Aﬂw University of Texas
ARLINGTON.
Partition algorithm
for Association Rules
Sharma Chakravarthy
Information Technology Laboratory (IT Lab)

Computer Science and Engineering Department
The University of Texas at Arlington, Arlington, TX

Email: sharma@cse.uta.edu
URL: http://itlab.uta.edu/sharma

Outline

> Introduction

» Problem Description

» Partition Algorithm

» Performance Comparison
» Parallelization

» Conclusions

© Sharma Chw § 3 H

Paper

An Efficient Algorithm for Mining
Association Rules in Large databases

Ashok Savasere, Ed Omiecinski, and Sham Navathe
Vidb95

You can see how many algorithms have been proposed
between 1993 (first paper on association rules) and 1995

© Sharma Chw § 2 H

Itemset Lattice + Aprori Principle

(abde)

~ ~ P Frequent
| Itemset
(abede)
Figure 6.3. An illustration of the Apriori principle. If {c.d. e} is frequent, then all subsets of this
itemset are frequent.
© Sharma Chw‘ . 4 b

Itemset Lattice + Apriori Principle

Infrequent
Itemset

Figure 6.4. Anillustration of support-based pruning. If { a, b} is infrequent, then all supersets of { a, b}
are infrequent.

© Sharma Chw ™ 5 ﬂ ’

Limitations of Apriori

» Apriori is one of the first algorithms that successfully
tackled the exponential size of the frequent itemset
space

» Nevertheless the Apriori suffers from two main
weaknesses
= High 1/O overhead from the generate-and-test
strategy: several passes are required over the
database to find the frequent itemsets

= The performance can degrade significantly on dense
databases, as large portion of the itemset lattice
becomes frequent

Spring 2019 = W CSE 6331 H

Characteristics of Apriori Algorithm
» Breadth-first search algorithm “

= all frequent itemsets of given Level 1 //%%‘\\[

size are generated in each B c
pass

= Starts with high support,
works towards low support

» General-to-specific search:

1 T
ol 7 S
SE ORI

= start with itemsets with /evel'3 < \
frequent support, work towards s s s w0 el wE mD mE
lower- support region 1

. L 1
» Generate-and-test strategy: eve ‘

= generate candidates, test by
support counting

Level 5 \I/
Spring 2019 = W CSE 6331 H‘

Alternative methods for generating frequent
itemsets: Traversal of itemset lattice

» Apriori uses general-to-specific search: start from most highly
supported itemsets, work towards lower support region

» Works well if the frequent itemset border is close to the top
of the lattice

Frequent
itemset Frequent

border Nl
~

P

o

o

o

o

o

o

-

———eeee-

(a) G I-to-specif (b) Specific-to-g I (<) Bidirectional

Spring 2019 = W CSE 6331 H

Alternative methods for generating frequent
itemsets: Traversal of itemset lattice

» Specific-to-general search: look first for the most specific
frequent itemsets, work towards higher support region

» Works well if the border is close to the bottom of the lattice
= Dense databases

Frequent

itemset Frequent

b null . null ilemset - rgl .
o e o ™~ ,"{‘3 75 Ei’r-\\
R TN N T
] H ' ! i ! H
$oc0 ecoo0d do00 0000 bool oooo
1 ! ! ' N ‘Ef H
{a,858,0 (2,2, (a,85...3,)
(a) General-to-specif (b) Specific-to-general (c) Bidirectional

Spring 2019 = W CSE 6331 H‘

Prefix and Suffix Trees

» Left: prefix tree and equivalence classes defined for prefixes of length k=1

» Right: suffix tree and equivalence classes defined for prefixes of length
k=1

(a) Prefix tree (b) Suffix tree

Spring 2019 = W CSE 6331 H

Alternative methods for frequent itemsets
generation: Breadth-first vs Depth-first

X

» Apriori traverses the itemset lattice in breadth-first manner
» Alternatively, the lattice can be searched in depth-first
manner: extend single itemset until it cannot be extended
= Often used to find maximal frequent itemsets

= Hits the border of frequent itemsets quickly

T

(a) Breadth first (b) Depth first

Spring 2019 = W CSE 6331 H‘

Preview

» Presents an efficient algorithm for mining
association rules that is different from known
algorithms (Apriori and AprioriTid)

» Reduces both CPU and I/0 overheads significantly.
» Suitable for very large size databases

» Also suitable for parallelization.

© Sharma Ch@m 12 H

Preamble

» Need for Inferring valuable high-level information
based on large volume of data.

» Association rules identify set of items that are most
often purchased with other set of items.

» Problems with earlier algorithms are large disk 1/0,
poor response time and poor resource utilization.

» Need to develop fast and efficient algorithms that
can handle large volumes of data.

© Sharma Chw § 13 H

Previous Work
» AIS, SETM, Apriori, AprioriTid, and AprioriHybrid

» These algorithms vary mainly by,
= How the candidate itemsets are generated.

= How the support for the candidate itemsets are
counted (typically by making a pass on the db)

= Use of efficient memory data structures (e.g., hash
tree) to reduce computation

= Use of buffer management for reducing I/O

© Sharma cn@ § 15 H

Problem Description

» Generate all rules that have support and confidence
greater than min_sup and min_conf
= Generate all large/Frequent itemsets that have support
above min_sup.
- Nontrivial problem
* when number of itemsets are huge.
* When the database is large

= Generate all rules that have min_conf for each
large/frequent itemset.

- Much simpler than generating large itemsets.

» How to reduce the number of passes on the database?

© Sharma Chw § 14 H

Partition Algorithm

» Scans entire database only twice (in two phases)
» Phasel

= Divide the database into a number of non-overlapping
partitions.

Load each partition and process it (can be held in memory)
Generate all frequent itemsets for each partition (use
partition min_sup)

Merge all these large itemsets into a set of all potentially
large/frequent itemsets.

» Phase 2
= Count the actual support for these candidate itemsets.
= Second pass on the database

» Identify all the itemsets that have the minimum global
support.

© Sharma cn@ § 16 H

Correctness

» We are generating locally large itemsets in each
partition
» Then we are merging local large itemsets

» Then we are making sure that these local large itemsets
are indeed globally large by counting their support
again

» Assume the database has 100 Txs and min_sup is 20
» Ifitis partitioned into 5 partitions of 20
= The min_sup for each partition is 4 (partition min_sup)

= Partition min_sup can be computed for partitions of any
size!

© Sharma Chw § 17 H

Correctness?
» Take 100 transactions and support as 20 (20%)

» Suppose A, C and AC satisfy the min support. Say
they appear in 20 (or more) transactions

» Let us partition the above database into 5
partitions (20 transactions per partition). For an
itemset to be locally large, it should appear in at
least 4 transactions (why?)

» The claim is that at least one of the 5 partitions
will have min_sup for A, c and AC (more than one
can have that). But it cannot be the case that
none of them have min support. (why?)

© Sharma Ch@ § 19 H

Correctness (Contd.)

» Local large itemset is with respect to the local size of
the database (or partition size)

> Key concept: Any potential (global) large itemset
appears as large itemset in at least one of the
partitions.

» The above is true independent of how D is
partitioned and the number of partitions!
= Partition sizes do not have to be the same size!

© Sharma Chw § 18 H

Example

100 transactions and min_sup is 20 (or 20%)

Let us assume A (25) and AC (20) both satisfy min_sup
That is, they each appear in at least 20 transactions out
of 100

Take 5 partitions p1 to p5 of size 20 each

Take A distribution in p’s (min_sup is 4)

= Let plcontain Ain 10 Txs, p2in 5, p3in 8, p4in2,p5in0

= Now it will be large/frequent in p1, p2, and p3 and not
frequent on p4 and p5

» Take AC distribution in p’s
= 3,3,3,3,x x cannot be less than 4
= 4,4,4,4,4 is the minimum equal distribution

YV VVV

» If anitem occurs N times globally, it has to occur at least
ceiling(N/k) times in at least one of the k partitions!

= N/k is the minimum value of equal distribution

© Sharma Ch@ § 20 H

An itemset frequent in a partition but does not have global support

100 transactions and min_sup is 30 (or 30%)
Assume C (25) and CF (20) both do not satisfy min_sup
That is they each appear in < 30 transaction out of 100

VVYVYY

Take 5 arbitrary partitions p1 to p5 of sizes (partition
min_sup) 15 (5), 25 (8), 20 (6), 20 (6) , 20 (6)

» consider C distribution in p’s

= P1contains 1C, p221C,p30C, p40C,p56C (total 28)

= Now it will be frequent in p2 and p5, will be in global set
but C is not frequent in the database

» Similarly, consider CF distribution in p’s of equal size
= 20,0,0,0,0 worstcase distribution
= CFis frequent in p1, but still not globally frequent!

© Sharma Chw § 21 H

Partition Algorithm Contd.

1. P = partition_database(D)
2. n = number of partitions
//phase |
3. For i =1 to n do begin
4. read_in_partition (p; € P)
5. Li=gen_large_itemsets(P,) //local candidate itemsets using Apriori
6. End
// Merge phase
7.Fori=2,ton
8 Cf =V, . ali, wherelj #& //global candidate itemsets
9. end
» We have identified frequent itemsets in each partition
= Not across all partitions

© Sharma cn@ § 23 H

Discovering Rules

» So far all the large itemsets and their supports are
determined.
» The association rules can be discovered easily as
follows,
= |f /is a large itemset, then for every subset a of /, the
ratio support(l)/support(a) is computed.
= |f the ratio is at least equal to the minimum
confidence, then the rule is,
-a®(l-a)

© Sharma Chw § 22 H

Partition Algorithm Contd.

//phase Il

10. For i = 1 to n do begin

11. Read_in_partition (p; in P) //why do we have to read all partitions again?
12. For all candidates ¢ € C® gen_final_count(c, p;)

13. End

14. 18 = {ciin C%| c.count >= minsup} // why do we need to do this?

15. Answer = L®

Important:

» We retain only frequent/large itemsets from each partition

» For others, we do not keep their counts from each partition (why?)
= We have count only for those that were frequent in that partition

= Hence, a second pass for support counting of only frequent itemsets
(much smaller)

© Sharma cn@ § 24 H

Partition Algorithm Contd..

» Involves two procedures
» Procedure gen_large_itemsets
» Procedure gen_final_count

© Sharma Chw § 25 H

Merging

» Initially empty
» All local large itemsets of the first partition are
added to the global candidate set

» For subsequent partitions the local large itemsets
are added only if the itemset is not already included

» Hash tables are used for merging efficiently
> Note that itemsets are in sorted order

© Sharma Ch@ § 27 H

Generation of Local Large Itemsets

» Procedure Gen_large_itemsets takes a partition and
generates all large itemsets for that partition.

» Prune step eliminates extensions of (k-1) itemsets
which are not large from being considered for
counting support.

» Unlike previous algorithms, in Partition algorithm
each itemsets count is determined immediately
when it is generated.

= Tidlist and intersection operation is used

= Since each partition is small, this can be maintained in
memory

» Sort-merge join algorithm is used

© Sharma Chw § % H

Phase 2 counting

procedure gen_final_counts (CC: global candidate
set, p: database partition)

forall 1-itemsets do
generate the tidlist
for (k = 2; C,¢ not empty; k++) do
forall k-itemset c in C,S do
templist = c[1].tidlist N c[2].tidlist
N ... N c[k].tidlist
c.count = c.count + | templist|
end
end

© Sharma Ch@ § 28 H

Generation of Final Large ltemsets

» Global candidate set is generated as the union of all
local large itemsets from all partitions.

» Merge phase generates global large itemsets from
the global candidate sets.

» Cumulative count gives the global support for the
global itemsets (phase 2)

© Sharma Chw) 29 M

Performance Comparison Contd..

» Good for lower minimum support since reduces
number of candidate itemsets.

» As shown in next figure, p Partition algorithm
performs better than the Apriori mainly due to
reduction in CPU overhead.

» For higher minimum support, Apriori performs
slightly better since partition algorithm has a
overhead of setting up data structures.

» Effect of data skew

© Sharma Ch@) 31 M

Performance Comparison

» Better technique for generating the counts than
Apriori.

» Use of efficient data structures for computing count.

» Scans the database only twice, so great reduction in
disk I/0.

» Improves performance up to a factor of seven
» Reduces number of disc reads by a factor of eight.

© Sharma Chw) 30 M

Performance Comparison Contd.

» Please take a look at the performance comparisons in
the paper

T20. K 100k,

Qso 033 oZs

oS
Miriium Suppor

Parallelization

Parallel database systems are delivering the
performance requirements for very large databases.
Suitable to augment these parallel databases to provide
data mining capability.

Recall that partitions are processed entirely
independently in both the phases of partition
algorithms.

Indicates that the processing can be essentially done in

parallel.

= Parallel algorithms are different from partitioned
algorithms

- Partitioned algorithms can be executed sequentially on each
partition!

© Sharma Chw § 33 H

Conclusions

Fast and efficient for very large databases.

Both CPU and I/O improvements over Apriori.

Scans the database at most twice, so huge reduction
in 1/0 overhead.

Inherent parallelism for use on parallel machines
and databases.

Suited for very large databases in a high data and
resource contention environment such as OLTP.

© Sharma Ch@ § 35 H

Parallel Algorithm

Generate large itemsets for each processing node’s
local data independently.

Exchange large itemsets at each node with all other
nodes.

. Count support for each itemset in the candidate set
with respect to the local data at each node.

Send local counts at each node to all other nodes.
The global support is the sum of all local supports.

© Sharma Chw § 34 H

Generalizations

Handling taxonomies (is-a hierarchies on items)
Find rules with items at all levels of the taxonomy
Extensions to apriori

Optimizations

Handling numeric and categorical attributes

YV V V V V V

Optimal discretization of numeric attributes

© Sharma Ch@ § 36 H

Extensions

» Incremental maintenance of frequent sets
= when to scan the whole database

= self-maintainable unless the set of frequent
itemsets expands

» Rules with item constraints
= embed the constraints into the discovery
» Maximal association rules

© Sharma Chw § 37 H

Thank You !!!

For more information visit:
http://itiab.uta.edu

Spring 2019 A

CSE 6331

Sequential patterns

Find frequent sequences (ordered set of items)
Example: <computer, modem> <printer>

Input: customer sequences with transaction time
Timing constraints: window-size, min-gap, max-gap

YV VYV VY

Algorithms:
= Post processing on frequent itemsets
= GSP algorithm

© Sharma Chw § 38 H

10

