
Database Management Systems, R. Ramakrishnan and J. Gehrke 1

External Sorting

Chapter 13

Database Management Systems, R. Ramakrishnan and J. Gehrke 2

Why Sort?
� A classic problem in computer science!
� Data requested in sorted order

– e.g., find students in increasing gpa order

� Sorting is the first step in bulk loading of B+ tree
index.

� Sorting is useful for eliminating duplicate copies in a
collection of records (Why?)

� Sort-merge join algorithm involves sorting.
� Problem: sort 100Gb of data with 1Gb of RAM.

– why not virtual memory?
� Take a look at sortbenchmark.com
� Take a look at main memory sort algos at www.sorting-algorithms.com

Database Management Systems, R. Ramakrishnan and J. Gehrke 3

Sorting a file in RAM
� Three steps:

– Read the entire file from disk into RAM
– Sort the records using a standard sorting procedure, such

as Shell sort, heap sort, bubble sort, … (100’s of algos)
– Write the file back to disk

� How can we do the above when the data size is 100
or 1000 times that of available RAM size?

� And keep I/O to a minimum!
– Effective use of buffers
– Merge as a way of sorting
– Overlap processing and I/O (e.g., heapsort)

Database Management Systems, R. Ramakrishnan and J. Gehrke 4

2-Way Sort of N pages
� Requires Minimum of 3 Buffers
� Pass 0: Read a page, sort it, write it.

– only one buffer page is used
– How many I/O’s does it take?

� Pass 1, 2, 3, …, etc.:
– Minimum three buffer pages are needed! (Why?)
– How many i/o’s are needed in each pass? (Why?)
– How many passes are needed? (Why?)

Main memory buffers

INPUT 1

INPUT 2

DiskDisk

OUTPUT

Database Management Systems, R. Ramakrishnan and J. Gehrke 5

Two-Way External Merge Sort
� Each pass we read + write

each page in file.
� N pages in the file => the

number of passes

� So total cost is:

� Idea: Divide and conquer:
sort subfiles and merge

� Can we improve upon
this? How?

  log2 1N

  2 12N Nlog 

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5
6

1,2

2,3

3,4

4,5

6,6

7,8

Database Management Systems, R. Ramakrishnan and J. Gehrke 6

General External Merge Sort
� Suppose we can have more than 3 buffers! Can we

use them effectively and do better?
� To sort a file with N pages using B buffer pages:

– Pass 0: use B buffer pages. Produce sorted runs of B
pages each.

– Pass 2, …, etc.: merge B-1 runs.

 N B/

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

Database Management Systems, R. Ramakrishnan and J. Gehrke 7

Cost of External Merge Sort
� Number of passes:
� Cost = 2N * (# of passes)
� E.g., with 5 buffer pages, to sort 108 page file:

– Pass 0: = 22 sorted runs of 5 pages each
(last run is only 3 pages)

– Pass 1: = 6 sorted runs of 20 pages each
(last run is only 8 pages)

– Pass 2: 2 sorted runs, 80 pages and 28 pages
– Pass 3: Sorted file of 108 pages

� Note that with 3 buffers, initial can be of 3-
page runs (not 1)
– Cost is: 1 +

  1 1 log /B N B

 108 5/

 22 4/

  13/log2 2 NN

Database Management Systems, R. Ramakrishnan and J. Gehrke 8

Number of Passes of External Sort

 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

Database Management Systems, R. Ramakrishnan and J. Gehrke 9

Internal (main memory) Sort Algorithm
� Quicksort is a fast way to sort in memory.

– A divide-and-conquer algorithm
– Partition initial array into 2 (preferably equal size) with

some property for each partition
– Sort each partition recursively
– In-place sort algorithm

– Sorts a fixed size input to generate a fixed-size output!

� An alternative is “tournament sort” (aka “heapsort”)
– You build a max- or min-heap (binary tree with some

property)
� A node’s key >= its children’s keys
� Can be implemented using an array

– Can HEAPIFY a HEAP to insert a new value!

Database Management Systems, R. Ramakrishnan and J. Gehrke 10

Min-Heap

http://www.sorting-algorithms.com/random-initial-order

Database Management Systems, R. Ramakrishnan and J. Gehrke 11

Internal (main memory) Sort Algorithm

� Given B buffers, Use 1 input, B-2 current set, and 1
output buffer

� Use heapsort on the current set and output the
smallest to output buffer

� Insert new record into current set and output the
smallest from current set which is greater than the
largest in the output (for ascending sort)

� Terminating condition
– when all values in the current set is smaller than the output,

start a new run

� Instead of discreet sort, we are doing a continuous
sort (snow plow example)

Database Management Systems, R. Ramakrishnan and J. Gehrke 12

More on Heapsort
� Fact: average length of a run in heapsort is 2B

– The “snowplow” analogy

� Worst-Case:
– What is min length of a run?
– How does this arise?

� Best-Case:
– What is max length of a run?
– How does this arise?

� Quicksort is faster, but our aim is to reduce
the number of initial runs and hence reduce
the number of passes!!
– Hence heapsort is better for disk-based sorting!

B

Database Management Systems, R. Ramakrishnan and J. Gehrke 13

I/O for External Merge Sort
� … longer runs often means fewer passes!
� We are assuming that I/O is done one page at a

time
� In fact, can read a block of pages sequentially!

– Much faster/cheaper than reading pages of the
block individually

� Suggests we should make each buffer (input
/output) be a block of pages.
– But this will reduce fan-out during merge passes!

Why?
– In practice, most files still sorted in 2-3 passes.

� Minimizes I/O cost, not the # of I/O’s
� Also, double buffering. What does this reduce?

Database Management Systems, R. Ramakrishnan and J. Gehrke 14

I/O for External Merge Sort (2)

� Blocked I/O
– Suppose a block is b pages
– We need b buffer pages for output (1 block)
– We can only merge ceiling ((B-b)/b) runs (instead

of B-1 runs when we read 1 page at a time)
– If we have 10 buffer pages, we can

� Either merge nine runs without using blocks, or
� Four runs if we assume 2 page blocks

– This tradeoff between using blocks vs. the number
of runs needs to be taken into account for external
merge sort!

– The good news is that with greater memory, both
block sizes and #runs can be kept to a decent
value

Database Management Systems, R. Ramakrishnan and J. Gehrke 15

Number of Passes of Optimized Sort

N B=1,000 B=5,000 B=10,000
100 1 1 1
1,000 1 1 1
10,000 2 2 1
100,000 3 2 2
1,000,000 3 2 2
10,000,000 4 3 3
100,000,000 5 3 3
1,000,000,000 5 4 3

� Block size = 32, initial pass produces runs of size 2B.
Database Management Systems, R. Ramakrishnan and J. Gehrke 16

Blocked I/O
� Let b be the units of read and write
� Given B buffers, # of runs that can be merged

is floor ((B-b)/b)
� If we have 10 buffers, we can

– Merge 9 runs at a time with 1 page buffer, or
– Merge 4 runs at a time with 2 page input (for each

block) and output buffer blocks

� How does it reduce I/O cost?

Database Management Systems, R. Ramakrishnan and J. Gehrke 17

Double Buffering
� To reduce wait time for I/O request to

complete, can prefetch into `shadow block’.
– Tradeoff between buffers and passes; in practice,

most files still sorted in 2-3 passes.

B main memory buffers, k-way merge

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

Does double buffering reduce the # i/o’s?

Database Management Systems, R. Ramakrishnan and J. Gehrke 18

Sorting Records! (http://sortbenchmark.org/)

Daytona (stock car) Indy (formula 1)

Sort code must be general
purpose.

Need only sort 100-byte records
with 10-byte keys.

Since 2007, it is done by a the sort benchmark committee

Database Management Systems, R. Ramakrishnan and J. Gehrke 19

Gray

2016, 44.8 TB/min
Tencent Sort

100 TB in 134 Seconds
512 nodes x (2 OpenPOWER 10-core POWER8 2.926

GHz,
512 GB memory, 4x Huawei ES3600P V3 1.2TB

NVMe SSD,
100Gb Mellanox ConnectX4-EN)

Jie Jiang, Lixiong Zheng, Junfeng Pu,
Xiong Cheng, Chongqing Zhao

Tencent Corporation
Mark R. Nutter, Jeremy D. Schaub

2016, 60.7 TB/min
Tencent Sort

100 TB in 98.8 Seconds
512 nodes x (2 OpenPOWER 10-core POWER8

2.926 GHz,
512 GB memory, 4x Huawei ES3600P V3 1.2TB

NVMe SSD,
100Gb Mellanox ConnectX4-EN)

Jie Jiang, Lixiong Zheng, Junfeng Pu,
Xiong Cheng, Chongqing Zhao

Tencent Corporation
Mark R. Nutter, Jeremy D. Schaub

Cloud

2016, $1.44 / TB
NADSort

100 TB for $144
394 Alibaba Cloud ECS ecs.n1.large nodes x

(Haswell E5-2680 v3, 8 GB memory,
40GB Ultra Cloud Disk, 4x 135GB SSD Cloud Disk)

Qian Wang, Rong Gu, Yihua Huang
Nanjing University

Reynold Xin
Databricks Inc.

Wei Wu, Jun Song, Junluan Xia
Alibaba Group Inc.

2016, $1.44 / TB
NADSort

100 TB for $144
394 Alibaba Cloud ECS ecs.n1.large nodes x

(Haswell E5-2680 v3, 8 GB memory,
40GB Ultra Cloud Disk, 4x 135GB SSD Cloud

Disk)
Qian Wang, Rong Gu, Yihua Huang

Nanjing University
Reynold Xin

Databricks Inc.
Wei Wu, Jun Song, Junluan Xia

Alibaba Group Inc.

Minute

2016, 37 TB
Tencent Sort

512 nodes x (2 OpenPOWER 10-core POWER8 2.926
GHz,

512 GB memory, 4x Huawei ES3600P V3 1.2TB
NVMe SSD,

100Gb Mellanox ConnectX4-EN)
Jie Jiang, Lixiong Zheng, Junfeng Pu,

Xiong Cheng, Chongqing Zhao
Tencent Corporation

Mark R. Nutter, Jeremy D. Schaub

2016, 55 TB
Tencent Sort

512 nodes x (2 OpenPOWER 10-core POWER8
2.926 GHz,

512 GB memory, 4x Huawei ES3600P V3 1.2TB
NVMe SSD,

100Gb Mellanox ConnectX4-EN)
Jie Jiang, Lixiong Zheng, Junfeng Pu,

Xiong Cheng, Chongqing Zhao
Tencent Corporation

Mark R. Nutter, Jeremy D. Schaub
Database Management Systems, R. Ramakrishnan and J. Gehrke 20

Using B+ Trees for Sorting

� Scenario: Table to be sorted has B+ tree index on
sorting column(s)

� Idea: Can retrieve records in order by traversing
leaf pages.

� Is this a good idea?
� Cases to consider:

– B+ tree is clustered
� Good idea!

– B+ tree is not clustered
� Could be a very bad idea!

Database Management Systems, R. Ramakrishnan and J. Gehrke 21

Clustered B+ Tree Used for Sorting

� Cost: root to the left-
most leaf, then retrieve
all leaf pages
(Alternative 1)

� If Alternative 2 is used?
Additional cost of
retrieving data records:
each page fetched just
once.

� Always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

Database Management Systems, R. Ramakrishnan and J. Gehrke 22

Unclustered B+ Tree Used for Sorting

� Alternative (2) for data entries; each data
entry contains rid of a data record. In general,
one I/O per data record!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

Database Management Systems, R. Ramakrishnan and J. Gehrke 23

External Sorting vs. Unclustered Index

N Sorting p=1 p=10 p=100

100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 1,000,000 10,000,000
1,000,000 8,000,000 1,000,000 10,000,000 100,000,000
10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

� p: # of records per page
� B=1,000 and block size=32 for sorting
� p=100 is the more realistic value.

Database Management Systems, R. Ramakrishnan and J. Gehrke 24

Summary

� External sorting is important; DBMS may dedicate
part of buffer pool for sorting!

� External merge sort minimizes disk I/O cost:
– Pass 0: Produces sorted runs of size B or more (# buffer

pages). Later passes: merge runs.
– # of runs merged at a time depends on B, and block size.
– Larger block size means less I/O cost per page.
– Larger block size means smaller # runs merged.
– In practice, # of passes rarely more than 2 or 3.

Database Management Systems, R. Ramakrishnan and J. Gehrke 25

Summary, cont.

� Choice of internal sort algorithm may matter:
– Quicksort: Quick!
– Heap/tournament sort: slower (2x), longer runs

� The best sorts are wildly fast:
– Despite 40+ years of research, we’re still

improving!

� Clustered B+ tree is good for sorting
� Unclustered B+ tree is usually very bad.

