actual large itemsets

for the entire database was found to be ��� It can be seen from the table that as the number of

partitions increases� both the variation in the sizes of local large sets and the size of the global

candidate set increases� However� a large fraction of the itemsets found large in each partition are

common to all partitions� For example� consider the case where number of partitions � ��� The

number of large itemsets for all partitions combined is ����� � �� � ����� However� the union of

these itemsets �global candidate set� is only ����

It should be noted that when the partition sizes are su
ciently large� the local large itemsets

and the global candidate itemsets are likely to be very close to the actual large itemsets as it tends

to eliminate the e�ects of local variations in data� For example� when the number of partitions is

�� in Table �� each partition contains ������� � �� � ����� transactions� which is too small and

hence the large variations�

�The database used was T�
�I��

K described in Section ��

��



Partitioning by reading Partitioning by reading
Sequential blocks Random blocks

Number of Total number of Size of global Total number of Size of global

partitions large itemsets candidate set large itemsets candidate set

 ���� ���� �� ��

�� ���� ���� �� ��

� ���� ���� ��� �

�� ����� ���� ��� ��

� ���� ���� �� ���

�� ����� ��� ��� ���

Table �� E�ect of data skew� generating partitions sequentially vs� randomly

����� E�ect of Data Skew

The sizes of the local and global candidate sets may be susceptible to data skew� A gradual change

in data characteristics� such the average length of transactions or localized changes in data� can

lead to the generation of a large number of local large sets which may not have global support�

This is also true for any localized changes in data� For example� due to sever weather conditions�

there may be an abnormally high sales of certain items� However� these items may not be bought

during the rest of the year� If our partition comprises of data from only this period� then certain

itemsets will have high support for that partition� but will be rejected later during phase II due

to lack of global support� A large number of such spurious local large itemsets can lead to much

wasted e�ort� Another problem is that fewer itemsets will be found common between partitions

leading to a larger global candidate set�

The e�ect of data skew can be eliminated to a large extent by randomizing the data within

partitions� This is done by choosing the data to be read in a partition randomly from the database�

However� to exploit sequential I�O� the minimum unit of data read is equal to the extent size�

Given the size of the database in number of extents and the number of partitions� the algorithm

initially assigns extents randomly to the partitions� No extent appears in more than one partition�

The e�ect of sequentially reading the data vs� randomly picking the blocks for a highly skewed

dataset is shown in Table �� To simulate data skew� the average lengths of transactions are varied

from  to ��� The size of the database is about �� Mbytes containing about ������� transactions�

The minimum support was �xed at ��� �� In the �rst set of experiments� we generated the

partitions by reading the blocks sequentially� In the second set� the partitions are generated by

choosing the blocks randomly from the database� The number of partitions was varied from  to

��� The table shows the sum of local large itemset for all partitions and the size of the global

candidate set� It is clear that randomly reading the pages from the database is extremely e�ective

in eliminating data skew�

��� Data Structures and Implementation

In this section we describe the data structures and the implementation of our algorithm�

��



����� Generating Local Large Itemsets

To e
ciently generate the candidate itemsets by joining the large itemsets� we store the itemsets

in sorted order� We also store references to the itemsets in a hashtable for performing pruning

e
ciently�

For computation of the intersection� the tidlists are maintained as arrays and sort�merge join

algorithm is used� Recall that the TIDs appear in ascending order in the database� Hence the

tidlists are in the sort order initially and all resulting tidlists are automatically generated in the

sort order� The intersection operation in this case involves only the cost of traversing the two lists

once�

An alternate implementation uses �xed length bit �elds in place of tidlists� The bits are set

by hashing on the TID of the transaction� Intersection is accomplished by the logical AND of the

corresponding bit �elds� To determine the support� a fast algorithm to count the number of bits

set in the bit �eld is implemented using a lookup table�

����	 Generating the Global Candidate Set

To generate the global candidate set� the local large itemsets are merged with the global candidate

set� Initially the global candidate set is empty� All local large itemsets of the �rst partition are

added to the global candidate set� For subsequent partitions the local large itemsets are added only

if the itemset is not already included� The candidate itemsets are kept in a hash table to perform

this operation e
ciently�

It is possible to prune the global candidate set by eliminating �a� itemsets for which the global

support is known and �b� itemsets which cannot possibly have the required global support� The

�rst case arises when an itemset is reported as large in every partition� Since the counts for that

itemset in every partition is known� its global support is already known� The second case arises

when an itemset is reported as large only in very few partitions and further their supports in those

partitions are only slightly above the minimum support� Many of these itemsets cannot possibly

have the global support� We describe how we detect such itemsets below�

Associated with each global candidate itemset� are two counts� called its cumulative support�

sG� and partition count� pG�

These counts are generated for an itemset lij while it is being merged as follows�

�� If the itemset is already in CG
j � then its cumulative support� s

G is set to sG  si� where si is

the local support for the itemset� The partition count� pG is set to pG  ��

�� If the itemset is not present� then we perform CG
j � CG

j � flijg� The cumulative support is

set to si and the partition count� pG is set to ��

Once the merge step is complete and before beginning phase II� the itemsets are pruned accord�

ing to the following rules�

�� If the partition count for an itemset is equal to the number of partitions� the itemset must

have been reported as large in every partition� In this case� the cumulative count for the

itemset gives its actual global support� The itemset is removed from the global candidate set

and included in the global large set and its global support is set to its cumulative support�
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�� If the cumulative support plus the partition count for an itemset in CG is less than the sum

of minimum supports for the partitions in which the itemset was large and the number of

partitions� then the itemset cannot possibly have global support� This itemset is discarded�

Every extension of this itemset is also discarded�

����� Generating Final Counts

The data structures used for the �nal counting phase are similar to those used during phase I�

Initially� a counter is set up for each itemset in the global candidate set� The tidlists for all

��itemsets are generated directly by reading in a partition� The local count for an itemset is

generated by joining the tidlists of all ��itemsets in that itemset� For example� to generate the

count for f� � � �g the tidlists of itemsets f�g� f�g� f�g and f�g are joined� The cumulative count

from all partitions gives the support for the itemset in the database�

To optimize the number of joins performed during this step� the counts for the longest itemsets

are generated �rst� The intermediate join results are used to set the counts for the corresponding

itemsets� For example� while generating the count for f� � � �g� the counts for itemsets f� �g and

f� � �g are also set� The itemsets are kept in a hashtable to facilitate e
cient lookup�

After processing all partitions� the �nal counts are compared with the minimum support and

the large itemsets are identi�ed� Unlike phase I� the partitions for this phase can be obtained by

reading the database blocks sequentially� Additionally� the size of the partitions may be di�erent

from those used in phase I�

��� Bu�er Management

A key objective of the Partition algorithm is to reduce disk I�O as much as possible� To achieve

this objective� the partitions are chosen such that all data structures can be accommodated in the

main memory� However� the number of large itemsets that will be generated cannot be estimated

accurately� In some situations it may be necessary to write the temporary data to disk�

The bu�er management technique in phase I is similar to the one described in ��	� However� in

Partition algorithm there is no separate step for counting the supports� As each local candidate

k�itemset is generated� its count is also immediately generated� Hence in some iteration k� we

need storage for the large �k � ���itemsets that were generated in the previous iteration and their

associated tidlists� Among these� only those itemsets for which the �rst k � � items are the same

are needed in main memory�

For the merge phase� we need space for at least those global candidate itemsets and local large

itemsets that are of same length and have items in common� For phase II� we need space for the

tidlists of only ��itemsets and the the global candidate set� We try to choose the partition sizes

such that they can be accommodated in the available bu�er space�

��	 Choosing the Number of Partitions

We have described how partitioning can be e�ectively used for reducing the disk I�O� However� how

do we choose the number of partitions! In this section we describe how to estimate the partition

size from system parameters and compute the number of partitions for a given database size�

For a small database� we may process the entire database as a single partition� As the database

size grows� the size of the tidlists also grows and we may no longer be able to �t the tidlists that
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are being joined in main memory� This leads to thrashing and degrading the performance� We

must choose the partition size such that at least those itemsets �and their tidlists� that are used

for generating the new large itemsets can �t in main memory�

As noted in Section ���� in iteration k we need to keep in the main memory at least all large

�k����itemsets in which the �rst k�� items are common� We assume the number of such itemsets

is at most a few thousand� The partition size is then estimated based on the available main memory

size and the average length of the transactions�

Assume for example� the number of items is equal to ����� and the average length of the

transactions is ��� Let the size of available main memory be �� Mbytes and we need � bytes to

store each TID� Initially� consider only ��itemsets� The maximum size of a partition such that we

can accommodate all ��itemsets can be estimated as follows� since the average length of transactions

is ��� each TID can appear in the tidlists of �� ��itemsets on an average� Therefore� the maximum

size of the partition is �� MB � � � �� � ������ transactions� This partition size corresponds

to an average length of tidlists equal to �� MB � � � ����� � ���� TIDs for ����� itemsets �of

length ��� Since the tidlists for subsequent iterations are generated by joining the tidlists of the

earlier iteration� the average length of tidlists can be at most ���� for all subsequent iterations�

Therefore� at least ����� itemsets can be accommodated in memory at any time� This number is a

loose lower bound as the tidlists may be much smaller in later iterations in which case more than

����� itemsets can reside in main memory�

� Performance Comparison

In this section we describe the experiments and the performance results of our algorithm� We

also compare the performance with the Apriori algorithm� The experiments were run on a Silicon

Graphics Indy R����SC workstation with a clock rate of �� MHz and �� Mbytes of main memory�

The data resided on a � GB SCSI disk� All the experiments were run on synthetic data� For the

performance comparison experiments� we used the same synthetic data sets as in ��	�

Both Apriori and AprioriTid algorithms were implemented as described in ��	� Our initial

experiments showed that the performance of Apriori is superior to that of AprioriTid con�rming

the results reported in ��	� Hence� in the following experiments we have limited the comparison to

the Apriori algorithm� The synthetic data generation procedure is described in detail in ��	� In the

following section� we describe the Apriori algorithm and the synthetic data generation procedure

for the sake of completeness�

The Apriori algorithm is shown in Figure �� The procedure apriori�gen is similar to the

candidate generation step described earlier� The subset operation is performed using bit �elds and

hashtree structure as described in ��	�

��� Synthetic Data

The synthetic data is said to simulate a customer buying pattern in a retail environment� The length

of a transaction is determined by poisson distribution with mean � equal to jT j� The transaction

is repeatedly assigned items from a set of potentially maximal large itemsets� T until the length of

the transaction does not exceed the generated length�

The length of an itemset in T is determined according to poisson distribution with mean �

equal to jI j� Items in the �rst itemset are chosen randomly from the set of items� The items in
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�� L� � flarge ��itemsetsg�
�� for � k � �� Lk�� �� �� k  � do begin

�� Ck � apriori�gen�Lk����
�� forall transactions t � D do begin

� Ct � subset�Ck� t��
�� forall candidates c � Ct do

�� c�count  �
�� end

�� Lk � fc � Ckjc�count 	 MinSupg
��� end
��� Answer � �kLk�

Figure �� Algorithm Apriori

jDj Number of transactions

jT j Average size of transactions

jI j Average size of maximal potentially large itemsets

jLj Number of maximal potentially large itemsets

N Number of items

Table �� Parameters

subsequent itemset are chosen such that a fraction of the items are common to the previous itemset

determined by an exponentially distributed random variable with mean equal to a correlation level�

The remaining items are randomly picked� The correlation level was set to ��� Each itemset in

T has an associated weight that determines the probability that this itemset will be picked� The

weight is picked from according to an exponential distribution with mean set to �� The weights are

normalized such that the sum of all weights equals �� Not all items from the itemset picked are

assigned to the transaction� Items from the itemset are dropped as long as an uniformly generated

random number between � and � is less than a corruption level� c� The corruption level for itemset

is determined by a normal distribution with mean �� and variance ����

The parameters used in the generation of the synthetic data are shown in Table ��

��� Experiments

Six di�erent data sets were used for performance comparison� Table  shows the names and

parameter settings for each data set� For all data sets N was set to ����� and jLj was set to ������

These datasets are same as those used in ��	 for the experiments�

Figure  shows the execution times for the six synthetic datasets for decreasing values of min�

imum support� Since the datasets contained about ������� transactions with the largest dataset

only about ��� MB� we could run the Partition algorithm setting the number of partitions to ��

However� for comparison� we also ran the experiments setting the number of partitions to ��� These

results are indicated as Partition�� and Partition��� in the �gure� Since we have not implemented
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Name jT j jI j jDj Size in Megabytes

T�I�����K  � ���K ���

T���I�����K �� � ���K ���
T���I�����K �� � ���K

T���I�����K �� � ���K ���
T���I�����K �� � ���K
T���I�����K �� � ���K

Table � Parameter settings

complete bu�er and disk management� we did not include disk I�O times in the execution times to

keep the comparison uniform� We expect the overheads due to disk I�O to be comparable for both

algorithms once the bu�er management algorithms are implemented�

The execution times increase for both Apriori and Partition algorithms as the minimum support

is reduced because the total number of large and candidate itemsets increase� Also� as the average

length of transactions increase� the number of large and candidate itemsets also increase�

As expected Partition�� performed better than partition��� in all cases� The reason is that

the Partition��� tests support for more itemsets which have only local support and discarded in

phase II� Except for cases where the minimum support is high� Partition�� performed better than

Apriori� Even Partition��� performed better than Apriori in most cases for low minimum support

settings� The reason why Apriori performs better for higher minimum support settings is that

Partition has the overhead of setting up the tidlist data structures� However� at these minimum

supports the large and candidate itemsets are very few and in some cases none at all� So� Partition

does not bene�t from setting up the data structures� Partition��� performed worse than Apriori

for the dataset T���I�����K at minimum support of ��� �� The reason was that a large number of

itemsets were found to be locally large which later turned out to be small� However� this behavior

did not repeat for any other case� We attribute it to the characteristics of that particular dataset�

At the lowest minimum support setting� the least improvement was �� � ��� seconds for Apriori

vs� � for Partition for T���I�����K�� The best improvement was about �� � ���� seconds for Apriori

vs� �� for Partition for T���I�����K�� This is an improvement by a factor of more than ��

It should be noted that the improvement in the execution times for Partition shown in Figure

 is mainly due to the reduction in the CPU overhead and not due to the reduction in I�O� The

reason is that the database is only ��� Mbytes which is too small to signi�cantly a�ect the total

execution time which is orders of magnitude larger�

��	�� Explanation of Performance

As both Apriori and Partition use same candidate itemset generation technique� the improvement is

mainly due to better technique for generating the counts� In Apriori algorithm counts are generated

by the subset operation where itemsets from a candidate set are compared with transactions for

inclusion to determine their counts� Apriori utilizes a hashtree data structure to reduce the number

of itemsets that must be tested for inclusion in a transaction� For fast comparison� bit �elds are

used� As an illustration of the amount of work done for subset step consider the following example�

Assume the number of candidate itemsets is ����� and that there are � million transactions in the

database� Further� assume that the hashtree structure eliminates �� � of the candidate itemsets�
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Dataset Algorithm Minimum Support
��� ����� ����

T���I�����K Apriori � �� ��
Partition�� � �� ��

T���I�����K Apriori �� � ��
Partition�� �� �� �

T���I�����K Apriori � �� ���
Partition�� �� �� ��

T���I�����K Apriori �� ��� ���
Partition�� � �� ��

Table �� Execution times in seconds for Apriori and Partition

If the database contains� say� ����� distinct items� then each bit �eld is ��� bytes long� This

requires ���� � ����� � � million � ��� or ��� million basic integer compare operations� The cost

of traversing the hashtree and initializing the bit �eld for every transaction can add substantially

to this �gure�

The partitioned approach in our algorithm allows us to use more e
cient data structures for

computing the counts for the itemsets� To illustrate the e
ciency of counting using tidlists� consider

the above example� For the purpose of illustration� assume that the number of partitions is �� Then�

in our algorithm the operation of counting supports involves performing just ����� intersection

operations� Assume that each transaction contains on an average �� items and that there are �����

distinct items� Then on an average the length of a tidlist is � million � �� � ������ or about

������� So the overall cost is about ����� � ������� or about �� million basic integer compare

operations� There are no additional costs� This is orders of magnitude improvement compared to

Apriori algorithm� However� if the number of partitions is more than �� this value can be much

larger� For the purpose of illustration� assume the number of partitions is ��� Assume that �����

itemsets are tested for support in each partition during phase I� The average length of a tidlist for

this case is one tenth of ������ or ������ So the total number of comparisons is �� � ����� � �����

� �� million in phase I� Let the size of the global candidate set be ����� Assume on an average �

joins are performed for each of these itemsets�� So� � � ���� � ������ � � million comparisons

are performed during phase II� The total is still less than ��� million comparisons� The above

example assumes a very simple scenario� The actual comparisons depend on the parameters used

for building the hashtree� characteristics of the data� etc� However� it explains why the Partition

algorithm performs better than Apriori�

We have compared the actual number of comparisons performed by Partition and Apriori algo�

rithms for some di�erent support levels for T���I���M �all parameters same as T���I�����K� except

the number of transactions is � million�� The number of partitions was set to �� for the Partition

algorithm� The results are shown in Table ��

�Recall that for generating global support� as many joins as the length of the itemset needs to be performed�
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Dataset Algorithm Minimum Support
���� ��� ����� ����

T���I���M Apriori �������� ���������� ����������� ����������
Partition �������� ���������� ���������� �����������

Table �� Number of comparison operations

��	�	 Improvement in Disk I
O

The Partition algorithm was motivated by the need to reduce disk I�O� In this aspect it has a

clear advantage over the Apriori algorithm� The Partition algorithm reads the database at most

twice irrespective of �a� the minimum support and �b� the number of partitions� Apriori reads the

database multiple number of times�� The exact number depends on the minimum support and the

data characteristics and cannot be determined in advance�

We measured the number of read requests for data for both the algorithms for the datasets

described in Table � The page size was set to �Kbytes� The results are shown in Figure �� The

best improvement we found was about �� � for T���I�����K at minimum support of ��� �� This

is an improvement by a factor of �� The least improvement for this minimum support was �� �

representing an improvement of a factor of ��� Even at the median minimum support of ��� ��

Partition showed an improvement over Apriori� except for T�I�����K in which both algorithms

read the database twice� These improvements varied between � " �� � �a factor of ���� At very

high support levels for some of the datasets� Partition made as many page read requests as Apriori�

These represent the degenerate cases� where the support level is set so high that no itemsets are

found to have the required support� In these cases� both algorithms read the database only once�

��� Scale
up Experiments

We have studied the scale�up characteristics of the Partition algorithm by varying the number of

transactions from ������� to �� million� All other parameter settings were same as T���I�����K�

The results are shown in Figure �� The number partitions was varied from � for ���K transactions

to ��� for ��M transactions for the Partition algorithm� We have also shown the execution times

of Apriori� The execution times are normalized with respect to the execution times taken by the

Partition algorithm for ������� transactions dataset in the �rst graph� and with respect to � million

transaction dataset in the second graph� The minimum supports were set at ��� � and ��� ��

As can be seen from the �gure� both algorithms scale linearly�

We also studied the performance of the algorithm for average transaction size scale�up� For

this experiment� we varied the transaction length from  to �� The physical size of the database

was kept roughly constant by keeping the product of the number of transaction and the average

transaction size constant� The number of transactions varied from ������� for the database with

an average transaction length of  to ������ for the database with the average transaction length

of �� The minimum support level was �xed in terms of the number of transactions� We ran

the experiments for minimum support levels of �� and ��� The results are shown in Figure

�Actually when the minimum support is set very high� no large itemsets are generated� In this case� both algorithms
read the database only once�
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�� As we have seen earlier� Apriori performs better compared to Partition when the processing

requirements are low such as when minimum support is set high� This trend is also shown in Figure

� when the minimum support is ��� This is in line with our expectations� When the minimum

support is lowered to ��� the Partition algorithm outperformed Apriori� This also con�rms the

trend exhibited in earlier performance studies� As the problem di
culty increases� the Partition

algorithm performs much better than Apriori�

� Parallelization

Parallel database systems have been shown to be viable means of delivering the performance re�

quired in supporting very large databases �	� Many commercial parallel databases are available to

the users today� These are beginning to replace mainframe computers for very large database and

OLTP tasks� Eventually such databases may need to augment their functionality with database

mining capabilities� The algorithm we have proposed in this paper is ideally suited for paralleliza�

tion�

Shared nothing architectures have been shown to be highly suitable for parallel database systems

��	� It contains a number of processing nodes each with its own primary memory and a set of local

disks� As a realistic implementation of a OLTP system for collecting data� we assume that the

transactions are directed to the node with the least load� Alternatively� it can be assumed that the

data is written on all disks in a round robin fashion� So� we assume the data is distributed over all

the disks in approximately equal size chunks�

Recall that the partitions are processed entirely independently in both phase I and II of the

Partition algorithm indicating that the processing can be essentially done in parallel� The parallel

algorithm executes in four phases� During phase I� all the processing nodes independently generate

the large itemsets for their local data� Two di�erent cases are possible� �a� local memory at each

processing node can accommodate the local data completely� and �b� local data is too large to

load into the local memory all at once� In the �rst case� local data is processed completely as

one partition and all local large items are generated� In the second case� the local data is in turn

partitioned into a number of smaller chunks and the large itemsets for each chunk is determined�

Since the size of local data at each processing node is approximately equal� this phase will take

approximately equal time at all nodes achieving load balance� Additionally� only locally available

data is processed� Hence� there is no communication cost for synchronization or data transfer

among the nodes�

During phase II� the large itemsets at each node is exchanged with all other nodes� After the

end of this phase all processing nodes will have exactly the same set of large itemsets� This set is

the candidate set for the next phase�

In phase III� at each node support for each itemset in the candidate set with respect to the local

data is measured� This step can be performed similar to phase I� Note that once again� during this

phase there is no need for communication or synchronization among nodes�

In the last phase� the local counts at each node is sent to all other nodes� The global support

is the sum of all local supports� To eliminate duplication of e�orts� each node may be assigned a

certain number of itemsets� Each node sends the local count for an itemset to the node to which

that itemset is assigned�
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� Conclusions

We have described an algorithm which is not only fast but also e
cient for discovering association

rules in large databases� An important �and surprising� contribution of our approach is that we

achieve both CPU and I�O improvements over Apriori� one of the best previous algorithms� We

have also presented experimental results for the same synthetic data as used in ��	� The Partition

algorithm outperformed Apriori for large problem sizes by upto a factor of seven at the same time

reduced the number of disk reads by a factor of eight�

An interesting feature of the algorithm is that it scans the database at most twice� whereas in

Apriori this is not known in advance and may be quite large� Hence the reduction in I�O overhead

is potentially huge�

We demonstrated that the algorithm scales linearly with the number of transactions� We also

described how the inherent parallelism in the algorithm can be exploited for implementation on a

parallel machine� These factors demonstrate that the Partition algorithm is especially suited for

very large databases in a high data and resource contention environment such as an OLTP system�

In future� we plan to extend this work by implementing the algorithm for a shared nothing

multiprocessor machine�
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Figure � Execution Times
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Figure �� Number of database read requests
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Figure �� Number of transactions scale�up
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Figure �� Average transaction size scale�up
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