
Database Management Systems, R. Ramakrishnan and J. Gehrke 1

Overview of Storage and Indexing

(Chapter 9, 3rd edition)

“How index-learning turns no student pale
Yet holds the eel of science by the tail.”

-- Alexander Pope (1688-1744)

Database Management Systems, R. Ramakrishnan and J. Gehrke 2

Data on External Storage
� Disks: Can retrieve random page at fixed cost

– But reading several consecutive pages is much cheaper than
reading them in random order

� Tapes: Can only read pages in sequence
– Way Cheaper than disks; used for archival storage

� File organization: Method of arranging a file of records
on external storage.
– Record id (rid) is sufficient to physically locate record
– Indexes are data structures that allow us to find the record ids

of records with given values in index search key fields

� Architecture: Buffer manager stages pages from external
storage to main memory buffer pool. File and index
layers make calls to the buffer manager.

Database Management Systems, R. Ramakrishnan and J. Gehrke 3

Alternative File Types

Many alternatives exist, each ideal for some
situations, and not so good for others:

– Heap (random order) files: pages that are linked and
recordes are in MO particular order

– Sorted Files: contiguous pages on the disk is used
and records are sorted. Can apply “divide and
conquer”

– Clustered Files: Pages that are linked and records
are stored in sorted order, but NOT with
contiguous pages

– Indexes: Data structures to organize records via
trees or hashing.

Database Management Systems, R. Ramakrishnan and J. Gehrke 4

Impact of Alternative File Organizations

Many alternatives exist, each ideal for some
situations, and not so good for others:
– Heap (random order) files: Suitable when typical

access is a file scan retrieving all records.
– Sorted Files: Best if records must be retrieved in

some order, or only a `range’ of records is needed.
Binary search can be applied

– Clustered Files: suited for range search with index.
Binary search cannot be applied

– Indexes:
� Like sorted/clustered files, they speed up searches for a

subset of records, based on values in certain (“search
key”) fields

� Updates are much faster than in sorted files. Why?

Database Management Systems, R. Ramakrishnan and J. Gehrke 5

Indexes

� An index on a file speeds up selections on the
search key fields for the index.
– Any subset of the fields of a relation can be the

search key for an index on the relation.
– Search key (search field or search attribute) is not the

same as a key (minimal set of fields that uniquely
identify a record in a relation).

� An index contains a collection of data entries,
and supports efficient retrieval of all data
entries k* with a given key value k.

Database Management Systems, R. Ramakrishnan and J. Gehrke 6

Alternatives for Data Entry k* in Index

� Three alternatives:
– Data record with key value k
– <k, rid of data record with search key value k>
– <k, list of rids of data records with search key k>

� Choice of alternative for data entries is
orthogonal to the indexing technique used to
locate data entries with a given key value k.
– Examples of indexing techniques: B+ trees, hash-

based structures
– Typically, index contains auxiliary information that

directs searches to the desired data entries

Database Management Systems, R. Ramakrishnan and J. Gehrke 7

Alternatives for Data Entries (Contd.)
� Alternative 1:

– If this is used, index structure is a file organization
for data records (instead of a Heap file or sorted
file).

– At most one index on a given collection of data
records can use Alternative 1. (Otherwise, data
records are duplicated, leading to redundant
storage and potential inconsistency.)

– If data records are very large, # of pages
containing data entries is high. Implies size of
auxiliary information in the index is also large,
typically.

Database Management Systems, R. Ramakrishnan and J. Gehrke 8

Alternatives for Data Entries (Contd.)

� Alternatives 2 (widely used) and 3:
– Key entries are typically much smaller than data

records. So, better than Alternative 1 with large
data records, especially if search keys are small.
(Portion of index structure used to direct search,
which depends on size of data entries, is much
smaller than with Alternative 1.)

– Alternative 3 is more compact than Alternative 2,
but leads to variable sized data entries even if
search keys are of fixed length.
� Under what conditions do we need alternative 3?

Database Management Systems, R. Ramakrishnan and J. Gehrke 9

Index Classification (or types)
� Primary vs. secondary: If search key contains primary

key, then called primary index.
– Unique index: Search key contains a candidate key. Alt 2 is fine!

(why?)

� Clustered vs. unclustered: If order of data records is the
same as, or `close to’, order of data (or key) entries, then
called clustered index.

– Alternative 1 implies clustered; in practice, clustered also
implies Alternative 1 (since sorted files are rare).

– A file can be clustered (or sorted) on at most one search key.
– Cost of retrieving data records through index varies greatly

based on whether index is clustered or not!
– If there are multiple indexes, only one can be clustered! Why?
– Need to be chosen judiciously.

Database Management Systems, R. Ramakrishnan and J. Gehrke 10

Clustered vs. Unclustered Index
� Suppose that Alternative (2) is used for data entries,

and that the data records are stored in a Heap file.
– To build clustered index, first sort the Heap file (with

some free space on each page for future inserts).
– Overflow pages may be needed for inserts. (Thus, order of

data recs is `close to’, but may not be identical to, the sort
order.)

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

Database Management Systems, R. Ramakrishnan and J. Gehrke 11

Index Classification (Contd.)
� Dense vs. Sparse index
� Dense: an index record

appears for every search key
in the file!

� Sparse: index records are
created only for some of the
records

– Alternative 1 always leads
to dense index. Why?

– Every sparse index is
clustered! Why?

– Sparse indexes are smaller.
why?

– However, some useful
optimizations are based on
dense indexes (e.g., count)

Ashby, 25, 3000

Smith, 44, 3000

Ashby

Cass

Smith

22

25

30

40

44

44

50

Sparse Index
on

Name Data File

Dense Index
on

Age

33

Bristow, 30, 2007

Basu, 33, 4003

Cass, 50, 5004

Tracy, 44, 5004

Daniels, 22, 6003

Jones, 40, 6003

Database Management Systems, R. Ramakrishnan and J. Gehrke 12

Hash-Based Indexes

� Good for equality selections. Why?
� Index is a collection of buckets. Bucket = primary

page plus zero or more overflow pages.
� Hashing function h: h(r) = bucket in which

record r belongs. h looks at the search key fields
of r.

� If Alternative (1) is used, the buckets contain
the data records; otherwise, they contain <key,
rid> or <key, rid-list> pairs.

Database Management Systems, R. Ramakrishnan and J. Gehrke 13

B+ Tree Indexes (B stands for ?)

 Leaf pages contain data (search key) entries, and are
chained (prev & next). Non-leaf pages contain index entries
to guide the search:
Data pages (not shown!) are separate from Leaf index pages

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf

Pages

Pages

Leaf

Database Management Systems, R. Ramakrishnan and J. Gehrke 14

Example B+ Tree

� Find 28*? (not present) 29*? (present)
� All > 15* and < 30* (range condition)
� Insert/delete: Find data entry in leaf, then

change it. Need to adjust parent sometimes.
– And change sometimes bubbles up the tree

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries < 17 Entries > = 17

Database Management Systems, R. Ramakrishnan and J. Gehrke 15

Tree-Structured Indexes

Chapter 10

Database Management Systems, R. Ramakrishnan and J. Gehrke 16
Slide 16

Introduction

� Tree-structured indexing techniques support
both range searches and equality searches.
– ISAM: static structure (pre 1970)
– B tree: dynamic structure (around 1971)
– B+ tree: dynamic, adjusts gracefully under inserts

and deletes. (improved B Tree, after 1975)

Database Management Systems, R. Ramakrishnan and J. Gehrke 17

Introduction

� As for any index, 3 alternatives for data entries k*:
� Data record with key value k
� <k, rid of data record with search key value k>
� <k, list of rids of data records with search key k>

� Choice is orthogonal to the indexing technique
used to locate data entries k*.

� Tree-structured indexing techniques support
both range searches and equality searches.

� ISAM: static structure; B+ tree: dynamic,
adjusts gracefully under inserts and deletes.

Database Management Systems, R. Ramakrishnan and J. Gehrke 18

Range Searches
� ``Find all students with gpa > 3.0’’

– If data is in sorted file, do binary search to find first
such student, then scan to find others.

– Cost of binary search can be quite high.

� Simple idea: Create an `index’ file.

� Can do binary search on (smaller) index file!

Page 1 Page 2 Page NPage 3 Data File

k2 kNk1 Index File

Database Management Systems, R. Ramakrishnan and J. Gehrke 19

Example (sorted vs. tree indexing)
� 10000 pages sorted (contiguous)
� Search on the data pages takes log210000 or 14 page

accesses (log 210000 is 14 + 1 more for data access)
� Let the record size be 200 bytes; key size be 10 bytes,

40 records/page (8K page size)
� Now the data pages and leaf nodes of the index for

the above are as follows:
– 10000*40 = 400000 keys
– Key, ptr pairs per page is 8000/20 = 400

(10 bytes for pointer and 10 bytes for the key)
– Fan out of the index tree is ~ 400
– # of index leaf pages is 400000/400 (key, ptr per page)= 1000

pages

� We reduce page access from 14+1 to 2+1 (why?) with
the index

� Log 400 1000 is 2 (+ 1 more access for the data)

Database Management Systems, R. Ramakrishnan and J. Gehrke 20

Indexes

� Binary Trees
� AVL Trees
� ISAM (used by DBMSs before B and B+ trees)
� B Trees (height Balanced)
� B+ trees (also height balanced)

Database Management Systems, R. Ramakrishnan and J. Gehrke 21

Index Characteristics

� Static Vs. Dynamic
� Top Down Vs. Bottom up
� Fixed number Vs. dynamic number of index

pages
� Balanced Vs. Unbalanced

Database Management Systems, R. Ramakrishnan and J. Gehrke 22

Binary and AVL trees

� Binary trees
– At most 2 descendents (or children) per node.
– No constraint on the length of the paths from the

root.

� AVL trees
– An AVL tree is a binary tree in which the

difference between the height of the right and left
sub-trees (or the root node) is never more than
one.

Database Management Systems, R. Ramakrishnan and J. Gehrke 23

Binary and Avl trees

� Binary and AVL are top-down tree constructions.
Once the wrong key is placed in the root of the tree
(or in the root of any sub tree), it is difficult to
balance the tree without significant overhead
(reorganization)

� How can we guarantee that each of the pages contain
at least some minimum number of keys (important
for large page sizes)

� How can we guarantee that the heights of different
paths are the same (or are not very different)

Database Management Systems, R. Ramakrishnan and J. Gehrke 24

Balanced (B and B+) trees

� A balanced tree builds the tree upward from
the bottom instead of downward (like AVL
and binary trees) from the top.

� Rather than finding ways to undo a bad
situation, the problem is avoided altogether
from the very beginning.

� With balanced trees, you allow the root to
split and merge, rather than set it up and find
ways to change it.

Database Management Systems, R. Ramakrishnan and J. Gehrke 25

ISAM

� Index file may still be quite large. But we can
apply the idea repeatedly!

� Leaf pages contain data entries.

P
0

K
1 P

1
K 2 P

2
K m

P m

index entry

Non-leaf

Pages

Pages

Overflow
page

Primary pages

Leaf

Database Management Systems, R. Ramakrishnan and J. Gehrke 26

Comments on ISAM
� File creation: Leaf (data) pages allocated

sequentially (or contiguously), sorted by
search key; then index pages allocated,
then space for overflow pages.

� Index entries: <search key value, page id>; they
`direct’ search for data entries, which are in

leaf pages.
� Search: Start at root; use key comparisons to go to leaf.

Cost log F N ; F = # entries/index pg, N = # leaf pgs
� Insert: Find leaf where data entry belongs to, and put it

there.
� Delete: Find and remove from leaf; if empty overflow

page, de-allocate.

� Static tree structure: inserts/deletes affect only leaf pages.



Data Pages

Index Pages

Overflow pages

Database Management Systems, R. Ramakrishnan and J. Gehrke 27

Example ISAM Tree

� Each node can hold 2 entries;
� no need for `next-leaf-page’ pointers. (Why?)

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Leaf

Pages

Primary

Database Management Systems, R. Ramakrishnan and J. Gehrke 28

After Inserting 23*, 48*, 41*, 42* ...

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Index

Pages

Leaf

Pages

Primary

Database Management Systems, R. Ramakrishnan and J. Gehrke 29

... Then Deleting 42*, 51*, 97*

� Note that 51* appears in index levels, but not in leaf!

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Database Management Systems, R. Ramakrishnan and J. Gehrke 30

Summary of ISAM
� ISAM structure is created for a given file
� Number of index pages (entries) do not change
� Overflow pages are added and deleted as needed
� The number of primary leaf pages do not change
� Leaf pages are allocated sequentially (hence no need

for pointers!)
� No need to lock index pages (more concurrency)

why?
� The index tree is NOT balanced dynamically

(balanced statically at creation time)
� Index value exists, but may not be a record for that

value
� Potentially long overflow lists
� May need to re-create ISAM index to overcome the

above

Database Management Systems, R. Ramakrishnan and J. Gehrke 31

B and B+ trees

� The common theme of all index structures is that
they associatively map some attribute of a data object
to some locator information which can be used to
retrieve the actual data object.

� Typically, index scans are separated from record
lookup:
– Allows to scan an index without retrieving data from the

data file (reduces I/O for count and other computations)
– For B+ trees, leaves (of index) can be accessed sequentially
– Joining of indices using record id (rid/tid)

Database Management Systems, R. Ramakrishnan and J. Gehrke 32

B and B+ trees

� Both are balanced trees; i.e., the length of the path
from the root to any leaf node is the same.

� Both store pointers to data (in Alt 2 and 3) in the
index nodes. Alt 1 is typically not used!!

� The data records are stored on separate pages.
� Both are constructed in a bottom-up manner
� However, there are some fundamental differences

between them

Database Management Systems, R. Ramakrishnan and J. Gehrke 33Chapter 14

FIGURE 14.10
B-tree structures. (a) A node in a B-tree with q – 1 search values.
(b) A B-tree of order p = 3. The values were inserted in the order 8,
5, 1, 7, 3, 12, 9, 6.

Database Management Systems, R. Ramakrishnan and J. Gehrke 34Chapter 14

FIGURE 14.11
The nodes of a B+-tree. (a) Internal node of a B+-tree with q –1 search values. (b) Leaf
node of a B+-tree with q – 1 search values and q – 1 data pointers.

Database Management Systems, R. Ramakrishnan and J. Gehrke 35

B-Tree
� B tree index nodes/pages (both leaf and non-

leaf) contain
<key, data ptr, child ptr> whereas a

� B+ tree non-leaf index node/page contains
<key, child ptr> pairs and

� B+ tree index leaf node/page contains
<key, data ptr> pairs

� B+ tree leaf index pages/nodes are doubly
linked

� Data pages are separate in both the cases

Database Management Systems, R. Ramakrishnan and J. Gehrke 36

B Tree -- Implications

� In a B tree (as compared to a B+ tree):

– Packing density of an index page is less (why?)

– Key values are NOT repeated in the index (why?)

– Leaf index pages cannot be traversed for scan
(why?)

– For a key that exists in the file, search may be
stopped before reaching the leaf node (why?)

Database Management Systems, R. Ramakrishnan and J. Gehrke 37

B Tree -- Implications

� Sequential access of the entire file requires
touching every node in the index (why?)
– What kind of traversal is needed?

� Perhaps good (why?) when the key forms
most of the data record.
– i.e., the ratio of data record size to key size is

closer to 1!

Database Management Systems, R. Ramakrishnan and J. Gehrke 38

B+ Tree: Most Widely Used Index

� Insert/delete at log F N cost; keep tree height-
balanced. (F = fanout, N = # leaf pages)

� Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

� Supports equality and range-searches efficiently.

Index Entries

Data Entries
("Sequence set")

(Direct search)

Database Management Systems, R. Ramakrishnan and J. Gehrke 39

Example B+ Tree

� Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

� Search for 5*, 15*, all data entries >= 24* ...

� Based on the search for 15*, we know it is not in the tree!

Root

17 24 30

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

13

Database Management Systems, R. Ramakrishnan and J. Gehrke 40

B+ Trees in Practice
� Typical order: 100+. Typical fill-factor: 67%.

– average fanout = 133
� Typical capacities (not including root):

– Height 1: 1331 = 133 nodes (can access 1332 data recs)

– Height 2: 1332 = 17689 nodes
– Height 3: 1333 = 2,352,637 nodes
– Height 4: 1334 = 312,900,700 nodes

� (can access 4.1610 records)

� Remember that each leaf index node holds
133 keys and 133 record pointers

� Can often hold top levels in buffer pool:
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes

Database Management Systems, R. Ramakrishnan and J. Gehrke 41

Inserting a Data Entry into a B+ Tree
� Find correct leaf node L.
� Put data entry onto L.

– If L has enough space, done!
– Else, either (overflow case)

� i) Redistribute entries evenly with a sibling, copy up (not
insert) middle key, or

� ii) split L (into L and a new node L2) and Insert index entry
pointing to L2 into parent of L.

// Can avoid split sometimes by redistributing
//when can you NOT redistribute?
// if there is a proper sibling, and update parent node!

� This can happen recursively
– For an index node, you can either redistribute evenly or

split, and push up middle key. (Contrast with leaf splits.)
� Splits “grow” tree; root split increases height.

– Tree growth: gets wider or one level taller at top.
Database Management Systems, R. Ramakrishnan and J. Gehrke 42

Inserting 8* into Example B+ Tree

� Observe how
minimum
occupancy is
guaranteed in
both leaf and
index pg splits.

� Note the
difference
between copy-
up and push-up;
be sure you
understand the
reasons for this.

2* 3* 5* 7* 8*

5

Entry to be inserted in parent node.
(Note that 5 is
continues to appear in the leaf.)

s copied up and

appears once in the index. Contrast

5 24 30

17

13

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

this with a leaf split.)

Database Management Systems, R. Ramakrishnan and J. Gehrke 43

Example B+ Tree After Inserting 8*

� Notice that root was split, leading to increase in height.

� In this example, we can avoid split by re-distributing
entries; however, this is usually not done in practice.

2* 3*

Root

17

24 30

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39*

135

7*5* 8*

Database Management Systems, R. Ramakrishnan and J. Gehrke 44

Deleting a Data Entry from a B+ Tree
� Start at root, find leaf L where entry belongs.

– If no entry, done!

� Remove the entry.
– If L is at least half-full, done!
– If L has only d-1 entries, (underflow)

� Try to re-distribute, borrowing from sibling (adjacent node with
same parent as L). Middle key is copied up

� If re-distribution fails, merge L and sibling.

� If merge occurred, must delete entry (pointing to L or
sibling) from parent of L.

� Merge could propagate to root, decreasing height.
� If re-distribution, update the parent node to reflect this

(copy up and update)! Not move up!

� Recursive algorithm

Database Management Systems, R. Ramakrishnan and J. Gehrke 45

Example Tree After (Inserting 8*,
Then) Deleting 19* and 20* ...

� Deleting 19* is easy.
� Deleting 20* is done with re-distribution.

Notice how middle key is copied up for update.

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Database Management Systems, R. Ramakrishnan and J. Gehrke 46

... And Then Deleting 24*

� Must merge.
� Observe `toss’ of

index entry (on right),
and `pull down’ of
index entry (below).

30

22* 27* 29* 33* 34* 38* 39*

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39*5* 8*

Root
30135 17

Database Management Systems, R. Ramakrishnan and J. Gehrke 47

Example of Non-leaf Re-distribution

� Tree is shown below during deletion of 24*. (What
could be a possible initial tree?)

� In contrast to previous example, we can re-
distribute entry from left child of root to right
child.

Root

135 17 20

22

30

14* 16* 17* 18* 20* 33* 34* 38* 39*22* 27* 29*21*7*5* 8*3*2*

Database Management Systems, R. Ramakrishnan and J. Gehrke 48

After Re-distribution

� Intuitively, entries are re-distributed by `pushing
through’ the splitting entry in the parent node.

� It suffices to re-distribute index entry with key 20;
we’ve re-distributed 17 as well for illustration.

14* 16* 33* 34* 38* 39*22* 27* 29*17* 18* 20* 21*7*5* 8*2* 3*

Root

135

17

3020 22

Database Management Systems, R. Ramakrishnan and J. Gehrke 49

Prefix Key Compression
� Important to increase fan-out. (Why?)
� Key values in index entries only `direct traffic’; can often

compress them.
– E.g., If we have adjacent index entries with search key values

Dannon Yogurt, David Smith and Devarakonda Murthy, we can
abbreviate David Smith to Dav. (The other keys can be
compressed too ...)
� Is this correct? Not quite! What if there is a data entry Davey Jones?

(Can only compress David Smith to Davi)
� In general, while compressing, must leave each index entry greater

than every key value (in any subtree) to its left.

� Insert/delete must be suitably modified.

Database Management Systems, R. Ramakrishnan and J. Gehrke 50

Bulk Loading of a B+ Tree
� If we have a large collection of records, and we

want to create a B+ tree on some field, doing so
by repeatedly inserting records is very slow.

� Bulk Loading can be done much more efficiently.
� Initialization: Sort all data entries, insert pointer

to first (leaf index) page in a new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44*

Sorted pages of data entries; not yet in B+ tree
(will become leaf index pages)

Root

Database Management Systems, R. Ramakrishnan and J. Gehrke 51

Bulk Loading (Contd.)

� Index entries for leaf
pages always
entered into right-
most index page just
above leaf level.
When this fills up, it
splits. (Split may go
up right-most path
to the root.)

� Much faster than
repeated inserts,
especially when one
considers locking!

3* 4* 6* 9* 10*11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

Root

Data entry pages

not yet in B+ tree
3523126

10 20

3* 4* 6* 9* 10* 11* 12*13* 20*22* 23* 31* 35*36* 38*41* 44*

6

Root

10

12 23

20

35

38

not yet in B+ tree
Data entry pages

Database Management Systems, R. Ramakrishnan and J. Gehrke 52

Cost of bulk loading (creating an
index)

1) Creating the data entries to insert in the
index

2) Sort the data entries
3) Building the index
Cost of 1) is (R+E), R #pages containing records

and E is the # of pages with data entries;
access each page of R to get the data entries

Sort cost: approximately 4E
Cost of writing out all the index pages

Database Management Systems, R. Ramakrishnan and J. Gehrke 53

Summary of Bulk Loading

� Option 1: multiple inserts.
– Slow.
– Does not give sequential storage of leaves.

� Option 2: Bulk Loading
– Has advantages for concurrency control.
– Fewer I/Os during build.
– Leaves will be stored sequentially (and linked, of

course).
– Can control “fill factor” on pages.

Database Management Systems, R. Ramakrishnan and J. Gehrke 54

A Note on `Order’

� Order (d) concept replaced by physical space
criterion in practice (`at least half-full’).

– Index pages can typically hold many more entries
than leaf pages.

– Variable sized records and search keys mean different
nodes will contain different numbers of entries.

– Even with fixed length fields, multiple records with
the same search key value (duplicates) can lead to
variable-sized data entries (if we use Alternative (3)).

Database Management Systems, R. Ramakrishnan and J. Gehrke 55

A Note on Alt 3

� Storing multiple data pointers is not desirable as it
gives rise to variable size records in leaf index pages!

� For clustered B+ tree index, this can be done relatively
easily by scanning additional data records on the same
page as it is clustered on key value

� For non-clustered B+ tree index, the above cannot be
done. (why?)
– One possibility is to add overflow pages from the leaf index

page that points to multiple data records!

Database Management Systems, R. Ramakrishnan and J. Gehrke 56

Summary

� B and B+ trees can be viewed as multi-level indexes
or height balanced trees.

� B and B+ trees overcome the problems associated
with binary and AVL trees
– Binary requires too many i/os (log 2)
– May be expensive to keep the index sorted
– Very sensitive to order of inserts
– Avl is a height balanced 1-tree or HB(1) tree

� B and B+ trees are height-balanced 0-tree or H(0) or
completely balanced

Database Management Systems, R. Ramakrishnan and J. Gehrke 57

Summary

� Tree-structured indexes are ideal for range-
searches, also good for equality searches.

� ISAM is a static structure.
– Only leaf pages modified; overflow pages needed.
– Overflow chains can degrade performance unless size

of data set and data distribution stay constant.

� B+ tree is a dynamic structure.
– Inserts/deletes leave tree height-balanced; log F N cost.
– High fanout (F) means depth rarely more than 3 or 4.
– Almost always better than maintaining a sorted file.

Database Management Systems, R. Ramakrishnan and J. Gehrke 58

Summary (Contd.)

– Typically, 67% occupancy on average.
– Usually preferable to ISAM, modulo locking considerations; adjusts

to growth gracefully.
– If data entries are data records, splits can change rids!

� Key compression increases fanout, reduces height.
� Bulk loading can be much faster than repeated inserts for

creating a B+ tree on a large data set.
� Most widely used index in database management systems

because of its versatility. One of the most optimized
components of a DBMS.

Thank You !

