
Database Management Systems, R. Ramakrishnan and J. Gehrke 1

Hash-Based Indexes

Chapter 11

Database Management Systems, R. Ramakrishnan and J. Gehrke 2

Introduction

� As for any index, 3 alternatives for data entries k*:
� Data record with key value k
� <k, rid of data record with search key value k>
� <k, list of rids of data records with search key k>
– Choice orthogonal to the indexing technique

� Hash-based indexes are best for equality selections.
Cannot support range searches.

� Static and dynamic hashing techniques exist;
trade-offs similar to ISAM vs. B+ trees.

Database Management Systems, R. Ramakrishnan and J. Gehrke 3

Static Hashing
� # primary pages fixed, allocated sequentially,

never de-allocated; overflow pages if needed.
� h(k) mod N = bucket to which data entry with

key k belongs. (N = # of buckets)

h(key) mod N

h
key

Primary bucket pages Overflow pages

2
0

N-1

Database Management Systems, R. Ramakrishnan and J. Gehrke 4

Static Hashing (Contd.)

� Buckets contain data entries.
� Hash functionn works on search key field of record

r. Must distribute values over range 0 ... N-1.
– h(key) = (a * key + b) usually works well.
– a and b are constants; lots known about how to tune h.

� Long overflow chains can develop and degrade
performance (depends on hash value distribution)

– Extendible and Linear Hashing: Dynamic techniques to fix
this problem.

Database Management Systems, R. Ramakrishnan and J. Gehrke 5

Hashing as access structure
� Buckets/pages/blocks are allocated initially (as primary

buckets)
� Overflow pages are allocated as and when the primary

pages become full
� Buckets and overflow pages can be kept sorted
� As the size of the file grows, the overflow chains get longer
� Depending upon the strategy, deletes can lead to unused

space
� Buckets may contain actual data or pointers to data
� What can you do when overflow chains are too long!

– Increase number of primary buckets! How?
– Rehash with a new hashing function with a larger range!

Rehashing is expensive; why?

Reading and writing all pages is expensive!
Also, index is locked during that time.

Database Management Systems, R. Ramakrishnan and J. Gehrke 6

Dynamic Hashing Techniques

� Extendible Hashing
– Key Idea: Instead of adding an overflow page,

one solution is to reorganize the file by
doubling the number of buckets and re-
distributing the entries across the new buckets!

– The above is done without rehashing the keys
and without reading and writing all the pages

Database Management Systems, R. Ramakrishnan and J. Gehrke 7

Extendible Hashing

� Situation: Bucket (primary page) becomes full.
Why not re-organize file by doubling # of buckets?
– Reading and writing all pages is expensive!
– Idea: Use directory of pointers to buckets, double # of

buckets by doubling the directory, splitting just the
bucket that overflowed!

– Directory much smaller than file, so doubling it is
much cheaper. Only one page of data entries is split.
No overflow page!

– Trick lies in how the hash function is adjusted!

Database Management Systems, R. Ramakrishnan and J. Gehrke 8

Example
� Directory is array (page) of

size 4.
� To find bucket for r, take

last `global depth’ # bits of
h(r); we denote r by h(r).

– If h(r) = 5 = binary 101,
it is in bucket pointed to
by 01.

� Insert: If bucket is full, split it (allocate new page, re-distribute).

� If necessary, double the directory. (As we will see, splitting a
bucket does not always require doubling; we can tell by
comparing global depth with local depth for the split bucket.)

13*00

01

10

11

2

2

2

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

DATA PAGES

10*

1* 21*

4* 12* 32* 16*

15* 7* 19*

5*

Database Management Systems, R. Ramakrishnan and J. Gehrke 9

Insert h(r)=20 or 10100 (Causes Doubling)

20*

00

01

10

11

2 2

2

2

LOCAL DEPTH 2

2

DIRECTORY

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

1* 5* 21*13*

32*16*

10*

15* 7* 19*

4* 12*

19*

2

2

2

000

001

010

011

100

101

110

111

3

3

3
DIRECTORY

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(`split image'
of Bucket A)

32*

1* 5* 21*13*

16*

10*

15* 7*

4* 20*12*

LOCAL DEPTH

GLOBAL DEPTH

20 is 10100

Database Management Systems, R. Ramakrishnan and J. Gehrke 10

Points to Note
� 20 = binary 10100. Last 2 bits (00) tell us r belongs in

A or A2. Last 3 bits needed to tell which.
– Global depth of directory: Max # of bits needed to tell

which bucket an entry belongs to.
– Local depth of a bucket: # of bits used to determine if an

entry belongs to this bucket.

� When does bucket split cause directory doubling?
– Before insert, local depth of bucket = global depth. Insert

causes local depth to become > global depth; directory is
doubled by copying it over and `fixing’ pointer to split
image page. (Use of least significant bits enables efficient
doubling via copying of directory!)

Database Management Systems, R. Ramakrishnan and J. Gehrke 11

Directory Doubling

00

01

10

11

2

Why use least significant bits in directory?
Allows for doubling via copying!

000

001

010

011

3

100

101

110

111

vs.

0

1

1

6*
6*

6*

6 = 110

00

10

01

11

2

3

0

1

1

6*
6*

6*

6 = 110
000

100

010

110

001

101

011

111

Least Significant Most Significant
Database Management Systems, R. Ramakrishnan and J. Gehrke 12

Comments on Extendible Hashing
� If directory fits in memory, equality search

answered with one disk access; else two. (Why?)
– 100MB file, 100 bytes/rec, 4K pages contains 1,000,000

records (as data entries) and 2500 directory pages
(assuming 10% key size); chances are high that directory
will fit in memory.

– Directory grows in spurts, and, if the distribution of hash
values is skewed, directory can grow large.

– Multiple entries with same hash value cause problems!
� Delete: If removal of data entry makes bucket

empty, can be merged with `split image’. If each
directory element points to same bucket as its split
image, can halve directory. (Think about this
carefully!)

Database Management Systems, R. Ramakrishnan and J. Gehrke 13

Comments on Extendible Hashing
� If there are N key values, you need
Bits per key

If the bucket holds b keys, you need N/b buckets (not
including pointers to data records)

The key size will vary from 2 to
bits assuming uniform distribution

 1log 2 N

 )/(log2 bN

Database Management Systems, R. Ramakrishnan and J. Gehrke 14

Linear Hashing

� This is another dynamic hashing scheme, an
alternative to Extendible Hashing.

� LH handles the problem of long overflow chains
without using a directory, and handles duplicates.

� Idea: Use a family of hash functions h0, h1, h2, ...
– hi(key) = h(key) mod(2iN); N = initial # buckets
– h is some hash function (range is not 0 to N-1)
– If N = 2d0, for some d0, hi consists of applying h and looking

at the last di bits, where di = d0 + i.
– hi+1 doubles the range of hi (similar to directory doubling)

Database Management Systems, R. Ramakrishnan and J. Gehrke 15

Linear Hashing (Contd.)

� Directory avoided in LH by using overflow
pages, and choosing bucket to split round-robin.
– Splitting proceeds in `rounds’. Round ends when all

NR initial (for round R) buckets are split. Buckets 0 to
Next-1 have been split; Next to NR yet to be split.

– Current round number is Level.
– Search: To find bucket for data entry r, find hLevel(r):

� If hLevel(r) in range `Next to NR’ , r belongs here.
� Else, r could belong to bucket hLevel(r) or bucket

hLevel(r) + NR; must apply hLevel+1(r) to find out.

Database Management Systems, R. Ramakrishnan and J. Gehrke 16

Overview of LH File

� In the middle of a round.

Levelh

Buckets that existed at the
beginning of this round:

this is the range of

Next
Bucket to be split

of other buckets) in this round

Levelh search key value)(

search key value)(

Buckets split in this round:
If
is in this range, must use
h Level+1

`split image' bucket.
to decide if entry is in

created (through splitting
`split image' buckets:NR

Database Management Systems, R. Ramakrishnan and J. Gehrke 17

Linear Hashing (Contd.)
� Insert: Find bucket by applying hLevel / hLevel+1:

– If bucket to insert into is full:
� Add overflow page and insert data entry.
� (Maybe) Split bucket pointed to by Next and increment

Next.

� Can choose any criterion to `trigger’ split.
� Since buckets are split round-robin, long overflow

chains don’t develop!
� Doubling of directory is slower as compared to

Extendible Hashing ; switching of hash functions is
implicit in how the # of bits examined is increased.

Database Management Systems, R. Ramakrishnan and J. Gehrke 18

Example of Linear Hashing
� On split, hLevel+1 is used to re-distribute entries.
� Insert 43 (101011)

0
hh

1

(This info
is for illustration
only!)

Level=0, N=4

00

01

10

11

000

001

010

011

(The actual contents
of the linear hashed
file)

Next=
0

PRIMARY
PAGES

Data entry r
with h(r)=5

Primary
bucket page

44* 36*32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

0
hh

1

Level=0

00

01

10

11

000

001

010

011

Next=
1

PRIMARY
PAGES

44* 36*

32*

25*9* 5*

14* 18*10*30*

31*35* 11*7*

OVERFLOW
PAGES

43*

00100

Database Management Systems, R. Ramakrishnan and J. Gehrke 19

Example: End of a Round

0hh1

22*

00

01

10

11

000

001

010

011

00100

Next=3

01

10

101

110

Level=0
PRIMARY
PAGES

OVERFLOW
PAGES

32*

9*

5*

14*

25*

66* 10*18* 34*

35*31* 7* 11* 43*

44*36*

37*29*

30*

0hh1

37*

00

01

10

11

000

001

010

011

00100

10

101

110

Next=0

Level=1

111

11

PRIMARY
PAGES

OVERFLOW
PAGES

11

32*

9* 25*

66* 18* 10* 34*

35* 11*

44* 36*

5* 29*

43*

14* 30* 22*

31*7*

50*

Insert 50 (110010)

Note that
the
overflow
page is
gone !

Database Management Systems, R. Ramakrishnan and J. Gehrke 20

LH Described as a Variant of EH
� The two schemes are actually quite similar:

– Begin with an EH index where directory has N elements.
– Use overflow pages, split buckets round-robin.
– First split is at bucket 0. (Imagine directory being doubled

at this point.) But elements <1,N+1>, <2,N+2>, ... are the
same. So, need only create directory element N, which
differs from 0, now.
� When bucket 1 splits, create directory element N+1, etc.

� So, directory can double gradually. Also, primary
bucket pages are created in order. If they are allocated
in sequence too (so that finding i’th is easy), we
actually don’t need a directory! Voila, LH.

Database Management Systems, R. Ramakrishnan and J. Gehrke 21

Summary

� Hash-based indexes: best for equality searches,
cannot support range searches.

� Static Hashing can lead to long overflow chains.
� Extendible Hashing avoids overflow pages by

splitting a full bucket when a new data entry is to be
added to it. (Duplicates may require overflow pages.)

– Directory to keep track of buckets, doubles periodically.
– Can get large with skewed data; additional I/O if this

does not fit in main memory.

Database Management Systems, R. Ramakrishnan and J. Gehrke 22

Summary (Contd.)
� Linear Hashing avoids directory by splitting buckets

round-robin, and using overflow pages.
– Overflow pages not likely to be long.
– Duplicates handled easily (Explain!)
– Space utilization could be lower than Extendible Hashing,

since splits not concentrated on `dense’ data areas.
� Can tune criterion for triggering splits to trade-off

slightly longer chains for better space utilization.

� For hash-based indexes, a skewed data distribution is
one in which the hash values of data entries are not
uniformly distributed!

Database Management Systems, R. Ramakrishnan and J. Gehrke 23

Spatial Indexes
� Spatial indices are used by spatial databases

(databases which store information related to
objects in space) to optimize spatial queries.
Conventional index types do not efficiently
handle spatial queries such as how far two
points differ, or whether points fall within a
spatial area of interest. Common spatial index
methods include:
– Grid (spatial index)
– Z-order (curve)
– Quadtree
– Octree

Database Management Systems, R. Ramakrishnan and J. Gehrke 24

Spatial Indices

� R-tree: Typically the preferred method for
indexing spatial data. Objects (shapes, lines
and points) are grouped using the minimum
bounding rectangle (MBR). Objects are added
to an MBR within the index that will lead to
the smallest increase in its size.
– R+ tree
– R* tree
– Hilbert R-tree
– kd-tree

Database Management Systems, R. Ramakrishnan and J. Gehrke 25

Others
� Bit map index

– A bitmap index is a special kind of database index that
uses bitmaps. Bitmap indexes have traditionally been
considered to work well for low-cardinality columns,
which have a modest number of distinct values, either
absolutely, or relative to the number of records that
contain the data.

� Bloom filters
– The purpose of a bloom filter is to indicate, with some

chance of error, whether an element belongs to a set.
This error refers to the fact that it is possible that the
bloom filter indicates some element is in the set, when
it in fact is not in the set (false positive). The reverse,
however, is not possible – if some element is in the set,
the bloom filter cannot indicate that it is not in the set
(false negative).

Thank You !

