
QP-SUBDUE: PROCESSING QUERIES OVER GRAPH DATABASES

by

ANKUR GOYAL

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2015

Copyright c by ANKUR GOYAL 2015

All Rights Reserved

To my father Vijay and my mother Shashi

ACKNOWLEDGEMENTS

I express my sincere gratitude to my supervising professor, Dr. Sharma Chakravarthy

who has been a great motivating factor and a constant source of encouragement

throughout my masters’ research. Without his guidance and excellent foresight this

thesis would have only remained a great idea. I am sincerely thankful to Dr. Ramez

Elmasri and Prof. David Levine for giving valuable suggestions and serving on my

committee.

I would like to thank the administrative staff, specilcally Ms. Pam McBride

and Ms. Sherri Gotcher for their valuable support and services. Special thanks to

Ms. Camille Costabile in helping me through the final requirements of my thesis, and

the department of computer science, UTA. I am grateful to Irie Bito for maintaining

a well-administered research environment.

My heartfelt thanks to my family for continuous support and inspiration.

would like to express my appreciation to Soumyava Das, Jay D. Bodra, Abhishek

Santra and other friends in ITLAB. I also greatly appreciate my numerous other

friends for their love and support.

November 13, 2015

iv

I

ABSTRACT

QP-SUBDUE: PROCESSING QUERIES OVER GRAPH DATABASES

ANKUR GOYAL, M.S.

The University of Texas at Arlington, 2015

Supervising Professor: Dr. Sharma Chakravarthy

Graphs have become one of the preferred ways to store structured data for

various applications such as social network graphs, complex molecular structure, etc.

Proliferation of graph databases has resulted in a growing need for effective querying

methods to retrieve desired information. Querying has been widely studied in rela-

tional databases where the query optimizer finds a sequence of query execution steps

(or plans) for efficient execution of the given query. Until now, most of the work on

graph databases has concentrated on mining. For querying graph databases, users

have to either learn a graph query language for posing their queries or use provided

customized searches of specific substructures. Hence, there is a clear need for posing

queries using graphs, consider alternative plans, and select a plan that can be pro-

cessed efficiently on the graph database.

In this thesis, we propose an approach to generate plans from a query using a

cost-based approach that is tailored to the characteristics of the graph database. We

collect metadata pertaining to the graph database and use cost estimates to evaluate

the cost of execution of each plan. We use a branch and bound algorithm to limit

v

the state space generated for identifying a good plan. Extensive experiments on

different types of queries over two graph databases (IMDB and DBLP) are performed

to validate our approach. Subdue a graph mining algorithm has been modified to

process a query plan instead of performing mining.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

ABSTRACT

Chapter Page

. v

LIST OF ILLUSTRATIONS . ix

1. INTRODUCTION . 1

2. RELATED WORK . 7

2.1 Query Optimization in RDBMS . 8

2.2 Query processing on Graph Data . 12

3. OVERVIEW OF GRAPH MINING AND GRAPH QUERYING 15

3.1 Overview of Graph Mining . 15

3.2 Overview of Graph Mining System Subdue 16

3.2.1 Parameters for control flow . 18

3.2.2 Substructure Discovery in Subdue 20

3.3 Graph Mining to Graph Querying . 21

4. GRAPH AND QUERY REPRESENTATION 23

4.1 Graph Representation . 23

4.2 Graph Query and its Representation 26

5. PLANS AND THEIR COST EVALUATION 34

5.1 Query and its matches . 34

5.2 Cost Metric for evaluation of plan . 36

6. DESIGN AND ALGORITHM . 40

6.1 Catalog generation . 41

vii

6.2 Cost estimation of partial plans . 44

6.2.1 Cost estimation in plan generation 44

6.2.2 Algorithm of the plan generator 45

6.3 Plan Execution . 49

7. EXPERIMENTAL EVALUATION . 54

7.1 Implementation . 54

7.1.1 Plan generation . 55

7.1.2 Plan Execution . 58

7.2 Experimental Analysis . 59

7.2.1 Performance of plans . 61

8. CONCLUSIONS AND FUTURE WORK 68

REFERENCES . 71

BIOGRAPHICAL STATEMENT . 73

viii

LIST OF ILLUSTRATIONS

Figure Page

3.1 High-level view of shapes . 16

3.2 Graph representation of shapes example 17

3.3 Subdue Input for shapes example . 17

3.4 Subdue Output for shapes example 18

4.1 An example graph containing movie information 23

4.2 An example graph with the type information 25

4.3 General query graph . 27

4.4 Representation for a Simple Query 28

4.5 Representation for an AND Query 29

4.6 Representation for an OR Query . 30

4.7 Representation for a NOT Query . 31

4.8 Representations for Queries with a Combination of Logical and Range

Operator . 32

5.1 A query graph, a data graph and its exact matches 35

6.1 System architecture . 40

6.2 IMDB example graph . 42

6.3 Catalog for graph in Figure 6.2 . 43

6.4 Graphical representation of the query 46

6.5 Subdue representation of the query 46

6.6 Catalog for IMDB dataset (12K vertices and 30K edges) 47

6.7 Output plans are shown for the given query graph 48

ix

6.8 Results from the plan executor for the input query plan 50

7.1 Catalog file . 56

7.2 Graphical representation of a query 57

7.3 Input file of the query in Figure 7.2 57

7.4 Plan file (input to the plan processor) 58

7.5 Query matches after processing the plan on the graph database . . . 59

7.6 Execution time (in secs)of an AND query on different sizes of databases

for min, med, and max cost plan . 61

7.7 Execution time (in secs) of a COMB query on different sizes of databases

for min, med, and max cost plan . 62

7.8 Execution time (in secs) of an OR query on different sizes of databases

for min, med, and max cost plan . 63

7.9 Execution time (in secs) of a query containing comparison operator on

different sizes of databases for min, med, and max cost plan 65

7.10 Execution time (in secs) of a combination of multiple operator on dif-

ferent sizes of databases for min, med, and max cost plan 66

7.11 Execution time (in secs) on different sizes of databases for min, med,

and max cost plan . 67

x

CHAPTER 1

INTRODUCTION

With the advent of automated data collection tools, massive amounts of data are

being generated. Technology has given us inexpensive ways to store this considerable

amount of data. Google receives millions of searches/queries per minute; in addition,

the volume of email messages being exchanged is ever increasing when other forms

such as tweets and others (e.g., Whatsapp) are included. DBLP [1], a computer

science bibliography, has around 2.8 million records (conference, workshop papers,

and journal articles). Freebase [2], an online collection of structured data, harvested

from various sources, has around 47 million topics and 2.7 billion facts. Internet

Movie Database (IMDB) [3] contains information about 3.3 million movie titles and

6.6 million people associated with movies, TV-series etc. This clearly shows that the

amount and types of data being generated are significantly large and querying them

is becoming a useful alternative and a challenge.

Data is collected and stored to find useful information (either by mining or

by search or by querying) that is beneficial either for business or individuals. For

example, DBLP has the information of authors, journals, and conference papers. If

an employer in a research lab wants to hire people who have published papers on a

particular topic, s/he may want to query the DBLP data. Another example could be

to find authors who have published or co-authored papers in prestigious conferences

(e.g., SIGMOD) during a specific period. Moreover, people use Freebase to find infor-

mation, such as find Vietnamese restaurant in Palo Alto, California [4]. In addition,

nowadays social networking has also become very popular which gives a platform to

1

build social relations among people who share interests, activities, backgrounds, or

real-life connections. Currently, many social networking sites are available, such as

Facebook, Twitter, LinkedIn, etc. and users may want to query these sites to find

relevant and useful information. Most of this information is structured in that rela-

tionships (e.g., works for, founder of) are explicit in these data sets unlike traditional

applications such as payroll, airline reservation, etc. Despite the rich data sets and

their structures, they cannot be queried the way user wants. Queries are limited and

decided by the vendors or corporate stake holders. For example, DBLP provides an

option to find papers of a particular author, but instead if a user is interested in

finding a paper, where author1 has collaborated with author2, but not with author3

in a certain period of time, then these types of queries are not supported. IMDB,

which contains the movie database, can be queried to find information about movies,

genres, actors, etc. But again, if a user wants a movie in a particular period of time

and with a specific genre, company, or actor, these queries are not supported. The

goal is to support arbitrary queries over these data sets that have rich representation

already captured in the form of a graph. Providing a capability to allow queries over

these representations will avoid conversion of this data into a traditional relational

representation for querying purposes. However, these queries need to be processed

using a different representation of data than relations or tables. As a result, both

query processing and optimization techniques need to be developed for this purpose.

Our focus is to design a platform for a user, where the users queries should be driven

by his needs. Therefore, we need a way to process this data to extract meaningful

information.

Relational database management systems (RDBMS) have been widely used

across industries. Research and development over several decades have resulted in

efficient storage alternatives, optimization of queries, and other tools. One of the

2

drawbacks is that the application needs to be modeled first using this representation

in order to avail the benefits. More importantly, the relationships within the data

are lost during the mapping process thereby making it difficult to understand the

connections in data and to formulate queries. New applications are emerging whose

data representation may benefit from alternative ways of data storage and manage-

ment. Nowadays, data is generated or evolved at a higher rate. Also, data is typically

not structured. Therefore, traditional databases with a need to create schema first

may not be the best choice for these applications. A graph is more intuitive and

also has a sound theoretical basis. Moreover the graph model can natively support

many of these applications thatmay require forcing them into a RDBMS representa-

tion. Batra and Tyagi [5] explain that graph databases are able to accept all types

of data- structured, unstructured, and semi-structured – more easily than relational

databases, which rely on a predefined schema.

Moreover, graph databases are more flexible forthe aforementioned applications

and provide the capability to keep data in their native representation where relation-

ships are explicit. Relational models, on the other hand, work best when there are a

relatively small and static number of relationships between objects. When the data

sets become larger and the query contains results from many tables, then it may

require expensive join operations. Conversely, in a graph database, query processing

does not have to scan the entire graph to find the nodes that meet the search crite-

ria. It looks only at records that are directly connected to other records. For such

applications graph database may perform better than traditional RDBMS. Once the

data is modeled we can query this data.

As mentioned earlier, current systems such as DBLP, IMDB, and Freebase sup-

port a limited class of queries. DBLP, which has all the information of authors, pub-

lications, conferences and publication year, can be accessed through a web interface.

3

We can find interesting information, such as, find all the papers written by particular

author, DBLP returns all the publication papers, journals, books, etc. written by

that author. Moreover, it provides various ways to refine the result set such as refine

by author, venue and year. However, there are queries which are not supported by

DBLP. For example, Find an author who has written a paper with author1 but not

with author2 or Find papers written by author1 after 2005 etc. In the case of IMDB,

queries such as find movies where person1 and person2 have worked as actors and

person3 has worked as director in 1995 and movie genre should not be drama cannot

be supported by the existing interface. To support these and other more expressive

types of queries, we model this data as a graph, where each individual entity can be

represented as a node and the relationship between them can be represented by an

edge. After modeling this data into graph structure, we have to find patterns in this

data for a query having similar graph form but includes conditions, wild cards etc.

The abundance of graph data in a variety of domains implies that graph query-

ing and graph mining have become important for information retrieval and analysis.

Graph mining identifies frequent and interesting graph patterns, classifies new graphs

based on knowledge of known graphs, or clusters graph into subclasses. A graph query,

on the other hand, takes a graph pattern as an input and retrieves patterns that sat-

isfy the input graph that includes conditions, ranges, and wild card specifications from

graph databases. As in any other form of querying, graph querying needs to find all

the occurrences of a given substructure. Typically, a query is in the form of a con-

nected sub graph which is relatively very small as compared to the size of the graph

database. Therefore, a query is given as an input to find exact matches in graph data.

A given query can be processed in many ways to find these exact matches. Given a

query graph with many vertices and edges, its processing can theoretically start from

any node and. compute answers. There will be several possible ways to compute the

4

results for the same query depending on the start node. For a given query,number of

potential plans depends on the number of possible starting nodes of the query graph.

In a query of n nodes, if there are k unknown nodes, there can be n-k different plans

(all nodes except unknown nodes can be the starting point). If unknown nodes are

also used as starting points then they match every node in the graph which increases

the search space significantly. Clearly, if there are multiple alternatives (plans), a

cost metric is needed to differentiate with respect to the computation needed for its

evaluation. Each plan, when executed generates different number of intermediate

substructures. Intuitively, a plan that generates more intermediate substructures is

costlier. In order to compute the cost, typically, selectivity, cardinality and other in-

formation are used in relational databases. Along the same lines, there are two issues

that need to be identified for graph databases. First, what meta information needs

to be collected from the graph that can be used to evaluate query plans, and second,

how to generate that information efficiently. Once we find a good query plan, based

on cost of processing that plan, results can be obtained from the query processor.

This requires an algorithm that accepts a query plan and computes the results from

the graph database efficiently.

In this thesis, we address general-purpose query processing over a graph database.

For that, we develop techniques and approaches for generating alternative plans and

for computing their estimated costs. The goal is to develop a cost metric that is

applicable to a graph database query evaluation. We also develop a query proces-

sor to process a plan generated by our plan generator. We evaluate our approach

experimentally by using a couple of real-world graph databases. Our approach will

use query specification that is more expressive than what can be queried over earlier

work in this area.

5

The remainder of the thesis is organized as follows. Chapter 2 presents the

related work in the areas of relational query processing and optimization. Chapter

3 discusses an overview of graph mining and querying. Chapter 4 discusses graph

representations and how to specify a general/arbitrary query. Chapter 5 explains

the generation of alternative plans, cost model, and heuristics used for state space

generation and pruning. Chapter 6 details the implementation of a graph query

optimizer and processing of a query plan using subdue. Chapter 7 shows experimental

results to validate our approach. Conclusions and future work are outlined in Chapter

8.

6

CHAPTER 2

RELATED WORK

Graph querying is useful for retrieving information from emerging graph databases

such as Freebase and knowledgebase. Querying a database, although different from

mining, is useful for retrieving desired information which satisfies the conditions we

already know. For example, the query list all founders of a company who attended

Harvard or Yale is more specific than mining where one is looking for patterns that

may be of interest because it occurs a lot of times in the database. For querying a

graph database we need a query which is in the form of graph to obtain the exact

matches. As mentioned earlier, a query can be evaluated in multiple ways by gen-

erating alternate plans and a good plan (i.e., cheaper to evaluate) is chosen among

alternative plans generated, Therefore, the problem of graph querying boils down

to explore alternate viable plans, estimate a cost for each of these plans, have an

approach to avoid exhaustive generation of search space, and finally choose a plan

for actual evaluation. Query processing and optimization processing have been well

researched and a number of techniques have been proposed. This chapter briefly

presents an overview of some of the widely used approaches for query optimization

and query processing. Various techniques proposed for query optimization and query

processing include query optimization in relational databases [6], Graph-grep [7], G-

index [8], G-ray [9], and Subdue [10]. The following sections describe some of the

query optimization and query processing approaches. A discussion of some of these

systems is presented when we consider the related work in the area of graph mining.

7

2.1 Query Optimization in RDBMS

Query optimization is one of the accomplishments of relational database re-

search. A query optimizer attempts to determine a good execution plan for a given

query by considering a large number of possible query plans. There is a trade-off

between the amount of time spent on optimization and the cost savings provided by

the chosen plan. Therefore, the optimizer uses techniques to keep the search space

generated manageable and still obtain a good plan for evaluation. A given query

can be evaluated in many possible ways and the difference between the best and the

worst plan, in terms of cost of its computation, can be significantly different. Rela-

tional databases use different parameters to evaluate the cost. According to Jakre and

Koach [11], query optimization cost model typically is an objective function consisting

of the following costs;

1. Secondary storage access cost: The cost of loading data pages from secondary

storage into main memory. This is influenced by the number of pages to be

retrieved, clustering of data on physical pages, and size of available buffer space.

2. Storage cost: Each operator is associated with a CPU cost and the cost of using

the CPU during that operator evaluation is called computation cost.

Query optimization algorithm is strongly influenced by these cost components.

For each operator, there are algorithms available in RDBMS and several factors (i.e.

the size of each table, availability of an index, etc.) affect the cost of an algorithm.

There are some common techniques used in developing an evaluation algorithm and

one of them is the concept of access path, which is a way of retrieving data from

a table. An access path consists of a file scan or an index plus matching selection

condition. Each relational operator takes one or more tables as an input and access

methods are used to retrieve tuples.

8

Consider a selection operation that is a conjunction of multiple conditions of

the form attr op value where op is one of the comparison operators <, <=, =, ! =,

>= or >. These selections are said to be in conjunctive normal form. Each condition

is called a conjunct. A hash index matches a CNF selection if there is an equality

condition. A tree index matches CNF selection for non equality conditions. An index

can match a subset of the conjuncts in a selection condition. The most selective

access path is the one that retrieves the fewest pages. For each conjunct there are

some tuples from the table that satisfy the condition; this fraction of tuples is called

a reduction factor. So based on reduction factor, optimizer estimates the number of

tuples.

A query optimizer uses different heuristics to reduce the cost of an execution

plan. One of the main heuristics is to apply select and project operations before

applying the join because a join is a relatively expensive operation and a good heuristic

used is to reduce the sizes of intermediate results. In other words, the size of the file

resulting from a join operation is usually a multiplicative function of the size of the

input files. Similarly, the size of intermediate tables is reduced by carrying forward

only the required attributes. The select and project operations reduce the size of an

intermediate file. The query optimizer generally applies these operations before join

operation and joins are implemented based on the availability of index on relations.

To estimate the costs of various execution strategies, some meta information is

needed. This information is stored in the DBMS catalog which is used by a query op-

timizer. A catalog typically contains the size (Number of pages) of each file, number

of records in each file, record size, and number of blocks. The records may be un-

ordered, ordered by an attribute, or ordered without a primary or clustering index; all

this information is kept in the catalog. Another important parameter is the number

of distinct values of an attribute and its selectivity, which is the fraction of records

9

satisfying equality condition on the attribute. This gives an estimation of selection

cardinality of an attribute, which is the average number of records that will satisfy

an equality selection condition on that attribute. Different query plans generated

are evaluated using this information and the plan with the least cost is selected, and

finally that plan is executed to evaluate the query.

In our work, we have adopted a similar approach and use meta information

associated with a graph database. We analyze the graph once to glean the meta

information such as different node labels, their connection information, edge label

information, etc, which will be discussed in detail in the following chapters.

According to Ramkrishnan and Gehrke [12], to identify equivalent expressions

for a given query, a relational query optimizer uses relational algebra equivalences.

For all such expressions of the query, all available implementation techniques are

considered, thereby generating several alternative query evaluation plans. The query

optimizer estimates the cost of each plan and chooses an optimal plan. Two plans

over the same set of input tables are said to be equivalent if the results produced by

them are the same.

A typical SQL query consists of select, from, where, group by and order by

clauses. The fields in each select clause are projected from the Cartesian product of

tables in the from clause. The use of equivalences enables us to convert this initial

representation into equivalent expressions. Particularly, selections and cross-products

can be combined into joins and joins can be reordered. Consider a query having

multiple joins. Three relational algebra operator trees that are equivalent to query

would be left-deep tree, right-deep tree, and bushy tree. Optimizers typically use a

dynamic programming approach to efficiently search the class of all left-deep plans.

If an optimizer considers all possible plans, the number of plans would be exponential

which differs in join order. Of course, the decision rules out many alternative plans

10

that may cost less than the best plan using a left-deep tree. The optimizer only

considers the left deep plans because, as the number of joins increases, the number of

alternative plans also increases rapidly and it becomes necessary to prune the search

space. Moreover, using left deep trees, fully pipelined plans can be generated, which

means intermediate results are not materialized.

After considering a set of plans, the query optimizer estimates the cost of each

plan. The cost of a plan is typically the sum of costs of all operators in the query

plan. The cost of individual relational operators in the plan is calculated using the

information from system catalog. I/O costs play major role in determining the total

cost. The I/O cost of a plan consists of a cost of reading input tables from the

disk, cost of writing intermediate tables if necessary (e.g., for a sort-merge join), and

sorting the final results if query specifies an output order. The cost of a fully pipelined

plan is dominated by the cost of reading input tables which depends on the access

paths used to read input tables. For plans that are not fully pipelined, the cost of

materializing temporary tables needs to be taken into account. The number of tuples

in the result of a selection is estimated by multiplying the input size by the reduction

factor for the selection condition while the number of tuples in the result of projection

is the same as input. In the case of a projection query optimizer carries forward only

required attributes thus reducing the size of intermediate results. The result size for

a join can be estimated by multiplying the maximum result size which is the product

of the input table sizes, by the reduction factor of the join condition.

In the case of graph data, we use a similar approach. Rather than expanding all

the plans, we only consider subset of plan space to be expanded. Cost model for our

approach estimates the number of intermediate substructures that will be generated.

We evaluate the cost of each plan by its number of intermediate substructures which

will be discussed further in upcoming chapters.

11

2.2 Query processing on Graph Data

Graph is a powerful tool for representing and understanding objects and their

relationships in various application domains. Due to increasing popularity of graph

databases, graph query processing has been widely researched. However, as men-

tioned earlier, existing querying systems have limitations and do not support queries

containing operators (<, >, =, ! =). Moreover, most of the querying systems do

not follow a plan to evaluate queries. Existing research has been conducted mainly

on two types of graph databases. The first involves, one large graph (such as social

networking graph, web graph etc.) and the second consists of multiple small graphs

(such as chemical compounds, blog graphs etc.). In this section we discuss about var-

ious techniques for graph querying such as Graph-grep, G-Index, and G-Ray. We also

establish the relationship between graph mining and graph querying in the upcoming

sections.

Graph querying is the process of finding similar query patterns in the graph

data. A lot of research has been done in this field earlier. Shasha, Wang and Guino

[7] propose an algorithm called Graph-grep which is a variable path index approach.

The first step in this algorithm is to construct an index which essentially is done by

finding all possible paths up to length l, from all nodes. Then, it stores all possible

paths in a hash table. The second step is to filter the database; the query graph is

parsed to build its fingerprint (hashed set of paths). Database is filtered by comparing

the fingerprint of the query with the fingerprint of the database. A graph, for which at

least one value in its fingerprint is less than the corresponding value in the fingerprint

of the query, is discarded when looking for an exact sub graph match. The last step

is finding sub graphs matching the query; after filtering, this algorithm searches for

all the matching sub graphs in the remaining graphs. The branches of a depth-first

traversal tree of the query are decomposed into sequences of overlapping label-paths,

12

which are called patterns. Then, it joins all the sub paths on an overlapping node to

get the final results. Since all the paths are already hashed so this approach provides

fast results. However if the graph size is large, keeping all paths up to length l takes

huge space. Since this approach breaks the query and graph into different paths so it

loses the structural information which makes it difficult for the chemical compounds

that requires structural information to be preserved. This approach cannot handle

queries containing comparison operators.

This approach evaluates the query graph from the main graph using indexing

techniques. In our approach, instead of indexing we use an exploration approach. A

node is fully explored and, with the exception of required nodes every other node is

discarded. Unlike graph-grep approach, structural information is also preserved.

Another approach by Yan, Yu and Han [8] suggests indexing frequent struc-

tures, called the G-index. In this approach the authors define the substructure to

be frequent if its threshold is greater than the minimum support threshold and all

frequent substructures are indexed. Each substructure is associated with an id list.

Given a graph query q, if q is frequent, the graphs containing q can be retrieved

directly since q is indexed. The G-index only indexes structures which are distinct,

which means that if the same substructure is generated twice, it indexes only once.

G-index uses Depth First Search (DFS) coding to translate the graph into

unique edge sequence called canonical label. If two substructures are the same that

means, they must share the same canonical label; the G-index holds canonical labels

in a prefix tree. Given a query, G-index enumerates all its fragments up to a maximum

size and locates them in the index and then it intersects the id lists associated with

these fragments, which is the candidate answer set. After getting the candidate

answer set, it verifies whether the graphs in answer set really contain the query graph.

13

However, this approach does not answer infrequent queries because it only indexes

the frequent substructures, and if graph is large then index size becomes greater.

In our querying approach, we do not use indexing scheme because in a large

graph index size becomes very large and updating indexes incurs an additional cost;

instead we use exploration approach where we explore the nodes in a specific order.

Therefore, our querying system answers all queries (both frequent and infrequent) un-

like G-index. In addition, G-index does not handle queries with comparison operators

and does not follow any plan to evaluate the query.

Another approach presented by Gallagher, Faloutsos and Eliasi-Rad [9], called

G-Ray, finds both exact and inexact matches. This approach first finds a seed node

and then expands the seed node by finding a matching node followed by bridging both

nodes by the best possible path. G-Ray proposes a goodness score which is a measure

of proximity between two nodes. Based on this goodness score, it ranks the results.

In this approach each vertex stores the information of remaining vertices. Therefore,

space requirement is significant and it also does not differentiate between two results

having the same goodness score. Unlike other approaches, G-ray keeps the attribute

information of each node. For example, if there are two nodes California and Steve

Jobs, their attribute could be state and person, respectively. In our approach we use

the similar approach and keep the attribute information of each node. Our approach,

on the other hand, does not deal with inexact results, which means if any node from

the query is not found during the exploration, the result set contains null.

In this chapter, we have discussed the overview of related work in the area of

query optimization and query processing. With this overview of the related literature

in the area of graph query processing, the discussion on graph mining techniques is

presented in the next chapter.

14

CHAPTER 3

OVERVIEW OF GRAPH MINING AND GRAPH QUERYING

3.1 Overview of Graph Mining

Data mining is the process of discovering hidden patterns in large data. The

goal of the data mining process is to extract non-intuitive information from a data

set and use it for making business decisions. Data, in many applications, have an in-

herent structure and converting them to non-structural (RDBMS) format will result

in loss of information. Graph representation provides a natural format for preserv-

ing the inherent structural characteristics. If processing can be done directly on this

representation, it will provide better results as the semantics of the applications (in

the form of relationships) is preserved during processing. Complex structural rela-

tionships can be modeled as graphs if no constraints are assumed (such as cycles,

multiple edges, only directional edges, and constraints on vertex and edge labels).

Graphs model the data in the form of a vertex (to characterize the data), and edges

(that typify extra information). Graph mining is used to mine structural data such

as DNA sequences, electrical circuits, chemical compounds, social networks, schemes

(such as money laundering and fraud) that have associations and relationships among

transactions, etc. A graph representation comes across as a natural choice for repre-

senting complex relationships as the data visualization process is relatively simple as

compared to a data in traditional RDBMS representation. Data representation in the

form of a graph preserves the structural information of the data which may otherwise

be lost if it is translated into other representation schemes.

15

3.2 Overview of Graph Mining System Subdue

Subdue [10], the earliest work on graph mining, uses information-theoretic

model for determining the best substructure given a forest of unconstrained graphs.

This substructure discovery system was developed by Cook and Holder. The Sub-

due discovery algorithm discovers repetitive patterns and interesting substructures in

graph representations of input data. A substructure is a connected sub graph within

the graph representation. In a graph, entities and objects are mapped to the vertices

and the relationship between these objects is represented as the edge between the cor-

responding pair of vertices. An instance of a substructure in an input graph is a set

of vertices and edges from the input graph that matches the graphical representation

of the substructure.

The input to Subdue is a forest of graphs and the output is a set of substructures

that are ranked based on their ability to compress the input graph using the Minimum

Description Length (MDL) principle. The compression technique is elaborated in

detail in the following sections.

Figure 3.1. High-level view of shapes.

The input is in the form of a table consisting of a list of unique vertices in the

graph and edges between them. The output is a list of representative substructures

16

discovered in the input graph that compress the graph most and each is qualified by its

size and occurrence frequency in the input graph. Consider the example in Figure 3.1

. It is a high-level view of shapes resting on a table. The graphical representation of

these shapes is shown in Figure 3.2 below.

Figure 3.2. Graph representation of shapes example.

The input for Subdue (for this particular example) is as shown in Figure 3.3.

This input is in the form of a file consisting of the list of vertices and the edges

between the vertices.

Figure 3.3. Subdue Input for shapes example.

17

Subdue generates the best substructures that compress the input graph the

most and lists out the top n substructures. The output given by subdue for the

example in Figure 3.2 is displayed in Figure 3.4.

Figure 3.4. Subdue Output for shapes example.

3.2.1 Parameters for control flow

There are a number of parameters that Subdue provides the user in order to

control the flow of the substructure discovery process. The input to Subdue is the file

containing the list of vertices and corresponding edges as shown in Figure 3.2. The

parameters which drive the discovery process of Subdue are as follows:

18

1. BEAM: This parameter specifies the number of top substructures. Top BEAM

substructures are retained for the expansion in each iteration of the discovery

algorithm. The default value of the beam is 4.

2. ITERATIONS: Iterations is used to specify the number of iterations to be made

over the input graph. The best substructure from the previous iterations is taken

to compress the graph for the next iteration. The default is no compression.

3. LIMIT: Limit specifies the number of different substructures to be considered in

each iteration. The default value is (number of vertices + number of edges)/2.

4. NSUBS: This parameter is used to specify the number of substructures to be

returned as the result from the total number of substructures that Subdue

discovers.

5. OVERLAP: Specifying this parameter to Subdue allows the algorithm to con-

sider overlap in the instances of the substructures. Instances of substructures

are said to overlap if they have a common substructure in them.

6. PRUNE: If this parameter is specified, then the child substructures whose value

is lesser than their parent substructures are ignored. Since the evaluation heuris-

tics are not monotonic, pruning may cause SUBDUE to miss some good sub-

structures, however, it will improve the running time. The default is no pruning.

7. SIZE: This parameter is used to limit the size of the substructures that are con-

sidered. Size refers to the number of vertices in the substructure. A minimum

and maximum value is specified that determines the range of the size parameter.

8. THRESHOLD: This is the parameter that provides a similarity measure for

the inexact graph match. Threshold specifies how different one instance of a

substructure can be from the other instance. The instances match if match-

cost(sub, inst) <= size(inst)∗ threshold. The default value is 0.0, which means

19

that the graphs should match exactly. Currently, Subdue supports threshold

values up to 0.3.

3.2.2 Substructure Discovery in Subdue

The substructure discovery in Subdue is done by using a beam search and

progresses in an iterative manner starting with substructures of size 1 and expanding

to successively larger substructures. A list consisting of a set of substructures to be

expanded is maintained. The input graph is compressed by replacing the instances of

these substructures by a single node. The resulting input graph is then used for the

next iteration to find other interesting substructures. This process continues until

the number of iterations specified by the user is reached or it meets one of the several

halting conditions such as the total number of substructures needed provided by the

user. The occurrences of substructures that have an exact match are unlikely to occur

in most domains. Substructure instances that are not exactly the same but are similar

can also be discovered by Subdue. Subdue is capable of discovering both exact and

inexact (isomorphic) substructures in the input graph. Subdue employs a branch and

bound algorithm that runs in polynomial time for inexact graph match and discovers

graphs that differ by a threshold given by the user. This discovery process is used to

find repetitive and interesting substructures or patterns. After that it compresses the

graph by replacing the instances of these patterns by a single node in order to provide

a hierarchical view of the original input graph. Subdue compresses the input graph

using the substructures generated. In order to determine which of those substructures

compress the graph best, Subdue uses the MDL principle to evaluate the compressed

substructure. After compressing the substructure in multiple iterations, the best

substructures are output. Subdue system finds interesting and repetitive patterns

using graph mining.

20

However, if a user wants matches of a specific pattern then graph mining may

not be the best idea because the user is interested in specific pattern. Graph querying,

on the other hand, takes graph pattern as an input and retrieves similar patterns from

the data graph. In graph querying, we find all the occurrences of a given substructure.

In the following section we discuss the relationship between graph mining and graph

querying and also discuss how a graph mining system can be re-purposed into a graph

querying system.

3.3 Graph Mining to Graph Querying

The abundance of graph data in a variety of domains implies that graph query-

ing is needed in addition to graph mining as a form of information retrieval and

analysis. Graph querying can be seen as a special case of graph mining where ex-

ploration looks for specific patterns that match a query and hence can be deemed as

restrictive mining. Graph mining identifies frequent and significant graph patterns,

classifies new graphs based on the knowledge of known graphs, or clusters graphs

into subclasses according to the mutual relevance. A graph query, on the other hand,

takes a graph pattern as input and retrieves exact match patterns from the data. In

graph querying, we want to find all the occurrences of a given substructure. Graph

mining, unlike graph querying, starts with all the vertices in the graph and hence, is

called unrestricted search. Therefore, for querying specific patterns, general purpose

mining approach can be modified based on the nodes in a query. We can make use

of information from query graph to improve our search.

In general, a mining system can be converted to a querying system by restricting

its start nodes for expansion followed by expanding starting nodes to desired nodes.

Intermediate substructures that do not follow the query patterns are discarded. Thus

a querying system can be developed with modifications to a mining system. Having

21

provided an overview of graph mining, graph querying, and an introduction to the

Subdue discovery system, in the next chapter, we elucidate how data graphs and

query graphs are represented as well as the types or classes of queries that can be

handled in our approach.

22

CHAPTER 4

GRAPH AND QUERY REPRESENTATION

4.1 Graph Representation

In this section, we discuss the representations used for the graph databases. A

graph consists of nodes and edges. A node typically contains a node label, a node

id and an edge connecting to the other node. An edge is a connection between two

nodes which can be labeled or unlabeled, directed, or undirected. Consider the graph

shown in Figure 4.1.

Figure 4.1. An example graph containing movie information.

23

Figure 4.1 shows a portion of a graph database consisting of a movie and its

related information. Nodes are connected to each other based on the relationship

between them. If a user wants to retrieve the information from this graph, s/he can

query this graph. For example, Find male actors in the movie Beyond all boundaries

in the year 2011. In this case all the nodes which are connected to the movie Beyond

all boundaries with the edge label actor, would be its answers. Another example of a

query could be Find persons who have worked in the movie Beyond all boundaries in

the year 2011. In this case, the person is an additional information which denotes the

general category for actors/actress in the graph. Since this additional information is

missing in the graph (Figure 4.1), so this query cannot be answered with the given in-

formation. This necessitates the categorization of the nodes based on their attributes.

Moreover, graphs (i.e., IMDB, DBLP, Freebase, Knowledge graph) nowadays come

with the property information along with the node. In other words, each node be-

longs to some category. Therefore, to group node labels with the same semantics

(e.g., author, city) in the graph, the concept of type nodes can be used. Non-type

nodes are viewed as instance nodes. Every instance node is connected to its respec-

tive type node and other instance nodes. The concept of type node is analogous to a

super class and all instance nodes belong to the super class. For example, in the case

of a social network graph, if two instance nodes John and Mary belong to the type

Person then John and Mary nodes would be connected with its type node Person.

In case of DBLP there are four types of nodes: author; paper; year; and conference.

Each type of node is connected to all instances which are of that type. For example,

instances of conferences are the values of conferences such as sigmod, cikm, etc., and

the instances for author are names of author who have published a paper, such as

Jeffrey D. Ullman, Shantunu Sharma, etc. Consider the graph in Figure 4.2, which

is an extended version of the graph in Figure 4.1 including the type information.

24

Figure 4.2. An example graph with the type information .

In Figure 4.2 there are six type nodes shown. Number of type nodes is applica-

tion dependent. This number is an indicator of how many different categories of the

nodes exist in the dataset. All instance nodes are connected to their respective type

nodes and with other instance nodes as appropriate. This signifies the connection

among instances. It captures both property relationship of an entity and relationship

across entities.

25

4.2 Graph Query and its Representation

A query is a request to retrieve the information from the graph database and

it can be as simple as, Find names of restaurants in Arlington, or more complex

like, Find movies with all its cast information where the movie genre should not be

Drama, and all movies should be before 2005, cast should be male and working as

an actor, and movies should belong to the company Paramount pictures. Based on

the different types of queries, it can be classified into several categories. In the graph

database model, several types of queries can be specified:

1. Single relation queries

2. Join queries (multi-relational queries)

3. Queries with logical operators (AND, OR)

4. Range queries (<, >, =, >=, <=, ! =)

5. Aggregate queries (Count)

Similarly, a general graph query processing system should be able to answer

all query categories. Consider a conjunction of conditions of the form attr op value,

where op is one of the comparison operators (<, >, =, >=, <=, ! =), and attr could

be a type or an instance. This is called conjunctive normal form (CNF). General

query can be represented as follows.

26

Figure 4.3. General query graph .

Figure 4.3 is a general representation of a query graph. There can be any number

of nodes in a query. The above mentioned query categories can be represented using

this general representation. In this section, we discuss types of queries with the help

of examples.

1. Single/Multi-relational queries: For each instance node there is only the equal

operator present in the query. For instance, Find papers published by the

author Karl Aberer in the conference BNCOD in the year 2011, is an example

of a simple query. Its graphical representation (Figure 4.4) is as follows.

27

Figure 4.4. Representation for a Simple Query .

Figure 4.4 represents the graph form of the aforementioned simple query. Each

instance node is connected to its respective type node. In this query we have to

find papers, so the node connected to the type paper is ?. All the edge labels

in this query are the same as the edge labels in the main graph.

2. Queries with logical operators: Logical operators include AND, OR, NOT op-

erations. Queries typically include one or more logical operators. Each of the

above operators is represented in a slightly different manner.

(a) AND: This operator is used in queries where all the conditions have to

be true in order to fetch the results. Essentially each AND condition is

a different node in the query. For instance, Find paper written by Saket

Sathe and Karl Aberer in 2011 is an example of a query with AND operator.

28

In this query Saket Sathe and Karl Aberer are two conditions which have

to be fulfilled. Following is the representation of the given query.

Figure 4.5. Representation for an AND Query .

Figure 4.5 represents the graph form of the AND query. In the case of an

AND condition both the author nodes are connected to the paper node,

that means both the conditions should be satisfied. Each instance node

is connected to its respective type node and other instance nodes. In this

query we have to find papers, so the node connected to the type paper is

?.

(b) OR: This operator is used if any one out of all given conditions is true.

So in this case, result would be the union of all the OR conditions. For

example, Find paper published by Karl Aberer in 2010 or 2011 in the

29

conference sigmod. in this query results from both the year would include

in the answer set. OR queries are represented as follows.

Figure 4.6. Representation for an OR Query .

Figure 4.6 represents the graph form of the OR query. In the case of OR

conditions both the year conditions are denoted in two different plans. The

result would be the union of both the plans having unique elements. In

the case of OR queries, all OR conditions are represented in different sub

plans and the result would be the union of all the sub plans. Each instance

node is connected to its respective type node and other instance nodes.

(c) NOT: If we want all the results except for a particular condition, the NOT

operator is used. In this case, the result set would include all the results

except the given NOT condition. To represent NOT query, != symbol is

30

used. For instance, Find all the movies where Brad Pitt has worked as a

director except in the year 2005 shows an example of a NOT query. In this

query, results from all years except 2005 would be in the result set. NOT

queries are represented as follows.

Figure 4.7. Representation for a NOT Query .

Figure 4.7 represents the graph form of the NOT query. In the case of a

NOT condition, instead of equality sign we use ! = symbol to represent

the condition, that means except the given value, all others should satisfy

the condition.

Moreover, queries may contain a combination of more than one logical operator

and range operators. In this case each logical operator is represented as mentioned

above and the result set would include the answers satisfying all the conditions. For

instance, Find movies with all its cast where movie genre should not be Drama, and

all movies should be before 2005, cast should be male and working as an actor and

movies should belong to the company Paramount pictures contains more than one

31

logical operator along with a specified range. Following is the representation of this

query.

Figure 4.8. Representations for Queries with a Combination of Logical and Range
Operator .

Figure 4.8 represents the graph form of the query having a combination of

multiple logical and range operators. Each instance node is connected to its respective

type node along with other instances.

In this chapter we have discussed several categories of the queries and their

representation. A graph query generally consists of a small number of nodes and

edges compare to the graph database. A querying system takes a query as an input

and retrieves all the exact matches of the query in the main graph. A general query

answering system can start from any node in the query and expand to a sequence

32

of edges in the query graph until all matches are found. An ordering of nodes in

which each node (with the desired label) is expanded exactly once forms a query

plan. Having provided a detailed description of the query categories, in the next

chapter we discuss about alternative query plans and how one plan differs from other

plan. We also discuss the cost metric to evaluate plans.

33

CHAPTER 5

PLANS AND THEIR COST EVALUATION

Queries are the primary mechanism for retrieving desired information from any

dataset. Query results are generated by accessing the relevant data by traversing

graph databases, in a way that yields the requested information. A query may have

multiple results. For a given query, based on the different starting points there may

be multiple ways to evaluate the same query and these alternatives are called plans.

It is critical that all alternatives give the same result. This chapter discusses the cost

metric for the evaluation of alternative plans and when one plan is considered better

than the other. We also discuss the catalog information and cost formulas needed for

evaluating a plan.

5.1 Query and its matches

A query is a small graph or a pattern (as compared to the graph database)

which may have multiple exact matches in the data graph. A query is input to the

graph query processor and all the matching patterns are returned. Consider Figure 5.1

which shows the main graph, the query and its exact matches.

34

Figure 5.1. A query graph, a data graph and its exact matches.

Figure 5.1 shows the graphical representation of the query (Find movies by Brad

Pitt where he has worked as an actor in the year 2011), the graph data and its exact

matches. It is evident from the figure that there is only one exact match present in

the data graph for the corresponding query. As mentioned earlier, a graph query is a

connected graph generally consists of a small number of nodes (10s to 100s) and edges.

A general query answering system can start from any node in the query. For the query

shown in Figure 5.1, there are five possible starting nodes (except the node having ?)

and we can start with any one of them and can expand the node based on the query.

An ordering of nodes, in which each query node is expanded exactly once, forms a

query plan. Obviously there will be multiple query plans, each having a different

ordering of nodes for a single query. Clearly, in Figure 5.1, we have five possible plans

based on different starting points. If there are multiple plans then we need some way

to evaluate these plans and assess why one plan is better than the others. Intuitively,

35

a query plan that generates more intermediate results is costlier.This generation of

intermediate results needs to be quantified in some way based on the graph properties

to convert it into a cost. As discussed earlier, given a query of n nodes with k unknown

nodes, number of plans in the query would be n-k. Clearly, evaluating each and every

plan will be computationally expensive. Since unknown nodes match every node in

the graph, we do not consider them as an initial heuristics (this is similar to the

postponing or delaying Cartesian product in a relational model.) Therefore, finding a

query plan that minimizes the size of intermediate results is a challenge. Cardinality,

selectivity, and join ordering are used in the relational query optimization. Similar to

the relational model, for graph databases, the requirement is to collect appropriate

metadata information that can be used to evaluate query plans. In the next section

we discuss the parameters to evaluate the cost of a plan and the analogy between the

metadata of the RDBMS and the graph database.

5.2 Cost Metric for evaluation of plan

As discussed in the previous chapter,a query may contain comparison operators

(such as <, >, <=, >=, ! =, =), logical operators (AND, OR) and combinations of

these. Before we can evaluate the cost, some meta information is needed to estimate

the cost of an operation.

As mentioned earlier, in relational databases some meta information is kept to

estimate the cost of a plan. Graph databasesare analogous to the relational databases

in some ways. For instance, in the graph databases, the type nodes are similar to

the attribute names in relational databases. Similarly, the number of instances of a

type node is analogous to the number of values of an attribute. Another important

parameter is the number of connection an instance node (of a particular type) has

to other instance nodes of a specific type with specific edge label. In the case of a

36

graph, we can identify the number of connection from a type node to its instance node

based on the given condition; this gives an estimation of the selection cardinality of

a node. Therefore, we need to store some graph information in order to estimate

the cost of a plan. This information can be gleaned by processing the graph, which

can be effectively used for estimating the number of intermediate substructure. This

information is collected and stored in agraph catalog. A traversal of the graph is

likely to be needed for collecting this information. If the graph evolves the additional

information can be gathered incrementally. In this section we discuss the graph cat-

alog which contains the relevant graph statistics which can be utilized for evaluating

a plan.The following metadata is extracted from the graph.

1. Unique Type Names: This captures all the names of unique type nodes present

in the graph. In other words, it contains all the category information of nodes

in the graph. For example, in Figure 5.1 there are three categories (person,

year, and movie) of nodes. This information is analogous to the attribute name

in RDBMS. We can determine the category (type) of that instance node by its

connection to a type node.

2. Type cardinality: Type cardinality is defined as the number of instances of a

particular type node. If there are multiple edge labels from the type node to

its instance nodes then the type cardinality is taken with all the different edge

labels. This gives us the type cardinality of that type node. As mentioned

earlier, this type cardinality is used to estimate the number of substructures

generated after exploring the type node.

3. Average Instance cardinality: This number defines the number of connections

of an instance with other instances. For example, if an instance of type1 is

connected with on an average k instances of type2 and l instances of type3

then average instance cardinality of that node would be k+l. This instance

37

cardinality is used for the estimation of the number of substructures which are

generated after exploring an instance node.

4. Average Connection cardinality: Connection cardinality is the number of the

connection of an instance with another instance with particular edge label. This

information is analogous to the join cardinality in relation databases. While

exploring an instance node to another instance node, this information is used

to determine the number of intermediate substructures with the particular edge

label.

5. Min and Max values of each type instances: For numeric attributes (such as

year), this information tells the range of instances. For example, if there are

100 unique values of the instances of a year type node then, given a value we

can estimate the number of substructures based on the condition in node. For

non-numeric attributes min and max does not exist.

All nodes in a query follow the form attr op value where op is one of the

comparison operators <, <=, =, ! =, >= or > and attr is either a type or an instance.

Based the on value of op, selectivity is calculated. For example, if there is an equality

operator, the selectivity of equality condition would be 1/ type cardinality, which

means the intermediate result size would select only one out of total instances of

that particular type node. Similarly, for > and < condition, the selectivity would be

(max-value)/(max-min) and (value-min)/(max-min) respectively. For ! = condition,

the selectivity would be 1- selectivity of an equal condition.

Given a query, the purpose of a query plan generator is to generate a good

plan and eliminate potentially bad ones.Any cost computation based on meta data is

only an estimate and hence the estimate needs to be accurate in order to identify a

good plan. Having provided a detailed description of the graph catalog that contains

all necessary information to estimate the query plans, we now elaborate the design

38

and architecture of query optimizer in the following chapter. A general graph query

optimizer will accept a given a query (from a file) and use the catalog information

to find a good plan that will be evaluated over the graph database. Note that even

after identifying a good query plan, the query plan needs to be executed for finding

exact matches from the graph. This calls for query answering techniques which shall

also be discussed in the next chapter.

39

CHAPTER 6

DESIGN AND ALGORITHM

The general approach for the query evaluation is to develop a strategy that

can generate an efficient plan and then execute that plan to obtain the results. In

this chapter, we discuss the meta data collected for the catalog, a branch and bound

algorithm for the generation of one or more plans, and finally modifications to the

mining algorithm used by Subdue to convert it into the plan processor. Following is

the architecture of our query processor.

Figure 6.1. System architecture .

Figure 6.1 explains the architectural diagram of the query processor. The query

processing is mainly divided into two phases: plan generation and plan execution. As

40

shown in the figure, generated catalog file and the query are input to the plan gener-

ator which outputs a good (i.e., low cost) plan for the given query. After generating

the plan, it is used by the plan executor along with the graph database to execute

that plan. In the following sections we discuss details of each component described

in Figure 6.1.

6.1 Catalog generation

A graph needs to be processed in order to collect the metadata associated with

it. Given a graph along with its node and edge labels, we collect all the catalog

information described in the chapter 5. Consider a graph G(V , E), which has k type

nodes (t1,t2,......,tk) and each type node ti (i ∈ (1, k) is associated with mi instance/s

in the G(V , E). Catalog information is calculated as follows:

1. Type name: Each node in the graph has some attributes associated with it.

All vertex label of attribute/type node (t1,t2,......,tk) presented in G(V , E) are

therefore type nodes.

2. Type cardinality: For type node ti, the type cardinality would be mi. Type

cardinality for a type node can be computed by counting all the nodes in G(V ,

E) having similar attribute. In other words, given the type node, degree of that

type node is the type cardinality.

3. Average instance cardinality: For a given type, average instance cardinality can

be computed by taking average of degrees of instances of that type. Average

instance cardinality for a type node ti is

jX=mi

degree(mij)/mi

j=1

where mi is the number of instances of type ti and mij is a particular instance

of type ti where j ∈ (1, mi).

41

4. Average connection cardinality: Connection cardinality for a given type is com-

puted by taking an average of number of connections to other type instances

with particular edge label in G(V , E). For two type nodes ti and tj , if there are

ni and nj number of instances (out of mi and mj respectively) involved with

edge label e then the connection cardinality from ti to tj for edge label e would

be eij /mi where eij is the total number of edges between mi and mj with edge

label e .

5. Min and Max values: If ti is a numeric node type (such as year) then out of mi

instances, minimum and maximum values are kept.

Consider the graph in Figure 6.2. This graph is a snap shot of the IMDB

database. The catalog computation explained above is shown for this example graph.

Figure 6.2. IMDB example graph .

Using the formulae described above, the following catalog information is gener-

ated.

42

Figure 6.3. Catalog for graph in Figure 6.2 .

Figure 6.3 has four columns. First two columns are From Node and To Node,

third column contains the edge label between first two columns, and in the last column

average cardinality information is kept. If we traverse from From Node to To Node

with that edge label, then the average cardinality in the catalog is used in the cost

estimation. An ∗ in the catalog represents all, which essentially means the instance

cardinality of From Node. For the numeric attributes min and max values are also

computed to estimate the selection cardinality. With the discussion of catalog gener-

ation, in the section below, we elaborate on how this catalog information is used to

estimate costs of partial plans as they are generated.

43

6.2 Cost estimation of partial plans

For any query, assuming the availability of a catalog, the goal of plan generator

is to generate a good plan. In plan generation we use the number of substructure

generated during the answer computation as a cost metric. Intuitively, a plan which

generates more number of substructures while computing an answer is costlier. To

keep track of the cost of a partial plan, two parameters cost and currSubs are

maintained. Cost signifies the total number of substructure generated by the plan so

far while currSubs maintains the number of estimated current substructures during

the expansion in that iteration. The algorithm first finds the seed node to start with.

For a query with n nodes, if there are m unknown nodes, this algorithm starts from all

the n-m nodes and the estimated cost is associated with each of the starting nodes.

The unknown nodes (i.e., nodes with a question mark) are not used as a starting

nodes as its cardinality is the number of nodes in the graph as a ? matches any label.

The plan generation algorithm uses the branch and bound algorithm and beam size

(k) which determines the number of plans to be expanded after each iteration. The

algorithm picks k (out of n-m) least cost plan for expansion. All connections of a node

are known from the query. In a plan, a node is expanded to the node which generates

less number of substructures compared to other nodes. After each expansion, cost

is updated. This algorithm continues expanding k least cost plans until it covers all

edges in the query for all k plans. The sequence of nodes in which they are expanded

is returned as a plan.

6.2.1 Cost estimation in plan generation

In the plan generation algorithm cost is incurred in each expansion. Cost is

typically the function of instance cardinality of the node (which we are expanding on)

and the number of current substructure in the plan. If the plan which is expanded

44

on ti (or an instance of ti) to tj (or an instance of tj) with an edge label e then the

cost would be the multiplication of instance cardinality of ti and number of current

substructure. Similarly number of estimated substructure would be the product of

current number of substructure, connection cardinality (ti to tj with edge label e),

and the selectivity of a query node. In each iteration substructure having n node

is expanded to substructure with n+1 nodes and corresponding cost and number of

current substructures are updated.

6.2.2 Algorithm of the plan generator

Above is the algorithm for generation of the plan. This algorithm takes catalog

information and a query graph as input and generates a good plan as an output (line

1 to line 2). This algorithm uses the branch and bound technique to limit the search

space and for that one parameter Beam Width (k) is kept. It means that at a time

only k out of all possible plans will be expanded. This algorithm starts with taking

all the known nodes in the query as starting point of the plans (line 3 to line 6). All

the plans are now initialized with the estimated cost based on the catalog information

(line 7 to line 9). This algorithm now picks best k cost plans and expand these plans

from n edge substructure to n+1 edge substructure. After each iteration best k plans

are updated. Algorithm continues until k least cost plans get completed (line 10 to

line 17).

Consider a query ”Find persons who have worked as actors in the movie Beyond

all boundaries in 2011”. The graphical and subdue representation of the query is

shown in the Figure 6.4 and Figure 6.5 respectively. The beam size (k) in this example

is 5. The catalog is shown in the Figure 6.6.

45

Figure 6.4. Graphical representation of the query.

Figure 6.5. Subdue representation of the query.

46

Figure 6.6. Catalog for IMDB dataset (12K vertices and 30K edges).

The query plan is evaluated for the given query in Figure 6.4. In this query

there are 6 nodes and out of that only 1 node is unknown, therefore the algorithm

starts from all the remaining 5 nodes. cost and currSubs are initialized by 1 for each

of the plan, since there are only one substructure in each of the plan. Following the

algorithm plans are generated as shown in the figure below.

47

Figure 6.7. Output plans are shown for the given query graph.

In above Figure 6.7 all five plans are shown with their estimated cost (number

of intermediate substructure). Each plan gives the same result set but is different

in terms of generating intermediate number of substructure. Intuitively if a plan

generates more number of substructure, it will take more amount of time to process,

hence is a costlier plan than the one which generates less number of intermediate

substructure. There are two factors which determine the cost of a plan. First is the

degree (cardinality) of a node. If we start with a node which has higher degree than

other node, that means it will generate number of substructure equal to its degree.

In all the plans shown in above figure, plan 1 starts from a node which has degree

higher than other starting nodes so initial cost becomes high. Second is position of an

48

unknown node, if algorithm expands to an unknown node first, then the number of

substructure in the plan becomes more, so each expansion is performed for all number

of substructures in the plan. Therefore the cost of the plan becomes high. This is

analogous to pushing selection and projection down in the tree in the RDBMS. In

the plan 1 in above figure, first expansion is on unknown node, due to this plan keeps

all the generated substructure. Each expansion after that is performed on all these

number of substructures, that is why the estimated cost of the plan 1 is more. In

all the plans except plan 1 number of expansions after encountering unknown node

are comparatively less, hence the costs of other plans are less compare to the plan

1. In plan 2 algorithm expands on all possible known nodes first, that is the reason

why plan 2 performs best among all the plans. Plan 2 and Plan 4 encounter unknown

node at same position, so the difference in cost is because of the cardinality of starting

nodes. After generating a good plan by the plan generator, the plan is fed to the plan

executor with the graph database. In the section below we elaborate the modifications

in an existing system called Subdue and the working of plan executor.

6.3 Plan Execution

As discussed earlier in previous chapters that Subdue is a graph mining system

which takes the graph database as an input and finds the interesting substructure

from the data. We also elaborated the relationship between graph mining and graph

querying. A querying (also called as restrictive mining) is a special case of mining.

In this section we discuss the modifications in the Subdue, and how a mining system

can be converted to a querying system.

In mining algorithm the only input is the graph databases and the output is

hidden interesting substructures. On the other hand, in the case of querying system,

query plan (sequence of nodes to be traversed) also needs to be input to find the

49

matches. Graph mining algorithm starts from all the unique node labels in the graph

while in our case, we start from a unique vertex label specified in the plan. Instead

of expanding in all possible ways (in case of mining), we restrict the expansion (to

only the particular node with specified edge label) based on the plan. In addition,

to support comparison operators we have implemented <, <=, >, >=, ! =, and

= operators. When the node is expanded to the desired node label, operators are

checked to ensure that whether the node (which algorithm is going to expand upon)

meets the condition. If the node does not meet the condition it is discarded. We

continue until all the nodes and edges in the plan get covered.

The algorithm for plan execution takes graph database and query graph as

input and outputs all the exact matches to the query (line 1 to line 2). Each plan is

a sequence of nodes to be traversed. This algorithm starts from finding the first node

label in the graph database (line 3) and expands this node to next node as specified

in the plan . It keeps on expanding on the nodes to the desired nodes according to

the plan until all the nodes and edges get covered (line 4 to line 7).

Figure 6.8. Results from the plan executor for the input query plan.

50

After executing the plan in QP-Subdue results are shown in the form of a

graph. For the query in Figure 6.4 results are shown in the above figure, which

are the exact matches of the specified query. In this chapter we have explained

the design of the system architecture and also elaborated the detailed algorithm of

each component involved. Having provided this discussion, in the next chapter we

elaborate the experiments and their results on various plans.

51

Algorithm 1 Plan Generation algorithm
1: Input : Query Graph, Catalog information, Beam Size (k)

2: Output : k alternative plans with their estimated cost

3: initialize planNodeList with null

4: for each node q in the query add q as a starting point of a plan do

5: add q to planNodeList

6: end for

7: for each node p in planNodeList do

8: initialize p with the estimated cost using the catalog information

9: end for

10: while number of completed plans ¡ k do

11: for each of k lowest cost plans do

12: expand each plan to the next node

13: cost = previous cost + added cost;

14: end for

15: update k lowest plans

16: update number of completed plans

17: end while

18: write out k plans

52

Algorithm 2 Plan Execution algorithm
1: Input : Graph database, Query graph

2: Output : Exact matches of the query graph in the graph database

3: Initialize current node with the starting node based on the plan

4: while all the nodes and edges in the plan get visited do

5: Expand the current node to the desired node with specific edge based on the

plan

6: Update the current node according to the plan

7: end while

53

CHAPTER 7

EXPERIMENTAL EVALUATION

This chapter presents the results of extensive experimental analysis performed

on various queries of different databases. The experimental result reinforce our

premise that the number of intermediate substructures generated in any plan de-

termines the execution time of the plan. The consistent performance of the plan

generator across different types of queries and databases establishes the applicability

of our proposed approach for plan generation. As we have considered different real

time graph databases and queries, the performance of the plan generator for each

database is presented in detail in a separate section. The experimental setup and

a brief description of the data set used is also provided. Before we elaborate the

performance of the plan generator, a brief overview of the system implementation is

presented below.

7.1 Implementation

The plan generator is implemented in Java. Java has been chosen as the lan-

guage of choice, as it provides excellent support for string processing, since the labels

in a typical graph database are strings. The plan execution algorithm is implemented

in C as it is a modification of the Subdue system that has been implemented in C.

In order to make it easier for a user, the inputs from an end user is kept to a mini-

mum and a configuration file is used to provide either defaults or choices. A scripting

language is used to accept the configuration file containing all the information. The

QP-Subdue system consists of the following modules: i) catalog generator, ii) plan

54

generator which can output various types of plans including all plans for a query, a

query processor that takes a graph database, a plan, and outputs the exact answers to

that plan. The QP-Subdue system generates several intermediate outputs including

the catalog file, a plan file consisting one or more plans for each query, and an output

file for each query. The configuration file contains all the information needed for the

QP-Subdue system to process one or more queries on a graph database.

In the implementation of the various routines, we have been able to optimize

greatly due to the use of Java, which is geared towards string processing and ex-

traction. The availability of pre-developed functions for many routine tasks and the

ability of handle complex data structures that have been utilized in the implementa-

tion justify its use. In the discussion that ensues we will briefly describe some of the

implementation aspects of the various modules and parameters used.

7.1.1 Plan generation

Plan generator takes catalog information and query graph as input. The catalog

information needs to be stored before we can utilize this. As described in the previous

chapter that for expansion in the query plan, we need to find the average cardinality

information for the unique tuple (combination of from node, to node and edge label).

The combination of unique tuple is stored as a key in a hash map and the value of

the hash map is the average cardinality. After processing the catalog files query file

is also processed. In query processing we create an adjacency list for each node based

on the connectivity and assign a boolean flag with each node to keep track of whether

the node is a type or an instance node. A query node has the vertex label in the form

of attr op value. However, in the graph database, vertices have only value. attr and

op in the query node carry the information of type of node and operator respectively.

This information is kept separately during the parsing of query. In other words, attr

55

and op is stored separately than the actual vertex label (value). This algorithm also

uses branch and bound technique to limit the search space, which means only beam

width(k) number of plan are expanded instead of expanding all the plans. We keep

track of top k plans with their plan id in a hash map and after each iteration, hash

map is updated. In each expansion estimated cardinality information is taken from

the catalog and estimated cost of a plan is updated. The output is a plan file which

consists of top k plan with their estimated cost.

Input for the plan generator is a catalog and a query file, and output is the plan

file. Catalog is shown in the Figure 7.1.

Figure 7.1. Catalog file.

Similarly, the graph query is represented using the subdue representation. Graph-

ical query and subdue representation are shown in the Figure 7.2 and Figure 7.3

respectively.

56

Figure 7.2. Graphical representation of a query.

Figure 7.3. Input file of the query in Figure 7.2.

After processing the query, plan generator outputs a plan which is fed into plan

processor. Figure 7.4 is the representation of the output plan.

57

Figure 7.4. Plan file (input to the plan processor) .

In above figure, plan is the sequence of edges, to be visited. In this case the first

node would be 2011, which is expanded on year node with edge label is. = operator

means that the node is equal to year. Similarly all the edges are covered in the plan.

In the section below, implementation of plan executor is discussed.

7.1.2 Plan Execution

Plan execution takes place after the plan generation. Plan file and graph

database are input to the plan executor. Plan executor first processes the graph

database and stores the information of vertices and edges. Plan file contains the se-

quence of nodes with operators and edges. Subdue starts the discovery process by

finding the starting node mentioned in the plan file. In this step, all vertices with this

label become the starting point (instances of the substructure having one node). From

the plan file, now next node along with edge label and operator is looked up. After

first iteration, all these instances (starting nodes) are expanded in all possible ways

but only those substructures are kept which meet the conditions (next node label,

edge label connecting both the nodes and operator) specified in the plan file. This

process continues until all the nodes and edges in the plan file get visited. Structures

58

which do not meet the conditions in the plan file, are discarded. After processing the

query results are shown in the form of subdue graph representation as shown in the

figure below.

Figure 7.5. Query matches after processing the plan on the graph database .

The query matches are shown in the above figure, which have representation

similar to the query. In the section below we discuss the experimental analysis of

various categories of queries and the performance of the plan generator.

7.2 Experimental Analysis

With the important implementation details outlined, we now elaborate the

performance of the plan generator for various queries over different graph databases.

All experiments have been carried out on Dual Core AMD Opteron 2 GHz processor

machine with 16 GB memory. Extensive experiments on different queries with diverse

59

characteristics have been carried out to study the performance of the plan generator.

In the section below we discuss the data set and query characteristics.

To evaluate the performance of the plan generator, we used IMDB and DBLP

data sets for the experiments. The maximum size we could handle for these graph

databases is with 350000 nodes and 1200000 edges on 16 GB machine, since the

whole graph loads in the main memory. DBLP data set contains the information

of publications along with the information of their authors, conferences and years.

Similarly, IMDB graph database contains the information of movies, actors, genres,

year, company, etc.

For the above mentioned graph databases, we took queries having different

characteristics such as queries with a comparison operator (<, <=, >, >=, ! =, =),

queries with a combination of multiple comparison operators, queries with logical

operator (OR, AND) and queries with a combination of logical and comparison op-

erators. In the section below we demonstrate the performance of the plan evaluator

on different categories of a query. Plan generator generates a good plan using the

information of catalog and query. Intuitively, a plan which generates less number of

intermediate substructure, should take less amount of time to obtain results. There-

fore the minimum cost plan would be a plan which generates minimum number of

intermediate substructure among all possible plans. Similarly the maximum cost plan

would be the plan which generates maximum number of intermediate substructure.

In order to see the difference among various plans, we generated all the possible plans

from the query and picked minimum, median and maximum cost plans to see the ef-

ficiency of the plan generator and to evaluate the difference in time taken to execute

various plans.

60

7.2.1 Performance of plans

• AND Query: ”Find tv-series and its company name, where Kelsey, Wagner

has worked as an animator and genre of the tv-series should be animation and

comedy” is an example query to IMDB graph database containing AND logical

operator. The AND operation is between two genres animation and comedy.

The result set would contain tv-series which belong to both the specified genres.

Below are the results of running different plans (min, med, max cost plans) on

different sizes of IMDB data set.

Figure 7.6. Execution time (in secs)of an AND query on different sizes of databases
for min, med, and max cost plan .

As it is clear from the figure that in each data set, minimum cost plan takes

significantly less amount of time. Clearly, the difference in execution time be-

tween min cost plan versus other plans is due to the number of intermediate

substructure generated/processed. The minimum cost plan performs at least

61

300 times better than the worst plan in all the cases. It evidently shows the

efficiency of the plan generator.

• COMB Query: ”Find tv-series and its company by Soler, Rebecca where the

genres should be drama and family and the year is not equal to 1996 ” is a

query to IMDB graph database which contains a combination of both compar-

ison and logical operator. In this query the result set would contain tv-series

which belong to both drama and family in all the years except 1996. In different

plans, different number of intermediate substructures are generated. Execution

time for different plans over different sizes of data set is shown in the following

figure.

Figure 7.7. Execution time (in secs) of a COMB query on different sizes of databases
for min, med, and max cost plan .

62

In the figure above min, med, and max cost plans are run on the different data

set and in each data set, performance of the minimum cost plan is significantly

higher than other plans.

• OR Query: ”Find tv-series and its company where Kelsey, Wagner has worked

as an animator OR Soler, Rebecca has worked as an actress” is a query to IMDB

graph database having an OR operator. As explained earlier, OR queries are

divided into multiple sub plans based on the OR condition specified. Therefore,

this query first finds the tv-series where Kelsey, Wagner has worked as an

animator and then the second part finds tv-series where Soler, Rebecca has

worked as an actress. The union of both the sub plans would be the result set.

The same query is run on different sizes of IMDB graph database and following

results are obtained.

Figure 7.8. Execution time (in secs) of an OR query on different sizes of databases
for min, med, and max cost plan .

63

Again, the performance of the minimum cost plan by the plan generator is

exceptional compared to the other plans. On the largest data set the minimum

cost plan performs approximately 300 times faster than the maximum cost plan.

If we compare the execution time of this OR query with the execution time of

above mentioned AND and COMB query, the time taken in the case of OR is

more. One of the reason for it is because of multiple sub plans. The time for

the minimum cost plan on different data sets varies from 10 milliseconds to 20

milliseconds, while for the maximum cost plan it varies approximately from 15

seconds to 59 seconds.

• Comparison operator (<): ”Find papers published by the author Eric Hanson

before the year 2009 ” is an example of query which contains < operator, and

this query is run on DBLP graph database. In this query, user is looking for

papers by a particular author before the specified year. We run this query on

DBLP graph databases of different sizes, following are the results of executing

different plans on these data set.

64

Figure 7.9. Execution time (in secs) of a query containing comparison operator on
different sizes of databases for min, med, and max cost plan .

In the figure shown above, for each data set, three plans are executed for the

same query. The minimum cost plan executes in considerably less amount

of time compared to other plans. This shows the effectiveness of the plan

generator.

• COMB Query: ”Find papers where Yuri Breitbart AND Abraham Silberschatz

have collaborated together after the year 1980” shows an example of a combi-

nation of a query with comparison and logical operator. In this query the AND

operation is in between two authors and all the papers after 1980 would be in

the result set. This query on DBLP data set performs as shown in the following

figure.

65

Figure 7.10. Execution time (in secs) of a combination of multiple operator on dif-
ferent sizes of databases for min, med, and max cost plan .

Execution time is shown in the figure for the query with a combination of

multiple operators. The time varies for minimum cost plan from 9 millisecond to

19 millisecond on different data sets, while for the maximum cost plan, it varies

approximately from 9 seconds to 30 seconds. In each data set, the minimum

cost plan performs better than any other plan.

• Query with multiple unknowns: Plan generator is also able to handle queries

which have multiple unknown nodes. ”Find authors with their papers and

conference information in year 2005” is an example of a query which has multiple

unknown nodes (authors, papers, conference). Clearly if there are multiple

unknown nodes that means the expansion would happen to all possible nodes,

therefore number of intermediate substructure would be more. The execution

time for this query is shown in the following figure.

66

Figure 7.11. Execution time (in secs) on different sizes of databases for min, med,
and max cost plan .

It is clear from the above results that execution time of this query is compar-

atively more than any other previously mentioned query. As explained that it is

because of more number of intermediate substructure. In this query the minimum

cost plan varies from 70 milliseconds to 3.8 seconds, while the maximum cost plan

varies from 13 seconds to 451 seconds. Evidently, the effectiveness of the plan gener-

ator is in bringing down the time from 451 seconds to 3.8 seconds in the largest data

set. In all the data set this system is capable of generating a plan which is at least

100 times faster than the worst plan.

In summary, we have carried out exhaustive experiments across various domains

and presented the results of our findings. The consistent performance of the plan

generator has validated our expectation about the feasibility of the proposed novel

approach for various types of queries over graph databases.

67

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this thesis, we have proposed an approach for query optimization in graph

databases that uses similar techniques employed in relational databases. We have

developed a framework that allows us to generate query plans for various types of

queries which include comparison and logical operations. Our premise that time taken

to evaluate the query depends on the intermediate number of substructures is justified

by the time taken in the execution of different plans which differ in their estimated

number of intermediate substructures. The plan which generates less number of

substructures takes less time for its execution. The proposed approach overcomes

the limitation of conventional techniques in graph databases that evaluate the query

without generating any specific plan.

In order to evaluate queries efficiently, we have developed the plan generator for

various types of queries and have also demonstrated how a graph mining system can be

modified to a graph querying system. The need for a plan generator for generating cost

effective plans has been established. Various parameters that affect plan generation

have been identified and analyzed in detail. The results of the exhaustive experiments

that were carried out validate the effectiveness of our approach.

We have proposed a query representation scheme for various types of queries

(containing different relational and logical operators) which can be used to retrieve

meaningful information from a graph databases. The plan generator effectively uses

the catalog information which is generated just once from the graph database (by

making a single pass over the graph database input file and not even materializing

68

the graph in memory; hence this can be used for a graph database of any size) and used

for query processing. With the work presented in this thesis, we have developed the

underpinnings of the query optimization techniques for graph databases. Although

the performance of query optimizer is good, more work needs to be carried out to

include complex conditions that involve both relational and logical operators including

the NOT operator. Some of the enhancements that can be carried out are outlined

in the following discussion.

The performance of the queries generated by our plan generator for various

types of queries is significantly better. However, further improvement can be done

in handling a broader range of queries. In the current implementation, we handle

queries with all comparison operator (<, <=, >, >=, =, ! =) and logical operator

including AND and OR. Relational databases, on the other hand, are capable of

handling wide range of query categories (Logical NOT, order by, group by, In, and

Conjunctive Normal Form etc.) and aggregation. If we compare our work with the

relational databases, it can be significantly improved by incorporating other useful

operators. Another scope of improvement is in the catalog information. Currently

we are keeping only average values of different type nodes and their instances. In

the relational databases, histograms are used to keep more accurate information.

Similar techniques can be used in case of graph databases. This aspect needs to be

investigated to make this approach more robust as it would provide more accurate

estimation of the cost of a plan.

Moreover, although the Subdue system developed for substructure discovery

has been modified as a query processor and performs well; additional modifications

may further improve the performance of QP-Subdue. The current system expands its

instances by either one edge or one node and one edge. Clearly, for query processing,

if a node has k edges associated with it, it will take k iterations to obtain k edge

69

substructure. Instead, it may be more useful to expand all the k edges at once in

a single iteration. This will further reduce the intermediate number of substructure

and therefore execution time for query processing.

In the current system, user has to input the query in the way a general graph is

represented and the result is also returned in the same way. Instead it may be more

intuitive if we develop a GUI for the same where user can formulate the query in its

graphical representation by dragging and dropping the desired entities. In the GUI,

user will be able to see the generated plan from the query and the results in more

natural and cognitive way.

In conclusion, we believe the adaptation of query optimization techniques for

graph databases are effective and opens up new possibilities and a research direction

that is novel and different from contemporary techniques.

70

REFERENCES

[1] (2015) The DBLP website. [Online]. Available: http://dblp1.uni-

trier.de/statistics/recordsindblp.html

[2] (2015) The FREEBASE website. [Online]. Available: www.freebase.com

[3] (2015) The IMDB website. [Online]. Available: http://www.imdb.com/stats

[4] (2015) The FREEBASE website. [Online]. Available:

https://www.freebase.com/query

[5] S. Batra and C. Tyagi, “Comparative analysis of relational and graph databases,”

International Journal of Soft Computing and Engineering (IJSCE), vol. 2, no. 2,

2012.

[6] M. L. Rupley Jr, “Introduction to query processing and optimization,” Indiana

University, 2008.

[7] R. Giugno and D. Shasha, “Graphgrep: A fast and universal method for querying

graphs.” in ICPR (2). IEEE Computer Society, pp. 112–115.

[8] X. Yan, P. S. Yu, and J. Han, “Graph indexing: A frequent structure-based

approach,” 2004.

[9] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad, “Fast best-effort pattern

matching in large attributed graphs.” in KDD, P. Berkhin, R. Caruana, and

X. Wu, Eds. ACM, pp. 737–746.

[10] N. S. Ketkar, L. B. Holder, and D. J. Cook, “Subdue: Compression-based fre-

quent pattern discovery in graph data,” in Proceedings of the 1st international

workshop on open source data mining: frequent pattern mining implementations.

ACM, 2005, pp. 71–76.

71

https://www.freebase.com/query
http://www.imdb.com/stats
www.freebase.com
http://dblp1.uni

[11] M. Jarke and J. Koch, “Query optimization in database systems,” ACM Com-

puting surveys (CsUR), vol. 16, no. 2, pp. 111–152, 1984.

[12] R. Ramakrishnan and J. Gehrke, Database Management Systems, 3rd ed. New

York, NY, USA: McGraw-Hill, Inc., 2003.

72

BIOGRAPHICAL STATEMENT

Ankur Goyal was born in Bharatpur, India. He received his Bachelors Degree

in Computer Science and Engineering from Rajasthan Technical University, India in

June 2011. He attained his Master of Science in Computer Science and Engineering

from the University of Texas at Arlington in December 2015. His research interests

include graph mining, information retrieval and data mining.

73

