
 iii

ACKNOWLEDGMENTS

 First and foremost, I would like to express my deepest sincere gratitude to my

advisor, Prof. Sharma Chakravarthy, for giving me an opportunity to work on such an

interesting and challenging Snoop Event Specification Language and providing me great

guidance and support through the course of this research work. I would also like to thank

Prof. Ramez Elmasri and Dr. Alp Aslandogan for serving on my committee.

 I am also grateful to Pratyush Mishra for maintaining a well-administered

research environment and his commitment to work. Sincere appreciation is due to

Sreekant Thirunagiri, Ganesh Gopalakrishnan, and all friends in ITLAB for their

invaluable help and advice during the design of semantics. I would also like to thank all

my friends for their support and encouragement.

 I would like to acknowledge the support of AF/Spawar grant (AF 26-0201-13)

and the NSF grant (IIS-0112914) for this work.

 Last, but not the least, I thank my parents, brother and sister’s family for their

endless love and support. Without their encouragement and endurance, this work would

not have been possible.

July 11, 2002

 iv

ABSTRACT

SNOOP EVENT SPECIFICATION: FORMALIZATION

ALGORITHMS, AND IMPLEMENTATION USING

INTERVAL-BASED SEMANTICS

Publication No.__________

Raman Adaikkalavan, M.S.

The University of Texas at Arlington, 2002

Supervising Professor: Sharma Chakravarthy

Snoop is an event specification language developed for expressing primitive and

composite events in Event-Condition-Action rules. A detection-based (using the end time

of an event occurrence on the time line) semantics was provided for all the operators in

various contexts. The above detection-based semantics does not recognize multiple

compositions of some operators—especially Sequence—in the intended way. In order to

recognize all the Snoop operators in the intended way, the semantics need to include start

time as well as end time for a composite event (i.e., interval-based semantics).

In this thesis, we formalize the occurrence of Snoop event operators and

expressions using interval-based semantics for the recent context. We discuss the changes

that are made to the parameter contexts that are needed for detection of Snoop operators

in interval-based semantics. We present algorithms to detect all Snoop operators in the

recent context and unrestricted context conforming to the interval-based semantics.

 v

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

ABSTRACT ... iv

LIST OF FIGURES .. viii

LIST OF TABLES .. x

Chapter

1. INTRODUCTION .. 1

2. OPERATOR SEMANTICS IN UNRESTRICTED CONTEXT 4

 2.1. PRIMITIVE EVENTS ... 4

 2.2. EVENT EXPRESSIONS ... 5

 2.3. COMPOSITE EVENTS ... 5

 2.3.1. Event Combinations .. 6

 2.3.2. Primitive events O (E [t, t']) .. 9

 2.3.3. AND event E = O (E1? E2, [t1, t2]) .. 9

 2.3.4. Sequence Event E = O (E1; E2, [t1, t2]) ... 10

 2.3.5. Or Event E = O (E1∇ E2, [t1, t2]) .. 11

 2.3.6. Not Event E = O (¬ (E3) [E1; E2], [t1, t2]) 12

 2.3.7. Aperiodic Event Operators (A, A*) .. 13

 2.3.8. Periodic Event Operators (P, P*) ... 15

 2.3.9. Plus Event E = O (Plus (E1, n) [t, t]) ... 16

 vi

3. PARAMETER CONTEXTS AND OPERATOR SEMANTICS
FOR RECENT CONTEXT .. 17

 3.1. PARAMETER CONTEXTS .. 17

 3.2. OPERATOR SEMANTICS IN RECENT CONTEXT 19

 3.3. EVENT HISTORIES ... 19

 3.4. OCCURRENCE SEMANTICS IN RECENT CONTEXT 20

 3.4.1. Sequence operator in Unrestricted Context 20

 3.4.2. Sequence operator in Recent Context ... 21

 3.4.3. Plus operator in Unrestricted Context ... 22

 3.4.4. Plus operator in Recent Context .. 23

 3.4.5. Not operator in Unrestricted Context .. 24

 3.4.6. Not operator in Recent Context ... 24

 3.4.7. OR event .. 25

 3.4.8. Aperiodic operator in Unrestricted Context 25

 3.4.9. Aperiodic operator in Recent Context ... 26

 3.4.10. Cumulative Aperiodic operator in Unrestricted Context 27

 3.4.11. Cumulative Aperiodic operator in Recent Context 28

4. COMPOSITE EVENT DETECTION USING EVENT GRAPHS 30

5. ALGORITHMS AND DETAILED EXAMPLES .. 37

 5.1. ALGORITHMS .. 37

 5.1.1. And Operator in Recent Context ... 39

 5.1.2. Sequence operator in Recent Context ... 40

 5.1.3. Not operator in Recent Context ... 40

 5.2. DETAILED EXAMPLES .. 41

 5.2.1. Sequence operator ... 41

 vii

 5.2.2. And operator .. 43

 5.2.3. Or operator .. 44

 5.2.4. Not operator ... 45

 5.2.5. Aperiodic operator ... 46

 5.2.6. Cumulative aperiodic .. 48

 5.2.7. Plus operator .. 50

 5.2.8. Periodic operator ... 51

 5.2.9. Cumulative periodic operator .. 52

6. RELATED WORK ... 54

 6.1. SAMOS ... 54

 6.2. ODE ... 55

 6.3. TOWARDS A GENERAL THEORY OF ACTION AND TIME 56

7. CONCLUSIONS AND FUTURE WORK ... 58

Appendix

 A. ALGORITHMS FOR UNRESTRICTED CONTEXT .. 59

 B. ALGORITHMS FOR RECENT CONTEXT ... 64

REFERENCES .. 69

BIOGRAPHICAL INFORMATION ... 71

 viii

LIST OF FIGURES

Figure Page

 1.1. Example events ... 2

 2.1. Overlapping event combinations .. 8

 2.2. Disjoint event combinations ... 9

 2.3. Example for And Operator .. 9

 2.4. Example for Sequence Operator ... 10

 2.5. Example for OR operator .. 11

 2.6. Example for NOT Operator .. 13

 2.7. Example for Aperiodic Operator ... 14

 2.8. Example for Periodic Operator ... 15

 2.9. Example for Plus Operator .. 16

 3.1. Examples for Sequence Operator .. 21

 3.2. Examples for Plus Operator .. 22

 3.3. Examples for Not Operator ... 23

 3.4. Examples for A and A* Operators .. 27

 4.1. Typical Event Graph ... 30

 4.2. Event occurrences on the time line ... 31

 4.3. Event Graph .. 32

 4.4. Recent Context .. 34

 4.5. Chronicle Context .. 34

 4.6. Continuous Context .. 35

 4.7. Cumulative Context .. 35

 ix

 4.8. Detection of the same event in different contexts ... 36

 5.1. Recent Context .. 37

 5.2. Primitive event occurrences .. 41

 5.3. Event occurrences for Not Operator ... 44

 5.4. Event occurrences for A, A* operators ... 46

 5.5. Event occurrences for Plus operator ... 49

 5.6. Event occurrence of P, P* operators ... 51

 6.1. Petri net example ... 55

 x

LIST OF TABLES

Table Page

5.1. Terms used in Algorithms ... 38

1

1. INTRODUCTION

 There is consensus in the community on the Event-Condition-Action rules (or ECA)

as the most general format for expressing rules in an active database management system

(ADBMS). As the event component was the least understood (conditions correspond to

queries, and actions correspond to transactions) part of the ECA rule, there is a large body of

work on the operators and language proposed for event specification. Snoop [1, 2] was

developed as the event specification component of the ECA rule formalism used as part of

the Sentinel project [3-6] on active object-oriented DBMS. Snoop supports expressive ECA

rules that include coupling modes and parameter (or event consumption) contexts.

 The detection-based semantics typically used by all event specification languages

used in Active DBMSs (Snoop [1, 2], COMPOSE [8, 9], Samos [10, 11], ADAM [12, 13],

ACOOD [14, 15], event-based conditions [16], and Reach [17-19]) do not differentiate

between event occurrence and event detection. Typically, an event is, or can be detected at

the end of the interval over which it occurs. However, the event itself occurs over an interval

although it is typically detected at the end of the interval. Also, from a detection viewpoint,

the start of the event interval is not known until the event is detected. The occurrence and

detection semantics are not differentiated in the above event specification languages as

pointed out by [7] which leads to some unintended semantics for certain operators, such as

Sequence.

 For example, in E1;E2 (“;” refers to the sequence operator, E1 and E2 refers to event

types), E1 is defined to occur earlier than E2. Using detection-based semantics, E1;E2 is

detected as long as the end time of an instance of E1 is less than the end time of an instance of

2

E2. Composite event E1;E2 is detected at the point when the last constituent event (i.e., E2) of

the composite event is detected. Because of the detection (not the occurrence) semantics, the

start times of event instances are not considered. This will lead to the following problem.

 Consider the composite events E1;(E2;E3) and E2;(E1;E3). Intuitively, since ‘;’ is

sequential composition, we should expect these two to be different as E1 strictly precedes E2

in the first case and E2 strictly precedes E1 in the latter case. However, since the detection

semantics is used, that subtle difference is lost depending upon the intervals over which E1,

E2, and E3 occur.

Figure 1.1. Example events.

 Given the occurrences of E1 [1,2] (E1 is the event, 1 is the start interval and 2 is the

end interval of event E1), E2 [3,4], and E3 [5,6], as shown in the figure 1.1, they satisfy both

the event expressions using the detection semantics. Both these event expressions are

satisfied because the detection time (end time) of event E1 [2] is less than the detection time

(end time of last constituent event) of E2;E3 [6] (i.e., 2 < 6) in the first case and detection time

(end time) of event E2 [4] is less than the detection time of E1;E3 [6] (i.e., 4 < 6) in the second

case. However, if interval-based definition is used for occurrence, then only the first

expression (E1;(E2;E3)) should be correctly detected and not the second one (E2;(E1;E3)),

E1 E3 E2

à End Time of the Event

à Start Time of the Event

1 2 3 4 5 6

3

since the start times are considered in both the cases. In the first case, detection time (end

time) of event E1 [1,2] is less than the start time of E2;E3 [3,6] (i.e., 2 < 3) and in the second

case, detection time (end time) of event E2 [3,4] is not less than the start time of E1;E3 [1,6]

(i.e., 4 > 1). Galton [7] has pointed out this discrepancy between database work where

detection-based semantics has been used to define semantic of the operators in contrast to

work in AI where occurrence-based semantics has played a dominant role for inference than

detection and hence interval semantics has been used [20, 21]. In the rest of the thesis, we

present interval-based semantics of event occurrences and discuss algorithms for event

detection and their implementation using event graphs.

 In this thesis, we present interval-based semantics for Snoop operators for recent

context drawing upon the approach presented in [7] for the general or unrestricted context.

We also present algorithms and implementation of composite event detection that uses the

interval-based semantics using event graphs.

 This thesis is organized as follows. Chapter 2 explains Snoop operators and their

semantics in the unrestricted context using interval-based semantics. Chapter 3 extends the

above to recent context and explains the event consumption modes. Chapter 4 provides an

illustrative example of event detection in interval-based semantics in all contexts using event

graphs. Chapter 5 discusses some algorithms and implementation issues for all operators in

recent context and detailed examples. Chapter 6 refers to related work on event specification

without going in to the details as all of them use detection-based semantics. The reader is

referred to [7] for a good description of the differences between the AI and database

approaches. Chapter 7 has conclusions and future work. Algorithms for all the operators in

unrestricted and recent contexts are provided in appendix A and B respectively.

4

2. SNOOP OPERATOR SEMANTICS IN UNRESTRICTED
OR GENERAL CONTEXT

 We start with a brief description of an event, an event expression, and an event

modifier. Here, we assume an equidistant discrete time domain having “0” as the origin and

each time point represented by a non-negative integer. The granularity of the domain is

assumed to be specific to the domain of interest. An event is detected atomically at a point on

the time line although they occur over an interval. In object-oriented databases, interest in

events comes from the state changes produced by method executions by an object. Similarly,

in relational databases, interest in events comes from the data manipulation operations such

as insert, delete, and update. Similar to these database (or domain specific) events there can

also be temporal events that are based on time or explicit events that are detected by an

application program (outside of a DBMS) along with its parameters. An event expression

defines an interval on the time line.

2.1. Primitive Events

 Primitive events are a finite set of events that are pre-defined in the (application)

domain of interest. Primitive events are distinguished as domain specific, temporal and

explicit events (for more detail refer to [1, 2, 22]). For example, a method execution by an

object in an object-oriented database is a primitive event. These method executions can be

grouped into before and after events (or event types) based on where they are detected

(immediately before or after the method call). Primitive events occur over a time interval and

are denoted by E [t1, t2] (where E is the event, t1 is the start interval of the event denoted by

↑E, t2 is the end interval of the event denoted by E↓). In the case of primitive events, the start

5

and the end interval are assumed to be the same (i.e., t1 = t2). For events that span over an

interval, the event occurs over the interval [t1, t2] and is detected at the end of the interval.

2.2. Event Expressions

 For many applications, supporting only primitive events is not adequate. In many

real-life applications, there is a need for specifying more complex patterns of events such as,

“arrival of a report followed by a detection of a specified object in a specific area”. They

cannot be expressed with a language that does not support expressive event operators along

with their semantics. An appropriate set of operators along with the closure property allows

one to construct complex composite events by combining primitive events and composite

events in ways meaningful to an application interested in situation monitoring. To facilitate

this, we have defined a set of event operators along with their semantics. Snoop [1, 2] is an

event specification language that is used to specify combinations of events using Snoop

operators such as And, Or, Sequence, Not, Aperiodic, Periodic, Cumulative Aperiodic,

Cumulative Periodic, and PLUS. The motivation for the choice of these operators and how

they compare with other event specification languages can be found in [1, 2].

2.3. Composite Events

 Composite events are constructed using primitive events and event operators in a

recursive manner. A composite event consists of a number of primitive events and operators;

and the set of primitive events of a composite event are termed as constituent events of that

composite event. A composite event is said to occur over an interval, but is detected at the

point when the last constituent event of that composite event is detected. The detection and

occurrence semantics is clearly differentiated and the detection is defined in terms of

occurrence as shown in [7]. Note that occurrence of events cannot be defined in terms of

detection which was the problem with the earlier detection-based approaches.

6

We introduce the notion of an initiator, detector, and terminator for defining event

occurrences. A composite event occurrence is based on the initiator, detector and terminator

of that event which in turn are constituent events of that composite event. An initiator of a

composite event is the first constituent event whose occurrence starts the composite event.

Detector of a composite event is the constituent event whose occurrence detects the

composite event, and terminator of a composite event is the constituent event that is

responsible for terminating the composite event. For some operators, the detector and

terminator are different (e.g., Aperiodic). For many operators, the detector and terminator are

the same (e.g., Sequence).

 A composite event E occurs over a time interval and is defined by E [t1, t2] where E is

a composite event, t1 is the start time of the composite event occurrence and t2 is the end time

of composite event occurrence (t1 is the starting time of the first constituent event that occurs

(initiator) and t2 is the end time of the detecting or terminating constituent event (detector or

terminator) and they are denoted by ↑E and E↓ respectively).

2.3.1. Event Combinations

Another aspect of event occurrences of the constituent events of a composite event is

that they can be either overlapping or disjoint. “There is a basic set of mutually exclusive

primitive relations that can hold between temporal intervals” [20,21]. When the events are

allowed to overlap, there are thirteen possible relationships for their combination and they are

shown in figure 2.1. When events are not allowed to overlap, we have fewer combinations.

This may be meaningful for many applications where the same event should not participate

Start of an event: O (↑E, t) ? ∃t' (t ≤ t' ∧ O (E, [t, t']))
End of an event: O (E↓, t) ? ∃t'≤ t (O (E, [t', t]))

7

in more than one composite event or only one of the overlapping events is of interest. The

possible combinations are shown in figure 2.2.

 In this thesis, we assume that constituent events can overlap and semantics for all the

operators are given for the overlapping case. The number of events that take part in the

detection of the composite event depends on the semantics of Snoop operators.

 Below, we define Snoop operators intuitively first and then provide a formal

definition in the unrestricted context using the interval-based semantics. The formal

definitions shown below in the boxes are reproduced from [7] except for Plus. The

definitions describe the meaning of event operators in the unrestricted (or general) context.

This means events, once they occur, cannot be discarded at all. For example, for a “;”, all

event occurrences that occur later than an event will be paired with that event as per the

semantics. In the absence of any mechanism for restricting the event usage (or consumption),

events need to be detected and the parameters for those composite events need to be

computed using the unrestricted context definitions of the Snoop event operators. However,

the number of events produced by the above definition (in the unrestricted context) can be

large and not all event occurrences may be meaningful for an application. In addition,

detection of these events has substantial computation and storage overhead, which may

become a problem for situation monitoring applications. Semantics of these event operators

are as follows:

8

Figure 2.1. Overlapping event combinations.

1

7

2

6 5

3 4

8 9

10

11

12

13

à ↑E Start of the interval

à E↓ End of the interval

à Event E1 instance

à Event E2 instances

9

Figure 2.2. Disjoint event combinations.

2.3.2. Primitive events: O (E [t, t'])

Primitive events are pre-defined in the subsystem (application), E is a primitive event

that occurs over the interval [t, t'], where t is the start time and t' is the end time of event E.

Figure 2.3. Example for And Operator.

2.3.3. AND event: E = O (E1? E2, [t1, t2])

Event E is the conjunction of two events E1 and E2, denoted by E1 ∆ E2, occurs when

both E1 and E2 occur, irrespective of their order of occurrence over the interval [t1, t2]. Events

E1 and E2 can overlap or they can be disjoint. We can express AND event with the “?”

operator and the formal definition is as follows:

O (E1? E2, [t1, t2]) ? ∃t, t ' (t1 ≤ t ≤ t2 ^ t1 ≤ t' ≤ t2 ^
((O (E1, [t1, t]) ∧ O (E2, [t', t2])) ∨ (O (E1, [t', t2]) ∧ O (E2, [t1, t])))

t1

t' t2

t

e2
j

e1
i

t1 t2

e1
i ^ e2

j

Time

10

 Figure 2.3 explains the formal definition of the “?” operator. In figure 2.3, e1
i (an

instance of the event E1) starts at time point t1 and e2
j (an instance of the event E2) should

start after or at the point t1 and end at or after the point t. As shown in figure 2.3, t1 is the start

time of the first event and t2 is the end time of the second event whereas the end time (t) of

the event E1 and start time (t') of the event E2 can overlap or disjoint, but they should be in

the closed interval formed by t1 and t2. Both e1
i and e2

j can start and end the occurrence (i.e.,

act as either initiator or terminator) of the “?” event and they can be primitive or composite

events. For the event occurrences in figure 2.1, event E1 is combined with the following E2

occurrences for the “∆” event to occur: 1,2,4,5,6,8,9,10,11,12,13.

2.3.4. Sequence Event: E = O (E1; E2, [t1, t2])

Event E is the sequence of two events E1 and E2, denoted by E1; E2, occurs when

event E2 occurs provided event E1 has already occurred. This implies that the end time (t) of

event E1 is guaranteed to be less than the start time (t') of event E2. We can express the

Sequence event with the “;” operator and it is formally defined as follows:

Figure 2.4. Example for Sequence Operator.

O (E1; E2, [t1, t2]) ? ∃t, t' (t1 ≤ t < t' ≤ t2 ∧ O (E1, [t1, t]) ∧ O (E2, [t', t2]))

t1

t' t2

t

e2
j

e1
i

t1 t2
e1

i ; e2
j

Time

11

 Formal definition of the “;” operator is expressed pictorially in figure 2.4. In figure

2.4, e1
i , an instance of event E1, starts at time point t1 and ends at the time point t, and e2

j, an

instance of event E2, should start and end after the point t. “;” event occurs in the time

interval [t1,t2], where event e1
i starts and e2

j ends the occurrence of the “;” event and they can

be primitive or composite events. For the event occurrences in figure 2.1, the event E1 is

combined with the following occurrence of E2 for the “;” event to occur: 4.

2.3.5. Or Event: E = O (E1∇ E2, [t1, t2])

Event E is the disjunction of two events E1 and E2, denoted by E1 ∇ E2, occurs when

E1 occurs or E2 occurs. We can express the OR event with the “|” operator and it is formally

defined as follows:

Figure 2.5. Example for OR operator.

O (E1∇ E2, [t1, t2]) ? O (E1, [t1, t2]) ∨ O (E2, [t1, t2])

t1

t2 t4

t3

e2
j

e1
i

t1 t4

E1 | E2 E1 | E2

Time

12

Figure 2.5 explains the formal definition for the “|” that is given above. In figure 2.5,

e1
i (an instance of event E1) detects the “|” event that occurs over the interval [t1, t3] and e2

j

(an instance of event E2) detects the event that occurs over the interval [t2, t4]. Both the

events e1i and e2
j can detect the “|” event and they can be primitive or composite events. For

the event occurrences in figure 2.1, the following “∇” events are detected:

1,2,3,4,5,6,7,8,9,10,11,12,13.

In the following operators, we use the start time and end time of an event defined in

the starting of section 2.3. To enable us to express this more concisely the predicate Oin is

defined as follows [7]:

2.3.6. Not Event: E = O (¬ (E3) [E1; E2], [t1, t2])

Event E is the not event that detects the nonoccurrence of the event E3 in the closed

interval formed by end time of event E1 and start time of event E2. Not event is expressed

with the “!” operator and is formally defined as follows:

Event E1 instance e1
i ends at time point t1, and event E3 instance e3

j starts after or at

the point e1i occurred and event E2 should not occur in the closed interval [t1, t2] defined by

e1
i and e3

j as shown in figure 2.6 (Only whole occurrence of E2 is considered). The following

figure 2.6 explains the formal definition of the “!” operator.

Oin (E [t1, t2]) ? ∃t1', t2' (t1 ≤ t1' ≤ t2' ≤ t2 ∧ O (E, [t1', t2']))

O (¬(E2)[E1, E3], [t1, t2]) ? O (E1↓, t1) ∧ O (↑E3, t2) ∧ ¬Oin (E2, [t1, t2])

13

Figure 2.6. Example for NOT Operator.

 For this Snoop event operator, for the event E1, the possible combinations of

occurrences of E2 is only 4 (from figure 2.1), since there is no occurrence of E3 in the interval

formed by E1↓ and E2↑.

2.3.7. Aperiodic Event Operators (A, A*)

 An aperiodic operator allows one to express the occurrences of an aperiodic event

within a closed time interval. There are two variants of this event specification, a cumulative

variant and a non-cumulative variant.

 The non-cumulative aperiodic event “E” is expressed as E = O (A (E1, E2, E3), [t1,

t2]). Event E is an aperiodic event that is signaled each time event E2 occurs within the time

interval formed by the end time of event E1 and start time of event E3. An aperiodic event is

expressed using the “A” operator. On the other hand, the cumulative aperiodic event “E” is

expressed as E = O (A* (E1, E2, E3), [t1, t2]). Event E is an aperiodic cumulative event that

accumulates all the occurrences of event E2 within the closed interval formed by E1 and E3

and it occurs when event E3 occurs. A cumulative aperiodic event is expressed using the

“A*” operator.

t1

t2

~E2

e3
j

e1
i

14

 The occurrence time of the event “A” is the occurrence time for event E2; an

occurrence of the event “A” is an occurrence of E2 and is determined by E1 and E3. The rest

of the condition specifies the context. There must be no occurrence of E3 wholly within the

interval between the occurrence of E1 and the occurrence of E2 [7]. The formal definition of

an “A” operator is as follows:

In figure 2.7, shown below, we can see that event e1
i (an instance of event E1) ends at

time point t and event e2
k (an instance of event E2) should be a sequence to e1

i (i.e., start after

e1
i has happened). No E3 should start after e1i has occurred, and finish before or at the point

e2
i finishes (Only whole occurrence of E3 is taken into consideration)

Figure 2.7. Example for Aperiodic Operator.

 An aperiodic event can occur zero or more times (Zero times when E2 does not occur

in the interval or when no interval exists for the definitions of E1 and E3).

O (A (E1, E2, E3), [t1, t2]) ? O (E2, [t1, t2]) ∧ ∃t < t1 (O (E1↓, t) ∧ ¬Oin (E3, [t +1, t2]))

t' t1 t2

t

t+1 t2

e2
k

~E3

e1
i

Time

15

2.3.8. Periodic Event Operators (P, P*)

A periodic event is a temporal event that occurs periodically. Periodic event also has

two variants similar to the aperiodic event.

 A periodic event “E” is denoted as E = O (P (E1, [t], E3), [t, t]). While E1 and E3 can

be any type of event, event E2 “[t]” should be a time string (temporal event). The Periodic

event occurs whenever the time string [t] occur in the time interval formed by the end time of

the event E3 and start time of the event E1 and is denoted by “P”. P has a cumulative variant

“P*” expressed as E = O (P* (E1, [t], E3)). Unlike P, P* occurs only once when the event E3

occurs. It also accumulates the event E2 occurrences at the end of each period and made it

available when P* occurs. Formal definition of a “P” operator is as follows:

The formal definition of a “P” operator is shown pictorially in figure 2.8. An instance of

event E1, e1
i ends at time point t, an instance of event E2, e2

j should be (t + n*i) (t-> end time

for E1, n*i -> time interval) and no E3 should start after e1
j occurred (at time point t) and

finish before or at the time point [t2] e2
j finishes (Only whole occurrence of E3 is taken into

consideration)

Figure 2.8. Example for Periodic Operator.

O (P (E1, n, E3), [t]) ? ∃t'<t ∃i ? Z+ (t = t' + ni ∧ O (E1↓, t') ∧ ¬Oin (E3, [t' +1, t]))

t' t2

t

t+1 t2

e2
j

~E3

e1
i

Time

16

2.3.9. Plus Event: E = O (Plus (E1, n) [t, t])

Plus event is expressed with the “Plus” operator and is used to specify a relative time

event [23]. A “Plus” operator combines two events E1 and E2 where E1 can be any type of

event and event E2 (“n”) is the terminator event and it is a time string [t]. The Plus event

occurs after time [t], after the event E1 occurs. Below, we give the formal definition for the

Plus operator for the unrestricted context. In the definition, E1 is the initiator, and “n” is the

terminator.

In figure 2.9, e1
i starts Plus event specified by the time string [t] and the “Plus” event

occurs at end time (e1
i)+ [t].

Figure 2.9. Example for Plus Operator.

O (Plus (E1, n), [t, t]) ? ∃t'<t (O (E1↓, t') ∧ t = t' + n)

e1
i

[t]

Time

17

3. PARAMETER CONTEXTS AND OPERATOR
SEMANTICS FOR RECENT CONTEXT

3.1. Parameter Contexts

 A large number of events are generated when unrestricted context is used. When we

studied many application domains, it turned out that these application domains may not be

interested in the unrestricted context all the time but need mechanisms to tailor the semantics

of event expression to their domain needs. In order to provide more meaningful event

occurrences to match application needs, Snoop introduced several parameter contexts (event

consumption modes): Recent, Chronicle, Continuous, and Cumulative. The idea behind the

parameter contexts is to filter the events (or the history) generated by the unrestricted context

in various ways to reduce the number of events generated. The ideal situation is to allow the

user to roll his/her own context as needed. We briefly describe below the motivations for the

introduction of contexts.

 Recent Context: In applications where events are happening at a fast rate and

multiple occurrences of the same event only refine the previous value can use this context.

Only the most recent or the latest initiator for any event that has started the detection of a

composite event is used in this context. This entails that the most recent occurrence just

updates (summarizes) the previous occurrence(s) of the same event type. In this context, not

all occurrences of a constituent event will be used in the composite event detection. An

initiator will continue to initiate new event occurrences until a new initiator or a terminator

occurs. Binary Snoop operators use only detectors. This implies that the initiator will

continue to initiate new event occurrences until a new initiator occurs. On the other hand,

18

ternary Snoop operators contain both detectors and terminators, which implies that the

initiator will continue to initiate new event occurrences until a new initiator occurs or until a

terminator occurs. Once the composite event is terminated, all the constituent events of that

composite event will be deleted.

 Chronicle Context: In applications where there is a correspondence between different

types of events and their occurrences, and this correspondence needs to be maintained,

chronicle context is useful. In this context, for a composite event occurrence, the initiator and

terminator pair is unique (oldest initiator is paired with the oldest terminator; hence the

name). The detector and the initiator in this context can take part in more than one event

occurrence (e.g., Aperiodic), but the terminator does not take part in more than one

composite event occurrence. For binary Snoop operators, both the detector and terminator are

the same, so once detected the entire set of participating constituent events (initiator, detector

and terminator) are deleted. For ternary Snoop operators, detectors and terminators are

different, so once detected (e.g., Aperiodic) the detectors are deleted, and when terminated

(e.g., Aperiodic*) only the initiator and the corresponding terminator are deleted, and the

constituent events (except the initiator and terminator) that can be used in future events are

preserved. Future events are those that are initiated by the initiators that are not paired with

this terminator and which can include these constituent events at the time of their detection.

 Continuous Context: In applications where event detection along a moving time

window is needed, continuous context can be used. In this context, each initiator starts the

detection of that composite event and a single detector or terminator may detect one or more

occurrences of that same composite event. An initiator will be used at least once to detect

that event. For binary Snoop operators, all the constituent events (initiator, detector and/or

terminator) are deleted once the event is detected. For ternary Snoop operators detector and

terminator are different, so once detected (e.g., Aperiodic) the detectors are deleted and

19

when terminated (e.g., Aperiodic*) only the corresponding initiator and terminator pairs are

deleted and the constituent events (except the initiators and terminators) that can be used in

future events are preserved. Future events are the events that are initiated by the initiators that

are not paired with this terminator and which can include these constituent events at the time

of their detection.

 Cumulative Context: Applications use this context when multiple occurrences of

constituent events need to be grouped and used in a meaningful way when the event occurs.

In this context, all occurrences of an event type are accumulated as instances of that event

until the event is terminated. An event occurrence does not participate in two distinct

occurrences of the same composite event. In both binary and ternary operator, detector and

terminator are same and once detected and terminated all constituent event occurrences that

were part of the detection are deleted. Other events that can be the constituent event for some

future event will be preserved.

3.2. Operator Semantics in Recent Context

 In this section, we extend the formal semantics to recent context. We describe all the

operators excluding the periodic operators in the recent context. In addition, we provide some

algorithmic and implementation details with respect to the event detection in recent context.

Below, “O” represents the occurrence-based Snoop semantics.

3.3. Event Histories

 The above intuitive explanations of contexts are based on the event occurrences over

a time line. In this section, using the notion of event histories, we formalize these definitions

to take the parameter contexts into account. An event history maintains a history

(chronological with respect to the end time) of event occurrences up to a given point in time.

Suppose e1 is an event instance of type E1 then E1 [H] represents the event history that stores

20

all the instances of the event E1 (namely ei1). In order to extend these definitions to parameter

contexts the following notation is used.

 Ei [H] => Event history for event ei

 tsi – Starting time of an event ei

 tei – Ending time of an event ei

 Below, we first describe the history-based event occurrences intuitively before

defining them formally.

3.4. Occurrence Semantics in Recent Context

3.4.1. Sequence operator in Unrestricted Context

 Below we illustrate how event histories can be used for the detection of the “;”

operator defined in section 3.3.

 E1 [H] = {(3, 5), (4, 6), (8, 9)}
 E2 [H] = {(1, 2), (7, 10), (11, 12)}

For the events shown in figure 3.1, (E1; E2) generates the following pairs of events in the

unrestricted context: {(e1
1, e2

2) [3,10], (e1
2, e2

2) [4, 10], (e1
1, e2

3) [3,12], (e1
2, e2

3) [4, 12], (e1
3,

e2
3) [8, 12]}.

21

Figure 3.1. Examples for Sequence Operator.

3.4.2. Sequence operator in Recent Context

 The “;” operator in recent context is formally defined as follows:

O (E1; E2, [ts1, te2]) ?

{∀e1 ∈ E1 [H] ∧ ∀e2 ∈ E2 [H] ∧

{(O (e1, [t s1, t e1]) ∧ O (e2, [t s2, t e2]) ∧ (ts1 ≤ t e1 < t s2 ≤ te2))} ̂ (? e1' [tstart, tend] | (te1 < tend ≤ te2)

∧ e1' ∈ E1 [H])

}

 In order to formally define the Sequence event in the recent context, take an event

pair E1 and E2 from the event histories E1 [H] and E2 [H] respectively. For this event pair to

be a Sequence event in the recent context, there should not be an occurrence of any other

instance of event E1 from the event history E1 [H] in the interval formed by this event pair.

Formalization of the sequence operator in the recent context is explained below using the

example shown in figure 3.1.

 E1 [H] = {(3, 5), (4, 6), (8, 9)}

 E2 [H] = {(1, 2), (7, 10), (11, 12)}

1

3

4 6

5

2

7

9

10

8

e2
2

e1
1

e2
1

e1
2

e1
3

12 11 e2
3

22

 In this context, only the most recent initiator is used (see section 4). In the above

example, when the event e2
1 occurs over the interval [1,2] there is no event in the event

history of E1 that satisfies the “;” operator condition. Event e2
2 occurs over the interval [7,

10]. It is not paired with event e11 because there is an occurrence of event e12 [4, 6] in the

interval formed by the end time of event e11 [3, 5] and end time of event e22 [7, 10], which

does not satisfy the condition given above. Event e2
2 does not detect the sequence event in

the recent context, since the recent initiator is e1
3. Event e1

3 cannot pair with the event e22

since it does not satisfy the “;” semantics. Similarly, when the event e23 occurs it detects the

recent event with the event pair (e1
3, e2

3) over the interval [8, 12].

 Events in recent context: {(e1
3, e2

3) [8, 12]}.

3.4.3. Plus operator in Unrestricted Context

 Plus event occurs only once after the time interval specified by ‘n’ after the event E1

occurs and denoted by (Plus (E1, n) [t,t]). By the definition of the Plus event the start time

and end time are the same. For example, Plus event (Plus (E1, 4)) is taken, which is detected

after 4 units after the occurrence of event E1, to explain the unrestricted and recent context.

 For the events shown in figure 3.2, Plus event defined in section 3.3 generates the

following pairs of events in the unrestricted context: {(e1
1, 4) [9,9], (e1

2, 4) [10,10], (e1
3, 4)

[16,16]}.

Figure 3.2. Examples for Plus Operator.

3

4 6

5 e1
1

e1
2

12 11 e1
3

9

10

16

23

3.4.4. Plus operator in Recent Context

 Below, in the formal definition for the Plus event in the recent context, event E1 is

assumed to end at a time point [t'] and Plus event at the time point [t]. “Plus” event is an

absolute time event so that it occurs in the interval [t, t]. Plus event occurs in the recent

context when ever there is no other instance of E1 event from E1 [H] occurs in the interval

formed by [t'] and [t]. This is given as the condition (? (E1'↓, t'') | (t' < t'' ≤ t)).

O (Plus ((E1, n), [t, t])) ? ∃t' < t (O (E1↓, t') ∧ t = t' + n ∧ (? (E1'↓, t'') | (t' < t'' ≤ t)))

 Formal definition given above is explained with the events shown in figure 3.2. Event

e1
1 initiates a Plus event at the time point [5]. When the event e1

2 occurs it initiates a new

Plus event and terminates the Plus event that was initiated previously. At the time point [9]

Plus event is detected in the recent context. Similarly event e1
3 detects a Plus event at the

time point [16].

 Events in recent context: {(e1
2, 4) [10,10], (e1

3, 4) [16,16]}.

Figure 3.3. Examples for Not Operator.

1

3

4 6

5

2

7

9

10

8

e2
2

e1
1

e2
1

e1
2

e1
3

12 11 e2
3

e3
1 5 5

24

3.4.5. Not operator in Unrestricted Context

 Not operator can be expressed as the Sequence of E1 and E2 where there is no

occurrence of the event E3 in the interval formed by these events. Thus, explanation of the

“¬” Operator definition is same as the “;” operator with one additional condition. This

condition stipulates that there cannot be an occurrence of the event E3 from E3 [H] in the

interval formed by the end time of the event E1 and the start time of the event E2. Below we

illustrate how event histories can be used for the detection of the NOT operator ¬ (E3)[E1,

E2], defined in the section 3.3.

 E1 [H] = {(3, 5), (4, 6), (8, 9)}

 E2 [H] = {(1, 2), (7, 10), (11, 12)}

 E3 [H] = {(5, 5)}

 In the unrestricted context, above events shown in figure 3.3 generate the following

pair of events {(e1
2, e2

2) [4, 10], (e1
2, e2

3) [4, 12], (e1
3, e2

3) [8, 12]}.

3.4.6. Not operator in Recent Context

 Not operator in recent context is formally defined as follows:

O (¬ (E3)[E1, E2], [ts1, te2]) ?

{∀e1 ∈ E1 [H] ∧ ∀e2 ∈ E2 [H] ∧ ∀e3 ∈ E3 [H] ∧

{(O (e1, [t s1, t e1]) ∧ O (e2, [t s2, t e2]) ∧ (ts1 ≤ t e1 < t s2 ≤ te2) ∧ ¬Oin (e3, [te1, ts2]))}

∧ (? e1' [tstart, tend] | (te1 < tend ≤ te2) ∧ e1'∈ E1 [H])

}

 Formally, for an event pair E1 and E2 to be in the recent context, there cannot be an

occurrence of any other instance of event E1 from the event history E1 [H] between this pair.

Formalization of the “¬” operator in the recent context is explained below using the example

shown in figure 3.3.

25

 E1 [H] = {(3, 5), (4, 6), (8, 9)}

 E2 [H] = {(1, 2), (7, 10), (11, 12)}

 E3 [H] = {(5, 5)}

 Occurrence of event e2
1 does not detect any event since the event history E1 [H] is

empty. Event e11 initiates “¬” event in the recent context, and is terminated by event e3
1. “¬”

event in the recent context is initiated by event e1
2. This event is terminated by the

occurrence of the event e13, which acts as the most recent initiator. Event occurrence e2
2 does

not pair with the initiator e1
3 since it does not satisfy the condition (ts1 ≤ t e1 < t s2 ≤ te2), where

as the event e23 detects a recent event with the initiator e13 since there are no other instances

of event E1 occurrence in the interval formed by this event pair and this satisfies both the

conditions (ts1 ≤ t e1 < t s2 ≤ te2) and (? e1' [tstart, tend] | (te1 < tend ≤ te2) ∧ e1'∈ E1 [H]).

 Events in recent context: {(e1
3, e2

3) [8, 12]}.

3.4.7. OR event

 The semantics of “∇” does not change with the context as each occurrence is detected

individually. Simultaneous occurrences are not considered in this thesis.

3.4.8. Aperiodic operator in Unrestricted Context

 Below we illustrate how event histories can be used for the detection of (A (E1, E2,

E3), [ts1, te1]) in the unrestricted context defined in section 3.3.

 E1 [H] = {(3, 5), (4, 6)}

 E2 [H] = {(1, 2), (8, 9), (7, 10), (11, 12)}

 E3 [H] = {(11, 11)}

 In the unrestricted context, above events shown in figure 3.4 generate the following

pair of events {(e1
1, e2

2) [3, 9], (e1
2, e2

2) [4, 9], (e1
1, e2

3) [3, 10], (e1
2, e2

3) [4, 10]}.

26

3.4.9. Aperiodic operator in Recent Context

 The “A” operator in recent context is formally defined as follows:

O (A (E1, E2, E3), [ts1, te1]) ?

{∀e1 ∈ E1 [H] ∧ ∀e2 ∈ E2 [H] ∧ ∀e3 ∈ E3 [H] ∧

{O (E2, [ts1, te1]) ∧ ∃t < ts1 (O (E1↓, t) ∧ ¬Oin (E3, [t +1, te1]))} ∧ (? e1' [tstart, tend] | (t < tend ≤

te1) ∧ e1'∈ E1 [H])

}

 Aperiodic event occurs whenever an event E2 occurs in the interval formed by events

E1 and E3. This is formally defined as the non-occurrence of the event E3 as ¬Oin (E3, [t +1,

te1]). In order to extend this to hold for recent context, the condition (? e1' [tstart, tend] | (t < tend

≤ te1)) is added. This condition specifies that, there should not be any occurrence of the event

E1 from the event history E1 [H] in the interval (t, te1).

 This formal definition is explained using the example shown in figure 3.4. When

event e22 occurs there are two events in the event history E1 [H]. Event e22 cannot pair with

event e1
1 since there is an occurrence of the event e1

2 in the interval formed by these two

events. Event e2
2 is paired with event e1

2 since there is no other event from E1 [H] has

occurred in this interval. Similarly, event e23 is paired with the event e12. Event e31 terminates

the “A” event initiated by the event e1
2.

 Events in recent context: {(e1
2

, e2
2) [4, 9], (e1

2
, e2

3) [4, 10]}

27

Figure 3.4. Examples for A and A* Operators.

3.4.10. Cumulative Aperiodic operator in
Unrestricted Context

 In general, Cumulative Aperiodic event is the cumulative version of the aperiodic

operator where all the events occurred in the interval formed by event E1 and E3 are

accumulated. Below we illustrate how event histories can be used for the detection of (A*

(E1, E2, E3), [ts1, te1]) in the unrestricted context defined in section 3.3 using the example

shown in figure 3.4.

 E1 [H] = {(3, 5), (4, 6)}

 E2 [H] = {(1, 2), (8, 9), (7, 10), (11, 12)}

 E3 [H] = {(11, 11)}

 In the unrestricted context, above events generate the following pairs of events {(e1
1,

e1
2, e2

2, e2
3, e3

1) [8, 10]}. In this context all the events are accumulated in the interval formed

by events e1
1 and e3

1.

1

3

4 6

5

2

7

9

10

8

e2
3

e1
1

e2
1

e1
2

e2
2

12 11 e2
4

e3
1 11 11

28

3.4.11. Cumulative Aperiodic operator in
Recent Context

 The “A*” operator in recent context is formally defined as follows:

O (A (E1, E2, E3), [tsf, tel]) ?

{

∀E3 ∈ E3 [H]

{O (E3, [tsa, tea]) ∧ (? E3' [ts, te] | (te < tea) ∧ E3' ∈ E3 [H]) ∧ {∀ E1 ∈ E1 [H] ∧ ∀ E2 ∈ E2 [H]

∧ (O (E2, [tsf, tef]) ∧ (? E2' [ts', te'] | ((ts' < tsf) ∧ (te' ≤ tel)) ∧ E2' ∈ E2 [H]) ∧ (O (E2, [tsl, tel]) | (tel

< tsa)) ∧ (? E2'' [ts'', te''] | ((tel < te'' < tsa) ∧ (ts'' = tsf)) ∧ E2'' ∈ E2 [H]) ∧ ∃ t < tsf (O (E1↓, t) ∧ (?

E1'↓, t' | (t < t' ≤ tel))))}}

∨ ∀E3 ∈ E3 [H]

{O (E3, [tsa, tea]) ∧ ((? E3' [tsb, teb] | (teb < tea) ∧ E3' ∈ E3 [H]) ∧ (? E3'' [ts3', te3'] | (te3' > teb) ∧

(te3' < tea) ∧ E3'' ∈ E3 [H])) ∧ ((O (E2, [tsf, tef]) | (teb < tsf)) ∧ (? E2' [ts', te'] | ((teb < ts' < tsf) ∧ (te'

≤ tel)) ∧ E2' ∈ E2 [H]) ∧ (O (E2, [tsl, tel]) | (tel < tsa)) ∧ (? E2'' [ts'', te''] | ((tel < te'' < tsa) ∧ (ts'' =

tsf)) ∧ E2'' ∈ E2 [H]) ∧ ∃ tsb = t < tsf (O (E1↓, t) ∧ (? E1'↓, t' | (t < t' ≤ tel))))}}

}

 The above formal definition has two cases, one to handle the case for the first

occurrence of the terminator in the history (as it groups all constituent events up to that point)

and the second to handle a terminator when there are other previous terminators in the

history. The above definition produces the set of event occurrences in the recent context

given any two histories. We will explain the formulation of the definition using the same

example.

 When the event e31 occurs, event histories of events E1, E2 and E3 from figure 3.4 are

as follows:

 E1 [H] = {(3, 5), (4, 6)}

 E2 [H] = {(1, 2), (8, 9), (7, 10)}

29

 E3 [H] = {(11, 11)}

 Event occurrence e21 does not have any effect on the event detection since there is no

initiator. Since there are no other events in E3 [H], satisfying the condition (? E3' [ts, te] | (te <

tea) and falls into the first case of the definition. Now the condition is that accumulating all E2

events in the interval formed by events E1 and E3. But this depends on the initiator, whether

e1
1 or e1

2 is the initiator. First, event e1
1 [3,5] is taken as the initiator. But event e1

2 [4, 6] has

occurred in the interval formed by e1
1 [3,5] and e2

2 [8,9] and thus fails to satisfy the condition

(? (E1'↓, t') | (t < t' ≤ tel)). As the second option event e1
2 [4, 6] is taken. This satisfies the

above condition and thus acts as the initiator for this “A*” event. Thus the events in the

interval [6, 11] formed by events e1
2 and e3

1 are accumulated and a cumulative aperiodic

event is detected with events (e1
1, e2

2, e2
3, e3

1 [8, 10]).

 Terms used in the formal definition are explained and their values are specified in “(

)” for this example

 tsf – Start time of First E2 (8)

 tef – End time of First E2 (9)

 tsl – Start time of Last E2 (7)

 tel – End time of Last E2 (10)

 tsa – Start time of E3 which is after Last E2 (11)

 tea – End time of E3 which is after Last E2 (11)

 Below given terms are specified only in the second case:

 tsb – Start time of E3 which is before First E2

 teb – End time of E3 which is before First E2

30

4. COMPOSITE EVENT DETECTION
USING EVENT GRAPHS

Sentinel uses an event graph (figure 4.1) for representing an event expression in

contrast to other approaches such as Petri nets used by Samos and an extended finite state

automata used by Compose. By combining event trees on common sub expressions, an event

graph is obtained. Data flow architecture is used for the propagation of primitive events to

detect composite events. All the leaf nodes in an event tree are primitive events and the

internal nodes are composite events. By using event graphs, the need for detecting the same

event multiple times is avoided since the event node can be shared by many events. In

addition to reducing the number of detections, this approach saves substantial amount of

storage space (for storing event occurrences and their parameters), thus leading to an efficient

approach to detect events.

Figure 4.1. Typical Event Graph.

Event occurrences flow in a bottom-up fashion. In figure 4.1, leaf nodes E1 and E2

represents primitive events and the internal node represent the “∆” composite event. When a

primitive event occurs and is detected, it is sent to its leaf node, which forwards it to the

E1

^

E2

31

parent node (if necessary) for detecting a composite event. As we described in the previous

chapter, introduction of parameter context makes the event detection more meaningful for

many applications. In this section, we will illustrate how a composite event is detected in all

parameter contexts with an illustrative example using the same set of primitive events

occurring over a time line.

The same event graph is used for detecting events in all contexts on a need basis.

With each node, there are 4 counters indicating whether that event should be detected in that

particular context. The counter is also used to keep track of number of composite events an

event participates in. When this counter reaches zero, there is no need to detect that event in

that context, as there are no events dependent on that event. Consider the following

occurrences of primitive events:

Figure 4.2. Event occurrences on the time line.

In figure 4.2, the numbers 1,2,3,4,5,….. 11 represent time points on the time line at

which primitive events occur. If we take the primitive event e12, it is said to occur in the time

interval [2,2], and event e21, is said to occur in the time interval [4,4]. The composite events

that combine these two events occur over a time interval [2,4] where [2] is the start time and

[4] are the end time of the composite event.

e1
1 e1

2 e3
1 e2

1 e4
1 e1

3 e2
2 e3

2 e1
4 e4

2 e1
5

2 3 4 5 6 7 8 9 10 11 1

Time

32

In figures 4.3–4.7, we represent the events in terms of their occurrence times in

brackets (e.g., [2,2] represents event e1
2) for simplicity. Composition is shown using multiple

events with in a bracket (e.g., [[1,4], [2,7]] represents events e11, e2
1, e1

2, and e2
2). Figures

4.3–4.7 represent the composite event (¬ E3) ((E1; E2), (E1 ? E4)). Leaf nodes, E1, E2, E3,

and E4, represent the primitive events. NOT event is a composite event that contains AND,

SEQ as its constituent events. When any two events are paired in either node B or C, they are

passed to node A where the “¬” event is detected. We will present the detection of events in

the order of Recent, Chronicle, Continuous and Cumulative contexts. Figures 4.4–4.7 show

the snapshot of the event states in the event graph at the time of event e4
2 occurrence.

Figure 4.3. Event Graph.

In the recent context (refer figure 4.4), events e1
2 (recent initiator) and e2

1 are

combined in the node B (Sequence event) and are sent to their parent node A, which is a “¬”

event. When e41 occurs, “?” event is detected and sent up to the node A; however, they do

not satisfy the “¬”. When the event e1
3 occurs it combines with the event e4

1which is the

recent initiator in the node C (AND event) and is propagated to the node A. In node A, since

E1 E2

;

E4 E1

¬

∧
E3

A

C B

33

there is an initiator waiting and there is no occurrence of the middle event E3, these events

e1
2, e2

1, e4
1 and e1

3 are combined and are detected as the composite event.

In the Chronicle context (refer figure 4.5), events e1
1 and e2

1 are combined in the node

B and are passed to the node A. The pair e1
1, e2

1 is said to be the oldest pair where e2
1 pairs

with e11, the oldest initiator that is already present in the node B. In the same way, the events

e1
2 and e2

2 are combined and sent to node A. Nevertheless, all the events that occur after that

do not make any pair in the node C in order to detect a “¬” event in the node A.

In the Continuous context (refer figure 4.6), events e1
1 and e1

2 is paired with the event

e2
1 since one terminator may detect one or more initiators. When the event e2

2 occurs, it pairs

with the event e13. The occurrence of event e42 terminates the events e13 and e1
4 in the node

C. When these are sent to node A, the events (e1
1, e2

1, e1
3, e4

2) and (e1
2, e2

1, e1
3, e4

2) are

detected. But (e1
4, e4

2) it is not paired with the events (e1
3, e2

2) since there is an occurrence of

the middle event e3
2 in between these events. The initiator pair cannot start anymore event

detection, because of the occurrence of middle event e3
2 and all the events are removed.

In the Cumulative context (refer figure 4.7), events (e1
1, e1

2, e2
1) are paired together

and accumulated as a single event in the node B in contrast to the two events that are detected

in the continuous context and passed to the node A. In the node C, when the event e4
2 occurs

it is paired with the events (e1
3, e1

4) and it is accumulated as a single and sent to the node A

where this event is paired with the event (e1
1, e1

2, e2
1) that is already present. But this event

(e1
3, e1

4, e4
2) is not paired with events (e1

3, e2
2) since there is an occurrence of the middle

event e3
2 in between these events. The initiator pair cannot start anymore event detection,

because of the occurrence of middle event e3
2 and all the events are removed.

Figure 4.8, explains the different combinations of events in different parameter

contexts with the event occurrences shown over the time line. It explains the initiator,

34

terminator for the combinations of events shown in the event graph. Figure 4.8 summarizes

the explanations of the examples given in figures 4.4–4.7.

Figure 4.4. Recent Context.

Figure 4.5. Chronicle Context.

E1 E2

;

E4 E1

¬

∧

[9,9] [9,9] [10,10]

[[2,4],[5,6]]

E3

A

C B

[2,7] [8,8]

[6,6]

[1,4]

[9,9] [6,6]

E1 E2

;

E4 E1

¬

∧
E3

A

C
ffB

35

Figure 4.6. Continuous Context.

Figure 4.7. Cumulative Context.

[9,10]

[8,8]

[1,4]

[6,7]
[2,4]

[6,10]

[[1,4],[6,10]]
[[2,4],[6,10]]

E1 E2

;

E4 E1

¬

∧
E3

A

C
B

[6,9,10]
[1,2,4]

[6,7]

[8,8]

[[1,2,4],[6,9,10]]

E1 E2

;

E4 E1

¬

∧
E3

A

C B

36

Figure 4.8. Detection of the same event in different contexts.

e1
1 e1

2 e3
1 e2

1 e4
1 e1

3 e2
2 e3

2 e1
4 e4

2 e1
5

2 3 4 5 6 7 8 9 10 11 1

Time
 Recent Context

Continuous Context

Cumulative Context

Start Event

Constituent Event

End Event

Unrestricted Context

37

5. ALGORITHMS AND DETAILED EXAMPLES

5.1. Algorithms

Semantics of the event operators in recent context are defined using the event history

in chapter 4. In this chapter, we will describe an implementation that detects events according

to the interval-based semantics. In the way ECA rules are used for monitoring situations,

events occur over a time line and are sent to the event detector. All events in the form of an

event history are not submitted to the event detector. In fact, as part of event detection, the

event detector at any point sees only a partial history in time. Algorithms are presented below

detect the events according to the interval semantics although they do not see the complete

history at any given point in time.

Figure 5.1. Recent Context.

E1 E2

;

E4 E1

¬

∧

[9,9] [9,9] [10,10]

[[2,4],[5,6]]

E3

A

C B

38

Table 5.1. Terms used in Algorithms

ei Primitive or Composite event instance

Ei An event List that maintains the history in the

chronological order of the occurrences of event ei

t_s Starting time of the event (Start Interval)

t_e Ending time of the event (End Interval)

HEAD Head of the Event Occurrence List Ei

TAIL Tail of the Event Occurrence List Ei

EarliestStartTime of Ei The event which has the earliest start time in Ei

EarliestEndTime of Ei The event which has the earliest end time in Ei

(Head of the List always)

LatestStartTime of Ei The event which has the latest start time in Ei

LatestEndTime of Ei The event which has the latest end time in Ei (Tail of

the List always)

EventID ID associated with an event in the case of temporal

events

TimeString The time interval specified in the temporal events

39

5.1.1. And Operator in Recent Context

We will explain the and_recent algorithm using figure 5.1 and the primitive events

occurrences from figure 5.2.

PROCEDURE and_recent (ei, parameterlist)

/* ei can be recognized as coming from the left or right branch of the operator tree */

/* E1 and E2 have at most 2 event instances in them*/
 If ei is the left event
 If (E2 is not empty and (t_s(e2) ≤ t_s(e1)) and (t_e(e2) ≤ t_e(e1)))
 Pass <e2, e1> to the parent with t_s(e2) and t_e(e1)
 Replace e1 in E1 with ei

 If ei is the right event
 If (E1 is not empty and (t_s(e1) ≤ t_s(e2)) and (t_e(e1) ≤ t_e(e2)))
 Pass<e1, e2> to the parent with t_s(e1) and t_e(e2)
 Replace e2 in E2 with ei

 When the first event e11 occurs at the time interval [1,1] it is696 stored in the E1 list

since there is no event in the E2 list. When the second event e12 occurs at the time interval

[2,2] it replaces the event e1
1 in the E1 list since there is no event in E2 list and this is the

recent event compared to the e1
1. When the event e4

1 occurs at the time interval [5,5] it is

checked with the events in the E1 list since it is not empty. The condition that is being

checked is (t_s(e1) ≤ t_s(e2)) and (t_e(e1) ≤ t_e(e2)). When we substitute the values which

we got above it will be (t_s(2) ≤ t_s(5)) and (t_e(2) ≤ t_e(5)). Since the condition turns out to

be true the next statement Pass<e1, e2> to the parent with t_s(e1) and t_e(e2) is executed.

Thus, we will Pass<e1
2, e4

1> to the parent with t_s(2) and t_e(5) which implies the

AND event is detected in a recent context with the composite event <e1
2, e4

1> over the time

interval [2,5]. Once the event detection is done, this event e2 is replaced with the event that is

already present in the E2 list, since this will be the recent initiator for the incoming e1 events.

40

5.1.2. Sequence operator in Recent Context

/* ei can be recognized as coming from the left or right branch of the operator tree */

PROCEDURE seq_recent (ei, parameter_list)
 If ei is the left event
 Replace e1 in the E1 with ei //most recent initiator

 If ei is the right event
 If (E1 is not empty and (t_s(e2) > t_e(e1))) //when there is an initiator in the list
 Pass<e1, e2> to parent with t_s(e1) and t_e(e2) //time of occurrence of the sequence event

5.1.3. Not operator in Recent Context

 Whenever the right event e3 is signaled then it acts as the detector for this composite

event only when there is no e2 has occurred between the end interval of the left event and

start interval of the right event.

/* ei can be recognized as coming from the left or right branch of the operator tree */

PROCEDURE not_recent (ei, parameter_list)
 If ei is the left event
 Replace e1 in E1 //most recent initiator
 Delete E2 // all e2’s in E2 should have occurred before this event e1

 If ei is the middle event
 If (E1 is not empty and (t_e (e1) ≤ t_s (e2)))
 Append e2 to E2 // since the “not” event is detected at the time of event e3 occurrence

 If ei is the right event
 If (E1 is not empty and (t_e (e1) < t_s (e3))) //if e3 is a sequence of e1
 If E2 is not empty // When there are some e2’s present in E2
 For all e2’s in E2
 If (t_e (e2) > t_s (e3) or t_s (e2) < t_s (e1))
 // Check for non occurrence of e2 in the interval formed by e1 and e3
 Pass <e1, e3> to parent with t_s (e1) and t_e (e3)
 Delete e2 from E2 // e2’s that have occurred before this recent initiator if any
 Else
 Pass <e1, e3> to the parent with t_s (e1) and t_e (e3) // When there no e2’s in E2
 Delete E1

41

5.2. Detailed Examples

 For explaining the binary operators (Sequence, And, Or), following event occurrences

are taken. For easy understanding, we will take all the events, as primitive events so that start

and end time are the same. Let the set of event occurrences be (e1
1 [0,0], e1

2 [1,1], e2
1 [2,2],

e2
2 [3,3], e1

3 [4,4]).

Figure 5.2. Primitive event occurrences.

5.2.1. Sequence operator

Sequence (“;”) is a binary Snoop operator. Based on the event definition, we will

explain how the event (E1; E2) is detected in all contexts.

Recent: In recent context, a recent initiator is used to initiate a sequence event until a

new initiator occurs and there is only detector and no terminator. So for the above event

occurrences, when event e1
1 [0,0] occurs, it acts as the recent initiator. When the next

occurrence of the event E1 (i.e., e1
2 [1,1]) occurs, it acts as the recent initiator. Event e2

1

occurs in the interval [2,2] that is a sequence of the event e12, thus detecting an “;” event in

the interval [1,2] with the events (e1
2 and e2

1). Since there are no terminators, event e1
1

continues to initiate the next event. Event e2
2 occurrence in the interval [3,3] detects a “;”

event with the events (e1
2 and e2

2) over the interval [1,3]. Next occurrence of event E1 (i.e.,

e1
3 [4,4]) makes it as the new initiator and initiates a “;” event.

0 2 4 6 8 10

Time e1
1 e2

1

e2

2e1
2 e1

3

42

Chronicle: In chronicle context, the initiator (oldest) and terminator (oldest) pair

should be unique and they are paired in the chronological order. Event e11 and e1
2 occurs in

the interval [0,0] and [1,1] respectively. When the event e2
1 occurs in the interval [2,2], it acts

as the terminator and it pairs with the event e1
1, since these two events form the oldest pair to

detect the “;” event over the interval [0,2]. After this detection, event e12 acts as the initiator

for the next “;” event since this is the oldest event currently in the event E1 list. Event e2
2

detects the “;” event over the interval [1,3] as it pairs with the event e1
2.

Continuous: In this context, a terminator can terminate more than one initiator and

detect more number of events with respect to the initiator. When the event e22 occurs in the

interval [2,2], it terminates both the initiators (e1
1 and e1

2) that is already present in the list E1,

thus detecting two “;” events ((e1
1, e2

2) and (e1
2, e2

2)) over the interval [0,2] and [1,2]. Event

e2
2 is not paired with any events, since there are no initiators.

Cumulative: In this context, a terminator can terminate more than one initiator and

detect only one event that cumulates all the events between the earliest initiator and the

terminator. Event e2
2 occurrence in the interval [2,2] terminates both the initiators (e1

1 and

e1
2) that is already present in the list E1, thus detecting a “;” event (e1

1, e1
2, e2

2) over the

interval [0,2]. In this context, according to the context definition the terminator and the

initiator that takes part in the detection are deleted after the detection.

The event pairs are given below as the summary of the above explanation

Recent: ((e1
2, e2

1) [1,2], (e1
2, e2

2) [1,3])

Chronicle: ((e1
1, e2

1) [0,2], (e1
2, e2

2)[1,3])

Continuous: ((e1
1, e2

1) [0,2], (e1
2, e2

1) [1,2])

Cumulative: ((e1
1, e1

2, e2
2) [0,2])

43

5.2.2. And operator

And (“∆”) is a binary snoop operator and we will explain how this event is detected

using the composite event (E1 ∆ E2).

Recent: In the recent context, there are only detectors in the case of “∆” operator.

Thus, an initiator will initiate the events until a new initiator occurs. Considering the same

event occurrences shown in figure 5.2, when the event e11 occurs in the interval [0,0] it starts

the “∆” event. Event e12 occurrence replaces the event e1
1 as the initiator. When the event e2

1

occurs it detects an “∆” event occurrence over the interval [1,2]. Now both the lists E1 and E2

contain one element each. If the next event occurrence is an instance of event E2, then the

element in the list E1 acts as the initiator and vice versa. Event e22 occurrence in the interval

[3,3] replaces the event e2
1 in the E2 list as the initiator and detects an “∆” event over the

interval [1,3]. When the event e13 occurs, it detects a “∆” event over an interval [3,4] where

e2
2 is the initiator and it also replaces the event e1

2 in the event E1 list.

Chronicle: In this context, the initiator and the terminator pair is unique and it is

paired in the chronological order. At the time of occurrence of event e21, event e11 is paired

with e21 and an “∆” event is detected over an interval [0,2] and both the events are deleted.

When the event e22 occurs, it is paired with the event e12 over the interval [1,3] to detect an

“∆” event and are deleted. All the events paired are in the chronological order of occurrence.

Continuous: A terminator can terminate more than one initiator and can detect more

than one event in the continuous context. When the event e21 occurs, it terminates the events

e1
1 and e1

2 and detects two “∆” events over the interval [0,2] and [1,2] with the event pairs

(e1
1, e2

1) and (e1
2, e2

1) respectively. When the event e2
2 occurs it is kept in the E2 list. When

the event e1
3 occurs, it is paired with the event e2

2, which acts as the initiator for the “∆”

event detected over the interval [3,4].

44

Cumulative: This is same as the continuous context, except that there is only one “∆”

event detected when the event e2
1 occurs which contains events (e1

1, e1
2, e2

1) as the

constituent events and is detected over the interval [0,2]. When the event e1
3 occurs, it is

paired with the event e22 that has occurred in the interval [3,3] and detects a “∆” event in the

interval [3,4].

The event pairs are given below as the summary of the above explanation

Recent: ((e1
2, e2

1) [1,2], (e1
2, e2

2) [1,3], (e2
2, e1

3) [1,3])

Chronicle: ((e1
1, e2

1) [0,2], (e1
2, e2

2)[1,3])

Continuous: ((e1
1, e2

1) [0,2], (e1
2, e2

1) [1,2], (e2
2, e1

3) [3,4])

Cumulative: ((e1
1, e1

2, e2
1) [0,2], (e2

2, e1
3) [3,4])

5.2.3. Or operator

 Binary snoop operator “∇” is detected whenever an event in the event expression

occurs. If we take the above event occurrences then the composite event (E1 ∇ E2) is detected

whenever any one of these events occur. So for the above event occurrences the “∇” event is

detected as (e1
1 [0,0], e1

2 [1,1], e2
1 [2,2], e2

2 [3,3], e1
3 [4,4]). This implicitly means that all the

contexts produce the same events in case of the “∇” event.

Figure 5.3. Event occurrences for Not Operator.

0 2 4 6 8 10

Time e1
1 e3

1

e1

3e1
2 e2

1 e2
2 e3

2

45

5.2.4. Not operator

Not (“¬”) operator is a ternary operator, but it behaves as a binary Snoop operator,

since it detects the non-occurrence of the second event. We will explain the “¬” event (! (E1,

E2, E3)), using the event occurrences shown in figure 5.3.

Recent: Recent initiators (E1) detect the non-occurrence of the event E2 before the

event E3 occurs. Since the “¬” operator behaves like the binary Snoop operator, this contains

only detectors. Occurrence of the event e1
2, replaces the event e11 as the initiator. When the

event e3
1 occurs it detects the non-occurrence of the event E2 (“¬” event) in the interval

formed by the events E1 and E3 (i.e., [1,2]). Event e1
3 occurrence replaces the event e1

2 as the

initiator and it initiates the next interval. Event e3
2 occurrence does not produce any event

since there are two occurrences of the event E2. So the event e3
1 deletes the events e1

2, e2
2 and

e1
3, since e1

3 cannot detect any non-occurrence of E2.

Chronicle: At the time when event e3
1 occurs, there are two events present in the

event list E1 and there are no occurrences of event E2. Thus, this event e31 detects the non-

occurrence in the interval [0,2] and pairs with e11. When the event e32 occurs there are two

events in both E1 and E2 list, and there are occurrences of E2 in the interval formed by (e1
2,

e3
2) as well as (e1

3, e3
2). Thus, the occurrence of the event e32 doest not detect “¬” event

occurrence and it deletes the lists E1 and E2 since the events in the list E1 cannot start any

“¬” event.

Continuous: Occurrence of the event e3
1 detects the non-occurrence of the event E2 in

the interval formed by (e1
1, e3

1) and (e1
2, e3

1), thus, it detects two event pairs (e1
1, e3

1) [0,2]

and (e1
2, e3

1) [1,2] and once the “¬” event is detected the entire constituent event are deleted.

Event e3
2 occurrence does not detect any non-occurrence of the event E2, in the interval

46

formed by e13 and e3
2. Thus, both the events in the list E2 and e1

3 is deleted, since e1
3 cannot

initiate any “¬” event.

Cumulative: Occurrence of the event e3
1 detects the non-occurrence of the event E2 in

the interval formed by (e1
1, e3

1) and (e1
2, e3

1), thus, it detects a “¬” event with events (e1
1, e1

2,

e3
1) over the interval [0,2]. Event e3

2 occurrence has the same effect as the continuous

context.

The event pairs are given below as the summary of the above explanation

Recent: ((e1
2, e3

1) [1,2])

Chronicle: ((e1
1, e3

1) [0,2])

Continuous: ((e1
1, e3

1) [0,2], (e1
2, e3

1) [1,2])

Cumulative: ((e1
1, e1

2, e3
1) [0,2])

Figure 5.4. Event occurrences for A, A* operators.

5.2.5. Aperiodic operator

“A” is an aperiodic event operator and it behaves with respect to the ternary operator

context definitions. Aperiodic event A (E1, E2, E3) is detected whenever the event E2 occurs

in the interval formed by the events E1 and E3. Aperiodic operator is explained using the

primitive event occurrences shown in figure 5.4.

Recent: Event e12 occurrence replaces the event e11 as the initiator for the “A” event.

When the event e2
1 (detector) occurs in the time interval [2,2], it detects the “A” event

0 2 4 6 8 10

Time e1
1 e2

1

e1

3e1
2 e2

2 e2
3 e3

1

47

initiated by the event e1
2 over the interval [2,2]. Event e13 [3,3] initiates the next “A” event.

When the event e22 occurs in the interval [4,4] it detects the “A” event over the interval [4,4],

and since this is just the detector, initiator is not deleted. Similarly, “A” event is detected

when the event e2
3 occur. The occurrence of e3

1 terminates the “A” event initiated by the

event e1
3.

Chronicle: When the event e1
2 occurs, it is appended to the list E1 that already

contains e11. At this time both the events are in the list, and both e1
1 and e1

2 has initiated the

“A” event detection. When the event e2
1 occurs it detects the “A” event detection that was

initiated by the event e11 and e1
2 over the interval [2,2]. Event e2

2 and e2
3 occurrence detects

“A” over the interval [4,4] and [5,5]. When the event e31 occurs it terminates the “A” event

detection that was initiated by the event e1
1.

Continuous: “A” event initiated by the events e1
1 and e1

2 are detected by the

occurrence of the event e2
1 with event pairs (e1

1, e2
1) and (e1

2, e2
1) over the interval [2,2] and

[2,2] respectively. Each of the events e2
2 and e2

3 detects three “A” events initiated by e1
1, e1

2

and e1
3 with event pairs (e1

1, e2
2) [4,4], (e1

2, e2
2) [4,4], (e1

3, e2
2) [4,4], (e1

1, e2
3) [5,5], (e1

2, e2
3)

[5,5], and (e1
3, e2

3) [5,5]. Event e3
1 occurrence terminates the “A” event initiated by the

events e1
1, e1

2 and e1
3.

Cumulative: Events e1
1 initiates the “A” event. Event e21 occurrence is accumulated.

Event e1
3 initiates an “A” event. Event e2

2 and e2
3 occurrences are also accumulated. Event

e3
1 occurrence detects and terminates the “A” event in the cumulative context initiated by the

event e1
1 with event pair (e1

1, e1
2, e1

3, e2
1, e2

2, e2
3, e3

1) [6,6].

The event pairs are given below as the summary of the above explanation

Recent: ((e1
2, e2

1) [2,2], (e1
3, e2

2) [4,4], (e1
3, e2

3) [5,5])

Chronicle: ((e1
1, e2

1) [2,2], (e1
2, e2

1) [2,2], (e1
1, e2

2) [4,4], (e1
2, e2

2) [4,4], (e1
3, e2

2)

[4,4], (e1
1, e2

3) [5,5], (e1
2, e2

3) [5,5], and (e1
3, e2

3) [5,5])

48

Continuous: ((e1
1, e2

1) [2,2], (e1
2, e2

1) [2,2], (e1
1, e2

2) [4,4], (e1
2, e2

2) [4,4], (e1
3, e2

2)

[4,4], (e1
1, e2

3) [5,5], (e1
2, e2

3) [5,5], and (e1
3, e2

3) [5,5])

Cumulative: ((e1
1, e1

2, e1
3, e2

1, e2
2, e2

3, e3
1) [6,6])

5.2.6. Cumulative aperiodic

Cumulative aperiodic operator “A*” is similar to the “A” operator except that the

events are detected and terminated only when the event E3 occurs (i.e., cumulative) until then

the event E2 occurrences are accumulated. We will explain A* event, A* (E1, E2, E3) using

the primitive event occurrences shown in figure 5.4.

Recent: Event e1
2 occurrence, initiates “A*” event and terminates the “A*” event

initiated by event e1
1. Event e21 occurrence does not detects an “A*” event and the event is

just accumulated. Event e1
3 occurrence, initiates “A*” event and terminates the “A*” event

initiated by event e1
2 and also removes the event e2

1 from E2 buffer. Events e2
2 and e2

3

occurrences are just accumulated. Event e3
1 occurrence detects the event pair (e1

3, e2
2, e2

3,

e3
1) [4,5] and terminates the detection of “A*” event initiated by event e1

3.

Chronicle: When the event e1
2 occurs it is appended to the list E1 that already

contains e11. Event e21 occurrence is accumulated; event e1
3 occurrence is appended to the E1

list and the event occurrences e22 and e2
3 are accumulated. When the event e3

1 occurs, oldest

initiator (i.e., e1
1) is paired with this event and an “A*” event is detected with the event pair

(e1
1, e2

1, e2
2, e2

3, e3
1) [2,5] and then both the initiator, terminator and all the constituent event

that cannot participate in the future event detections are deleted. In this case, events (e1
1, e3

1)

are deleted and events (e2
1, e2

2, e2
3) are not deleted since they can take part in the future event

detections.

Continuous: When the event e1
2 occurs it is appended to the list E1 that already

contains e11. Event e21 occurrence is accumulated; event e1
3 occurrence is appended to the E1

49

list and the event occurrences e2
2 and e2

3 are accumulated. When the event e3
1 occurs, events

e1
1, e1

2, e1
3 are paired with this event and three “A*” events are detected with the event pairs

(e1
1, e2

1, e2
2, e2

3, e3
1) [2,5], (e1

2, e2
1, e2

2, e2
3, e3

1) [2,5], (e1
3, e2

2, e2
3, e3

1) [4,5] and then both

the initiator, terminator and all the constituent event that cannot participate in the future event

detections are deleted.

Cumulative: When the event e1
2 occurs it is appended to the list E1 that already

contains e11. Event e21 occurrence is accumulated; event e1
3 occurrence is appended to the E1

list and the event occurrences e2
2 and e2

3 are accumulated. When the event e3
1 occurs, events

e1
1, e1

2, e1
3 are paired with this event and one “A*” event is detected with the event pair (e1

1,

e1
2, e2

1, e1
3, e2

2, e2
3, e3

1) [2,5] and then both the initiator, terminator and all the constituent

event that cannot participate in the future event detections are deleted.

The event pairs are given below as the summary of the above explanation

Recent: ((e1
3, e2

2, e2
3, e3

1) [4,5])

Chronicle: ((e1
1, e2

1, e2
2, e2

3, e3
1) [2,5])

Continuous: ((e1
1, e2

1, e2
2, e2

3, e3
1) [2,5], (e1

2, e2
1, e2

2, e2
3, e3

1) [2,5], (e1
3, e2

2, e2
3, e3

1)

[4,5])

Cumulative: ((e1
1, e1

2, e1
3, e2

1, e2
2, e2

3, e3
1) [2,5])

Figure 5.5. Event occurrences for Plus operator.

0 10 20 30

Time e1
1 e1

2 e1
3

50

5.2.7. Plus operator

“Plus” operator is used to specify a relative time. Plus operator occurs only once

whenever the time specified, relative to an event E1 happens. Plus (E1 + [10 mins]) occurs

only one time after 5 minutes after an occurrence of the event E1. Plus operator is explained

using the primitive event occurrences shown in figure 5.5.

Recent: Plus operator treats all contexts the same except the recent context where the

recent initiator replaces the immediate recent initiator. So, once replaced the Plus event

initiated by the immediate recent initiator won’t occur. In the example, e11 occurs at the time

[0,0] and the “Plus” event starts at the time 0. At the time point 5, event e12 occurs and it

starts a “Plus” event and since it is the recent initiator it replaces the event e1
1 and terminates

the Plus event started by it. “Plus” event occurs over the interval [15,15] and the event started

by e1
2 gets terminated. The event e1

3 starts the next occurrence of the “Plus” event.

Chronicle, Continuous and Cumulative: In all these contexts the “Plus” event will

occur after the time specified by the time string after the event E1 occurrence. In our example

the “Plus” event occurs three times over the interval [10,10], [15,15], [35,35] with respect to

the events e1
1, e1

2 and e1
3.

The event pairs are given below as the summary of the above explanation

Recent: ((e1
2, [t,t]) [15,15])

Chronicle, Continuous, Cumulative: ((e1
1, [t,t]) [10,10], (e1

2, [t,t]) [15,15], (e1
3, [t,t])

[35,35])

51

Figure 5.6. Event occurrence of P, P* operators.

5.2.8. Periodic operator

“P” is a periodic event operator and it behaves with respect to the ternary operator

context definitions. Periodic event is detected whenever the event E2 (time string) occurs in

the interval formed by the events E1 and E3. Let P (E1, [5], E3) be the periodic event and the

primitive event occurrences are shown in figure 5.6.

Recent: “P” event is initiated by the occurrence of an event e11. At the time point 5,

“P” event occurs over the interval [5,5] and at time point 10, the next “P” event occurs over

the interval [10,10] and so on. Event e1
2 initiates the next “P” event as the recent initiator

from the time point 15. At time point 20, “P” event initiated by e1
2 occurs. Occurrence of e3

1

terminates the “P” event started by e1
2.

Chronicle: Event e1
1 initiates the “P” event. All the event occurs as in the recent

context except that the event occurrence of e12 does not stops the “P” event initiated by the

event e1
1. Occurrence of the event e3

1 terminates the “P” event initiated by the event e1
1,

since it is the oldest initiator.

Continuous: Event e1
1 initiates the “P” event. All the event occurs as in the recent

context except that the event occurrence of e12 does not stops the “P” event initiated by the

event e11. Occurrence of the event e31 terminates the “P” events initiated by the event e1
1 and

e1
2.

0 10 20 30

Time e1
1 e1

2 e3
1

52

Cumulative: In the cumulative context, all the event occurrences are accumulated and

are detected when the terminator occurs. Event e11 initiates the “P” event. All the events and

time string occurrences are accumulated until a terminator occurs. So when the event e3
1

occurs it terminates the “P” event initiated and it occurs over the interval [5,25] with events

e1
1, e1

2, e3
1 and corresponding E2’s as constituent events.

5.2.9. Cumulative periodic operator

“P*” detects the occurrence of the events when the terminator occurs. How “P*”

event detection is different from “P” is explained below with the same event occurrences.

Recent: “P*” event is initiated by the event e1
1, but at the time point 5 there is no

occurrence of the “P*” event, and this time string event (E2) is accumulated. But according to

this context definition, when the event e1
2 occurs it acts as the recent initiator, so this stops

the “P*” event started by e11. When event e31 occurs it detects “P*” event with events (e1
2,

20, 25, e3
1) over the interval [20,25] and terminates the event initiated by e1

2.

Chronicle: Events e11, e1
2 initiates the “P*” event. Whenever the event E2 occurs with

respect to these initiators it is accumulated. When event e31 occurs it detects the “P*” event

with (e1
1, 5, 10, 15, 20, 25, e31) over the interval [5,25] that is corresponding to the oldest

initiator (i.e., e1
1) and terminates. But event E2 occurrences with respect to e1

2 are

accumulated until a new terminator occurs.

Continuous: Events e1
1, e1

2 initiates the “P*” event. Whenever the event E2 occurs

with respect to these initiators it is accumulated. When event e3
1 occurs it detects the “P*”

events with (e1
1, 5, 10, 15, 20, 25, e31) over the interval [5,25], (e1

2, 20, 25, e3
1) over the

interval [20,25] and terminates both the “P*” events initiated.

Cumulative: Events e1
1, e1

2 initiates the “P*” event. Whenever the event E2 occurs

with respect to these initiators it is accumulated. When event e3
1 occurs it detects the “P*”

53

events with (e1
1, 5, 10, 15, 20, 25, e1

2, 20, 25, e3
1) over the interval [5,25] and terminates the

“P*” event.

54

6. RELATED WORK

 This chapter summarizes related work on event specification without going in to the

details as all of them use detection-based semantics.

6.1. SAMOS

 The combination of active and object-oriented characteristics within one, coherent

system is the overall goal of SAMOS [10,11]. It addresses rule specification, rule

management and rule execution. Even tough there is not much difference between the event

specifications between the detection based Sentinel and SAMOS, we will explain briefly the

events and event constructors.

Primitive events are the events that are associated with a point in time and they are

method events, transaction events, time events and abstract events.

1. Time events are specified at a specific point in time.

2. Method events are the events that are raised by the object invocation and can be

related to one class, to a particular object or to multiple classes.

3. Transaction events are defined by the start or termination time of user-defined

transactions.

4. Abstract events are not detected by SAMOS and should be notified to the system

by explicit operation.

Composite events are built from the primitive events using six event constructors.

1. Disjunction (E1|E2) occurs when either E1 or E2 occurs.

2. Conjunction (E1, E2) occurs when both E1 and E2 have occurred, regardless of

order.

55

3. Sequence (E1; E2) occurs when first E1 and afterwards E2 occurs.

4. The other three operators define how many times the specific event occurred

during a predefined interval and they are “*” constructor, history event and

negative events. Event patterns are parameterized and are passed to the condition

and action parts. Time and Negative events have no parameters.

5. Only chronicle context semantics is used by SAMOS

Petri nets are used for the detection of composite events. But, because of the

occurrence of an event is considered as a point in time, the sequence event faces the same

problem in SAMOS as in Sentinel. The problem is explained in detail below.

Two sequence events be ((E1; E2); E3) and (E2;(E1; E3)). Let the order of event

occurrences be E1, E2 and E3. Both the sequence is detected in the Petri nets shown in

figure 6.1, since the event occurrence is taken as the point in time.

Figure 6.1. Petri net example.

6.2. Ode

Ode an object oriented database developed at AT&T Bell Labs. O++ is an object

facility based on the C++ object facility and is called the class [8,9]. In order to provide

persistence of objects O++ is an extension of C++. It also has events, which are of basic,

logical and composite type and how they are specified.

E2
E1

E3
E2;(E1; E3)

E1; E3

E2

E3 E2; E3

E1

E1;(E2; E3)

56

Events happen at specific points in time. Basic events are the events supported by the

system. These can be divided in to 4 categories as follows:

1. Object State Events

2. Method Execution Events

3. Time Events

4. Transaction Events

Logical events are the basic events with a mask, which is used to mask or hide the

event occurrence. This means that the Event and Condition portion of the ECA rule is

combined thus making the EA rules.

Composite events are the combinations of logical events using logical and special

event specification operators. Composite event is said to occur at the point in time when the

last logical event in the composite event occurs. As seen in Sentinel [1,2] and SAMOS

[10,11] this will lead to problems. Ode supports many logical operators (such as relative,

prior, sequence, every etc.,).

6.3. Towards a General Theory of Action and Time

In Active Databases events are considered as “instantaneous,” whereas real life events

have duration. There has been considerable work done in the area of AI where the events are

considered to have duration and are based on temporal logic. “Temporal logic is based on the

temporal interval rather than points.” Allen [20,21] considers 13 mutually exclusive

primitive relations that can hold between temporal intervals. Each of these relations is

represented using a predicate in this temporal logic. These 13 relations are shown below,

where the first six relations have inverse relation. Based on these temporal relations all the

interval based Snoop operators are defined.

1. DURING (t1, t2)

57

2. STARTS (t1, t2)

3. FINISHES (t1, t2)

4. BEFORE (t1, t2)

5. OVERLAP (t1, t2)

6. MEETS (t1, t2)

7. EQUAL (t1, t2)

From all the systems discussed so far we can conclude that the systems using

detection-based semantics does not recognize multiple compositions of some operators in the

intended way.

58

7. CONCLUSIONS AND FUTURE WORK

 In this thesis, we have extended the formal definitions of occurrence-based semantics

to recent context. These definitions add constraints over the formulation in the unrestricted

context in the form of conditions over initiators, detectors, and terminators appropriate for

that particular context. The semantics have been implemented using event histories providing

procedural semantics. Algorithms for all the operators in the recent and unrestricted context

have been developed. All operators have been implemented for recent and unrestricted

context.

We are in the process of extending the semantics to other contexts (such as chronicle,

continuous and cumulative) and using the disjoint characterization of composite events. This

work needs to be extended to the distributed event occurrence and detection as well.

69

REFERENCES

 1. Chakravarthy, S. and D. Mishra, Snoop: An Expressive Event Specification Language

for Active Databases. Data and Knowledge Engineering, 1994. 14(10): p. 1--26.

 2. Chakravarthy, S., et al., Composite Events for Active Databases: Semantics, Contexts
and Detection, in Proc. Int'l. Conf. on Very Large Data Bases VLDB. 1994: Santiago,
Chile. p. 606--617.

 3. Anwar, E., L. Maugis, and S. Chakravarthy, A New Perspective on Rule Support for
Object-Oriented Databases, in 1993 ACM SIGMOD Conf. on Management of Data.
1993: Washington D.C. p. 99--108.

 4. Chakravarthy, S., et al., Design of Sentinel: An Object-Oriented DBMS with Event-
Based Rules. Information and Software Technology, 1994. 36(9): p. 559--568.

 5. Chakravarthy, S., et al. ECA Rule Integration into an OODBMS: Architecture and
Implementation. ICDE 1995.

 6. Chakravarthy, S., Early Active Databases: A Capsule Summary. IEEE Transactions
on Knowledge and Data Engineering, 1995. 7(6): p. 1008--1011.

 7. Galton, A. and J. Augusto, Event detection and Event Definition. Technical Report
401, Dept. of Comp. Sci., University of Exeter, 2001.

 8. Gehani, N., H.V. Jagadish, and O. Shumeli, Composite Event Specification in Active
Databases: Model and Implementation, in Proc. 18th Int'l Conf. on Very Large Data
Bases. 1992: Vancouver, Canada.

 9. Gehani, N.H., H.V. Jagadish, and O. Shmueli, Event Specification in an Object-
Oriented Database. 1992: San Diego, CA. p. 81--90.

10. Gatziu, S. and K.R. Dittrich, Events in an Object-Oriented Database System, in Proc.
of the 1st Intl Conference on Rules in Database Systems. 1993.

11. Gatziu, S. and K. Dittrich, Detecting Composite Events in Active Database Systems
Using Petri Nets, in IEEE RIDE Proc. 4th Int'l. Workshop on Research Issues in Data
Engineering. 1994: Houston, TX, USA.

 70

12. Diaz, O., N. Paton, and P. Gray, Rule Management in Object-Oriented Databases: A
Unified Approach, in Proceedings 17th International Conference on Very Large Data
Bases. 1991: Barcelona (Catalonia, Spain).

13. Paton, N., et al., Dimensions of Active Behavior, in Rules in Database Systems., N.
Paton and M. Williams, Editors. 1993, Springer. p. 40--57.

14. Berndtsson, M. and B. Lings, On Developing Reactive Object-Oriented Databases.
IEEE Bulletin of the Technical Committee on Data Engineering, 1992. 15(1-4): p.
31--34.

15. Engstrom, H., M. Berndtsson, and B. Lings, {ACOOD} Essentials. 1997, University
of Skovde.

16. Bertino, E., E. Ferrari, and G. Guerrini. An Approach to model and query event-based
temporal data. in Proceedings of TIME '98. 1998.

17. Alejandro, P.B., D. Alin, and Z. Juergen, The REACH Active OODBMS. 1995,
Technical University Darmstadt.

18. Buchman, A.P., et al., REACH: A Real-Time, Active and Heterogeneous Mediator
System. IEEE Bulletin of the Technical Committee on Data Engineering, 1992.
15(1-4).

19. Buchman, A.P., et al., Rules in an Open System: The REACH Rule System, in Rules in
Database Systems., N. Paton and M.Williams, Editors. 1993, Springer. p. 111--126.

20. Allen, J., Towards a general Theory of action and time. Artificial Intelligence, 1984.
23(1): p. 23--54.

21. Allen, J. and G. Gerguson, Action and Events in Interval Temporal Logic. Journal of
Logic and Computation, 1994. 4(5): p. 31--79.

22. Chakravarthy, S. and D. Mishra, Towards An Expressive Event Specification
Language for Active Databases, in Proc. of the 5th International Hong Kong
Computer Society Database Workshop on Next generation Database Systems. 1994:
Kowloon Shangri-La, Hong Kong.

23. Lee, H., Support for Temporal Events in Sentinel: Design, Implementation, and
Preprocessing, in MS Thesis. 1996, Database Systems R&D Center CISE University
of Florida, Gainesville, FL.

