
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Overview of Storage and Indexing

(Chapter 9, 3rd edition)

“How index-learning turns no student pale
Yet holds the eel of science by the tail.”

-- Alexander Pope (1688-1744)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Cost Model for Our Analysis

 Measuring number of page I/O’s ignores gains of
pre-fetching blocks of pages and hits in the buffer;
thus, even I/O cost is only approximated.

 Block access is not assumed (where seek time is
incurred only once)

 Average-case analysis; based on several simplistic
assumptions.

 Clock and LRU seem to give same or very similar
results (why?)

 Good enough to show the overall trends!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:
 B: The number of data pages
 R: Number of records per page
 D: (Average) time to read or write disk page
 C: Average time to process a record (in memory)
 H: Time required to apply the hash function

Typically, D is 15 msecs, C and H are 100 nano secs
Hence the assumption that cost of I/O dominates.

We will look Big-O average complexity; you should
understand best and worst complexity as well!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Comparing File Organizations

 Heap files (random order; insert at eof)
 Sorted files, sorted on <age, sal> (contiguous)
 Clustered B+ tree file, search key <age, sal>
 Heap file with unclustered B + tree index on

search key <age, sal>
 Heap file with unclustered hash index on

search key <age, sal>

 Is it possible to have clustered hash index?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Operations to Compare

 Scan: Fetch all records from disk
 Equality search (unique or duplicates)
 Range selection/search
 Insert a record
 Delete a record

 We will do RA operations in module 4

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Assumptions for Our Analysis
 Heap Files:

 Equality selection on key; exactly one match. Can be
extended to multiple matches!

 Sorted Files:
 Files compacted after deletions. Contiguous pages (on the

disk) is assumed. Insertions has to move data!

 Clustered data file:
 No need for compaction after insert or delete

 Indexes:
 Alt (2), (3): data entry size = 10% size of record
 Alt (1): data size ?
 Hash: No overflow buckets.

• 80% page occupancy => File size = 1.25 data size
 B, B+ Tree: 67% occupancy (this is typical).

• Implies file size = 1.5 data size (why?)

 We also use 67% for data files

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Cost of Operations

 Several assumptions underlie these (rough) estimates!

B # data pages
D pg i/o cost
R recs per page

(a) Scan (b)
Equality

(c) Range (d) Insert (e) delete

(1) Heap

(2) Sorted
(contiguous)

(3) Clustered B+
tree index

(4) Unclustered
B+ Tree Index

(5) Unclustered
Hash index

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Cost of Operations (averages)

 Several assumptions underlie these (rough) estimates!

B # data pages
D page i/o cost
R recs per page

(a) Scan (b) Equality (c) Range (d) Insert (e) delete

(1) Heap B(D+RC)
Or
BD

0.5B (D+RC)
Or
½ *BD

B(D+RC) 2D + C
(added at the
front)
At the end?

Search + D + C
(no compacting)

(2) Sorted
(contiguous)

(3) Clustered

(4) Unclustered
Tree Index

(5) Unclustered
Hash index

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Cost of Operation B: # pages, R: recs/page; D: i/o cost/page

 Several assumptions underlie these (rough) estimates!

B # data pages
D pg i/o cost
R recs per page

(a) Scan (b)
Equality

(c) Range (d) Insert (e) delete

(1) Heap B(D+RC)

Cannot
do better!

0.5B
(D+RC)

Not good

B(D+RC)

Not good

2D + C
(at the end)

Good

Search (b) +
C+ D

Not good

(2) Sorted
(contiguous)

(3) Clustered
Tree Index

(4) Unclustered
Tree Index

(5) Unclustered
Hash index

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Cost of Operations B: # pages, R: recs/page; D: i/o cost/page

 Several assumptions underlie these (rough) estimates!

B # data pages
D pg i/o cost
R recs per page

(a) Scan (b)
Equality

(c) Range (d) Insert (e) delete

(1) Heap B(D+RC)

Cannot
do better!

0.5B (D+RC)

Not good

B(D+RC)

Not good

2D + C
(at the end)

Good

Search (b) +
C+ D

Not good

(2) Sorted
(contiguous)

B(D+RC) Dlog 2 B + 2
comparisons
for each
page +
Clog2 R

Dlog 2 B +
+ matching
pages(mp)*D
+ mp*RC

Search(b) +
2*0.5B
(D+RC)
(for moving
records)

Search(b) +
2*0.5B
(D+RC)
(needs
moving
records)

(3) Clustered

(4) Unclustered
Tree Index

(5) Unclustered
Hash index

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Cost of Operations B: # pages, R: recs/page; D: i/o cost/page

 Several assumptions underlie these (rough) estimates!

B # data pages
D pg i/o cost
R recs per page

(a) Scan (b)
Equality

(c) Range (d) Insert (e) delete

(1) Heap B(D+RC)
Cannot
do better

0.5B
(D+RC)
Not good

B(D+RC)

Not good

2D + C
(at the end)
Good

Search (b) +
C+ D
Not good

(2) Sorted
(contiguous)

B(D+RC)
Cannot
do better

Dlog 2 B +

Clog2 R
Good

Dlog 2 B +
+ matching
pages*D +
mp*RC
Good

Search(b) +
2*0.5B
(D+RC)
Not at all
good

Search(b) +
2*0.5B
(D+RC)
Not at all
good

(3) Clustered B+
tree

(4) Unclustered
B+ Tree Index
(Alt 2)

(5) Unclustered
Hash index

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Cost of Operations B: # pages, R: recs/page; D: i/o cost/page

 Several assumptions underlie these (rough) estimates!

B # data pages
D pg i/o cost
R recs per page

(a) Scan (b)
Equality

(c) Range (d) Insert (e) delete

(1) Heap B(D+RC)
Cannot do
better

0.5B
(D+RC)
Not good

B(D+RC)

Not good

2D + C
(at the end)
Good

Search (b) +
C+ D
Not good

(2) Sorted
(contiguous)

B(D+RC)
Cannot do
better

Dlog 2 B +

Clog2 R
Good

Dlog 2 B +
+ matching
pages*D +
mp*RC
Good

Search(b) +
2*0.5B
(D+RC)
Not good

Search(b) +
2*0.5B
(D+RC)
Not good

(3) Clustered
B+ tree

1.5B(D+RC)
no need to
use index!
scan

DlogF .15B
+ D +
Clog2 R

Dlog F .15B +
+ mp*D +
mp*RC

Search + D +
Clog2 R
(assumes free
space)

Search + D +
Clog2 R

(4) Unclustered
B+ Tree Index
(Alt 2)

(5) Unclustered
Hash index

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Cost of Operations B: # pages, R: recs/page; D: i/o cost/page

 Several assumptions underlie these (rough) estimates!

B # data pages
D pg i/o cost
R recs per page

(a) Scan (b)
Equality

(c) Range (d) Insert (e) delete

(1) Heap B(D+RC) 0.5B (D+RC)
Not good

B(D+RC) 2D + C
(at the end)
Good

Search (b) +
C+ D
Not good

(2) Sorted
(contiguous)

B(D+RC) Dlog 2 B +

Clog2 R
Good

Dlog 2 B +
+ matching
pages*D +
mp*Clog2 R

Search(b) +
2*0.5B
(D+RC)
Not good

Search(b) +
2*0.5B
(D+RC)
Not good

(3) Clustered B+
tree (why don’t
we use this all
the time?)

1.5B(D+R
C)
Cannot
do better

DlogF .15B +
D + Clog2 R

Good

Dlog F .15B +
+ mp*D +
mp*Clog2 R
Good

Search + D +
Clog2 R

Good

Search + D +
Clog2 R

Good

(4) Unclustered
B+ Tree Index
(Alt 2)

(5) Unclustered
Hash index

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Cost of Operations
B # data pages
D pg i/o cost
R recs per page

(a) Scan (b)
Equality

(c) Range (d) Insert (e) delete

(1) Heap B(D+RC) 0.5B
(D+RC)
Not good

B(D+RC) 2D + C
(at the end)
Good

Search (b) +
C+ D
Not good

(2) Sorted
(contiguous)

B(D+RC) Dlog 2 B +

Clog2 R
Good

Dlog 2 B +
+ matching
pages*D +
mp*Clog2 R

Search(b) +
2*0.5B
(D+RC)
Not good

Search(b) +
2*0.5B
(D+RC)
Not good

(3) Clustered
B+ tree

1.5B(D+RC)
Cannot do
better

DlogF .15B
+ D + Clog2
R

Good

Dlog F .15B +
+ mp*D +
mp*Clog2 R
Good

Search + D +
Clog2 R

Good

Search + D +
Clog2 R

Good

(4) Unclustered
B+ Tree Index
(Alt 2)

1.5B(D+RC) DLog F
0.15B + D +
RC

DLog F 0.15B
+ mp*R*D +
mp*C*R

DLog F 0.15B
+ D + 2D + C

Search(b) +
2D (index +
data write)

(5) Unclustered
Hash index

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Cost of Operations

 Several assumptions underlie these (rough) estimates!

B # data pages
D pg i/o cost
R recs per page

(a) Scan (b)
Equality

(c) Range (d) Insert (e) delete

(1) Heap B(D+RC)
Cannot
do better

0.5B (D+RC)
Not good

B(D+RC) 2D + C
(at the end)
Good

Search (b) +
C+ D
Not good

(2) Sorted
(contiguous)

B(D+RC)

Cannot
do better

Dlog 2 B +

Clog2 R
Good

Dlog 2 B +
+ matching
pages*D +
mp*Clog2 R

Search(b) +
2*0.5B
(D+RC)
Not good

Search(b) +
2*0.5B
(D+RC)
Not good

(3) Clustered B+
tree

1.5B(D+R
C)
Cannot
do better

DlogF .15B +
Clog2 R

Good

Dlog F .15B +
+ mp*D +
mp*Clog2 R
Good

Search + D +
Clog2 R

Good

Search + D +
Clog2 R

Good

(4) Unclustered
B+ Tree Index
(Alt 2)

1.5B(D+R
C)
Cannot
do better

DLog F 0.15B
+ D + RC

Good

DLog F 0.15B
+ mp*R*D +
mp*C*R
Not Good

DLog F 0.15B
+ D + 2D + C
Good

Search(b) +
2D (index +
data write)
Good

(5) Unclustered
Hash index

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Cost of Operations

 Several assumptions underlie these (rough) estimates!

B # data pages
D pg i/o cost
R recs per page

(a) Scan (b)
Equality

(c) Range (d) Insert (e) delete

(1) Heap B(D+RC)
Cannot do
better

0.5B
(D+RC)
Not good

B(D+RC) 2D + C
(at the end)
Good

Search (b) +
C+ D
Not good

(2) Sorted
(contiguous)

B(D+RC)

Cannot do
better

Dlog 2 B +

Clog2 R
Good

Dlog 2 B +
+ matching
pages*D +
mp*Clog2 R

Search(b) +
2*0.5B
(D+RC)
Not good

Search(b) +
2*0.5B
(D+RC)
Not good

(3) Clustered B+
tree

1.5B(D+RC)
Cannot do
better

DlogF .15B
+ Clog2 R

Good

Dlog F .15B +
+ mp*D +
mp*Clog2 R
Good

Search + D +
Clog2 R

Good

Search + D +
Clog2 R

Good

(4) Unclustered
B+ Tree Index
(Alt 2)
(data file is heap
file underneath)

1.5B(D+RC)
Cannot do
better

DLog F
0.15B + D
+ RC

Good

DLog F 0.15B
+ mp*R*D +
mp*C*R
Not Good

DLog F 0.15B
+ D + 2D + C

Good

Search(b) +
2D (index +
data write)

good

(5) Unclustered
Hash index

1.25B(D +
RC)
Do not use
index

H + D +
0.5*8RC +
D for first
match

1.25B(D +
RC)

2D + C +
H + 2D + C

H + 2D +
4RC + 2D +
2D

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Cost of Operations B: # pages, R: recs/page; D: i/o cost/page

 Several assumptions underlie these (rough) estimates!

(a) Scan (b) Equality (c) Range (d) Insert (e) delete

(1) Heap B(D+RC)
Cannot do
better

0.5B (D+RC)
Not good

B(D+RC) 2D + C (at
the end)
Good

Search (b) +
C+ D
Not good

(2) Sorted
(contiguous)

B(D+RC)

Cannot do
better

Dlog 2 B +

Clog2 R
Good

Dlog 2 B +
+ matching
pages*D +
mp*Clog2 R

Search(b) +
2*0.5B
(D+RC)
Not good

Search(b) +
2*0.5B
(D+RC)
Not good

(3) Clustered B+
tree

1.5B(D+RC)
Cannot do
better

DlogF .15B +
Clog2 R

Good

Dlog F .15B
+
+ mp*D +
mp*Clog2 R
Good

Search + D +
Clog2 R

Good

Search + D +
Clog2 R

Good

(4) Unclustered
B+ Tree Index
(Alt 2)

1.5B(D+RC)
Cannot do
better

DLog F 0.15B
+ D + RC
Good

DLog F
0.15B +
mp*R*D +
mp*C*R
Not Good

DLog F 0.15B
+ D + 2D + C

Good

Search(b) +
2D (index +
data write)

Good

(5) Unclustered
Hash index

1.25B(D +
RC)
Cannot do
better

H + 0.5*8RC +
2D
Good

1.25B(D +
RC)

Not good

2D + C +
H + 2D + C
Good

H + 2D + 4RC
+ 2D
Good Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Cost of Operations (Summary)

 Several assumptions underlie these (rough) estimates!

(a) Scan (b)
Equality

(c) Range (d) Insert (e) delete

(1) Heap BD
Cannot do
better

0.5BD
Not good

BD
Not good

2D
Good

Search (b) +
D
Not good

(2) Sorted
(contiguous)

BD
Cannot do
better

Dlog 2 B

Good

Dlog 2 B +
+ matching
pages*D
Good

Search(b) +
BD

Not good

Search(b) +
BD

Not good

(3) Clustered B+
tree

1.5BD
Cannot do
better

DlogF .15B

Good

Dlog F .15B +
+ mp*D
Good

Search + D

Good

Search + D

Good

(4) Unclustered
B+ Tree Index
(Alt 2)

1.5BD
Cannot do
better

DLog F
0.15B + D
Good

DLog F 0.15B
+ mp*R*D
Not Good

DLog F 0.15B
+ D + 2D

Search(b) +
2D (index +
data write)

(5) Unclustered
Hash index

1.25BD
Cannot do
better

2D
Good

1.25BD
Not good

4D
Good

Search + 4D
Good

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Cost of Operations
 (a) Scan (b) Equality (c) Range (d) Insert (e) Delete

(1) Heap BD 0.5BD BD 2D Search
+D

(2) Sorted BD Dlog 2B Dlog 2 B +
matches

Search
+ BD

Search
+BD

(3) Clustered 1.5BD Dlog F 1.5B Dlog F 1.5B
+ # matches

Search
+ D

Search
+D

(4) Unclustered
Tree index

BD(R+0.15) D(1 +
log F 0.15B)

Dlog F 0.15B
+ # matches

D(3 +
log F 0.15B)

Search
+ 2D

(5) Unclustered
Hash index

BD(R+0.1
25)

2D BD 4D Search
+ 2D

 Several assumptions underlie these (rough) estimates!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Understanding the Workload

 For each query in the workload:
 Which relations does it access?
 Which attributes are retrieved?
 Which attributes are involved in selection/join conditions?

How selective are these conditions likely to be?

 For each update in the workload:
 Which attributes are involved in selection/join conditions?

How selective are these conditions likely to be?
 The type of update (INSERT/DELETE/UPDATE), and the

attributes that are affected.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Choice of Indexes

 What indexes should we create?
 Which relations should have indexes? What field(s)

should be the search key? Should we build several
indexes?

 For each index, what kind of an index should it
be?
 Clustered? Hash/tree?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Choice of Indexes (Contd.)

 One approach: Consider the most important queries
in turn. Consider the best plan using the current
indexes, and see if a better plan is possible with an
additional index. If so, create it.
 Obviously, this implies that we must understand how a

DBMS evaluates queries and creates query evaluation plans!
 For now, we discuss simple 1-table queries.

 Before creating an index, must also consider the
impact of updates in the workload!
 Trade-off: Indexes can make queries go faster, updates

slower. Require disk space, too.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Index Selection Guidelines
 Attributes in WHERE clause are candidates for index keys.

 Exact match condition suggests hash index.
 Range query suggests tree index.

• Clustering is especially useful for range queries; can also help on
equality queries if there are many duplicates.

 Multi-attribute search keys should be considered when a
WHERE clause contains several conditions.
 Order of attributes is important for range queries.
 Such indexes can sometimes enable index-only strategies for

important queries.
• For index-only strategies, clustering is not important!

 Try to choose indexes that benefit as many queries as
possible. Since only one index can be clustered per relation,
choose it wisely based on important queries that would
benefit the most from clustering.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Summary

 Many alternative file organizations exist, each
appropriate in some situation.

 If selection queries are frequent, sorting the
file or building an index is important.
 Hash-based indexes only good for equality search.
 Sorted files and tree-based indexes best for range

search; also good for equality search. (Files rarely
kept sorted in practice; B+ tree index is better.)

 Index is a collection of data entries plus a way
to quickly find entries with given key values.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Summary (Contd.)

 Data entries can be actual data records, <key,
rid> pairs, or <key, rid-list> pairs.
 Choice orthogonal to indexing technique used to

locate data entries with a given key value.
 Can have several indexes on a given file of

data records, each with a different search key.
 Indexes can be classified as clustered vs.

unclustered, primary vs. secondary, and
dense vs. sparse. Differences have important
consequences for utility/performance.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Summary (Contd.)
 Understanding the nature of the workload for the

application, and the performance goals, is essential
to developing a good design.
 What are the important queries and updates? What

attributes/relations are involved?
 Indexes must be chosen to speed up important

queries (and perhaps some updates!).
 Index maintenance overhead on updates to key fields.
 Choose indexes that can help many queries, if possible.
 Build indexes to support index-only strategies.
 Clustering is an important decision; only one index on a

given relation can be clustered!
 Order of fields in composite index key can be important.

Thank You !!!

BDA 2018 (Warangal)

27

For more information visit:

http://itlab.uta.edu

13 December 2018

