Hash Join Algorithms

Instructor: Sharma Chakravarthy
sharma@cse.uta.edu
The University of Texas @ Arlington

Database Management Systems, S. Chakravarthy

In-memory hash-join Algorithm

This is used for The map-side join. We are using the

\ reduce-side join for project 3
In-memory hash table
R 4

Entry0 R2
Emp Dept Build
Smith 2 Entryl
boral 10 Entry2 R1, R3
Chang | 12 7
Miller | 15
S y. Entry5 R4
Proj | Dept P
P1 3 :
2 |2 e /',’ Emp Dept | Proj | Dept
PB|15 N Smith 2 P2 2
P4 |11 Chang |12 P6 12
EE Maller [15 [P3 |15
S i
R join S (output)

Database Management Systems, S. Chakravarthy

\Hash—foin Algorithms

< In-memory Hash join

- When you can hold one of the 2 relations in memory
« Simple hash-based join

- Efficient when memory is large

- Too many I/O operations when memory is small
+ GRACE hash-based join

- Separate partitioning and join phases

- Easy to parallelize

- Avoids bucket overflow
+ Hybrid hash-based join

- Combines Basic and Grace hash-join

- Better memory usage

R

Database Management Systems, S. Chakravarthy

\Complexity

% Build phase
- Read R once and construct in-memory hash table
- 1/Os: M (# of pages of R)
% Probe phase
- Read all of S and search for matching tuples
- I/Os: N (# of pages of S)

< Total Cost: O(M+N) if we have enough memory to

hold one relation in memory
<+ How do you choose the relation for Build?
<+ How do you choose the relation for probe?
<+ What if we do not have enough memory?

Database Management Systems, S. Chakravarthy

\Simple Hash Join algorithm

% Use whatever memory is available as buckets
of one in-memory hash table and write the
rest to disk

+ Repeat this process until the entire join is
performed

+ Disadvantages: introduces too many I/O
operations when the memory is not too large!

% Cost: O(b*(M+N)) where b is the number of
buckets (range of hash function)!

Database Management Systems, S. Chakravarthy

Complexity
Xet size of R be M pages; size of S be N pages

« Let the hash function divide them uniformly into b
buckets

< If you have b hash buckets for the simple hash join
algorithms, then you need b* (M+N) 1/O’s (Try to
derive this expression!)

% You read and write each relation b times!

< Typically, b ranges from 10 to 1024 or even larger

% How can we reduce it further?

< How many buffer pages do we need

Database Management Systems, S. Chakravarthy

Simple Hash Join Algorithm

/* his the hash function; h[0..n] is the range of hash function */
/*R[0..n] and S[0..n] are buckets */
i=0; do
for (each tuple r in R){
if (h(r) in current_range)
insert r into the in-memory hash table;
else write r into R_temp;}
for (each tuple s in S){
if (h(s) is in current_range{
use s to probe the in-memory hash table;
If (any match is found) output the matching tuples;
else write s into S_temp; }
R =R_temp;
S =S_temp;
current_range = h[i+1];
}
While (R_temp is not empty and S_temp is not empty);

Database Management Systems, S. Chakravarthy

\GRACE Hash Join Algorithm
P

aftitioning phase

< Apply a hash function h(x) to the join attributes
of the tuples in both R and S. Assume b buckets

% According to the hash value, each tuple is put
into a corresponding bucket. Write these buckets
to disk as separate files.

Joining phase:
% Use the basic hash-join algorithm

+ Get one partition of R and the corresponding
partition of S and apply the basic hash algorithm
using a different hash function. Why?

Database Management Systems, S. Chakravarthy

Original

. Relation OouTPUT Partitions
Hash-Join &

% Partition both T | 0 |
relations using hash O L et A oo|
fn h: R tuples in 000 h 20 o
partition i will only O B el
match S tuples in Disk B main memory buffers Disk

partition i.

Partitions
of R& S —
N a ang Hash table for partition
% Read in a partition hash Ri (k < B-1 pages)
of R, hash it usin fn
; & |00 |w|0O0O-.-0
h2 (<> h!). Scan oo
; i h2
matching partition 000
of S, search for oo Rcut bl s
matches. —
Disk B main memory buffers Disk
Database Management Systems, S. Chakravarthy 9

Grace Hash Join Algorithm

/* hjl.n]: range of hash function; R[1..n] and S[1..n] are buckets */
for (each tuple r in R){

apply hash function to the join attributes of r;

put r into the appropriate bucket R[i]}

for (each tuple s in S){
apply hash function to the join attributes of s;
put r into the appropriate bucket S[i]}

for (i=1; i <= n; i++){
build the hash table for R[i]; /* using a different hash function h2*/
for (each tuple s in SJ[i]){
apply the hash function h2 to the join attributes of S;
use s to probe the hash table;
output any matches to the result relation;}

}

Database Management Systems, S. Chakravarthy 1

Grace Hash Join

+ Range of H(x)is 1, ..., N

+ R1,...,Rnand 51, ..., Sn are disjoint subsets
of Rand S

R is the Union (R1, ..., Rn) and S is the
union(S1, ..., Sn)

+ We need to join only Ri with Si. Why?

The efficiency comes from the reduction in
work load which is illustrated below.

Database Management Systems, S. Chakravarthy 10

Workload in hash join

Nested loop join

Grace hash join

Database Management Systems, S. Chakravarthy 12

\Observations on Hash-Join

< Given B buffer pages, the maximum # of partitions is B-1

< Assuming that partitions are of equal size, the size of each R
partition is M/ (B-1)

« The number of pages in the (in-memory) hash table built
during the building phase is f*M/(B-1) where f is the fudge
factor

+ During the probing phase, in addition to the hash table for the
R partition, we require a buffer page for scanning the S
partition, and an output buffer.

% Therefore, we require B > f*M/(B-1) +2
« Approximately, we need B>JM for the hash join algorithm
to perform well.

Database Management Systems, S. Chakravarthy 13

\Cost of Grace Hash Join

% In partitioning phase,
- read+write both relations; that is, 2(M+N).
- In matching phase, read both relations; that is,
M+N 1/Os.
- Total: 3*(M+N) linear instead of log or
quadratic!

% In our running example, this is a total of
45001/ Os.

Database Management Systems, S. Chakravarthy

\Observations on Hash-Join

If we build an in-memory hash table to speed up the
matching of tuples, a little more memory is needed.

+ If the hash function does not partition uniformly, one
or more R partitions may not fit in memory. Can
apply hash-join technique recursively to do the join of
this R-partition with corresponding S-partition.

Database Management Systems, S. Chakravarthy 14

\Sort—merge join vs. Hash Join

« If partitions in hash join are not uniformly sized,
hash join could cost more

< If the available number of buffers falls between 37
and VN, hash join costs less than sort-merge, since
we need enough memory to hold partitions of the
smaller relation. Sort-merge buffer needs are based
on the larger relation.

+ Hash Join is superior on this count if relation sizes
differ greatly. Also, Hash Join shown to be highly
parallelizable.

< Sort-Merge less sensitive to data skew; result is
sorted.

Database Management Systems, S. Chakravarthy

General Join Conditions

lities over several attributes (e.g., R.sid=S.sid
AND R.rname=S.sname):
- For Index NL, build index on <sid, sname> (if S is inner); or
use existing indexes on sid or sname.
- For Sort-Merge and Hash Join, sort/partition on
combination of the two join columns.
% Inequality conditions (e.g., R.rname < S.sname):

- For Index NL, need (clustered!) B+ tree index.
+ Range probes on inner; # matches likely to be much higher than for
equality joins.
- Hash Join, Sort Merge Join not applicable.
- Block NL quite likely to be the best join method here.

Database Management Systems, S. Chakravarthy 17

\Pointer Based Joins

Links represent a limited form of pre-computed results
(OO has rekindled this concept)
2. Modeled as TID joins in Ingres
3. Shekita and Carey experiment - 3 pointer based join
methods: Nested Loops, Merge-Join and Hybrid-Hash
Join
1. Tuples of R has a pointer to an embedded S tuple
- Scan R and retrieve S
- Sort R on the pointers (according to the disk address they

point to) and then retrieve all S items in one elevator pass
over the disk, reading S page at most once

Database Management Systems, S. Chakravarthy

Hybrid Hash Join Algorithm

NO..n] is the range of hash; R[0..n] and S[0..n] are buckets */
for (éach tuple in R){
if (hash value of r is in H[0])
insert r into the in-memory hash table;
else putrinto the appropriate bucket R[i];}
for (each tuple s in S){
if (hash value of s is in H[0]{
use s to probe the hash table;
put any matching tuples into the result relation;}
else put s into appropriate bucket S[i];}
for (i=1; i<=n; i++){
build the hash table from R[i];
for (each tuple s in S[i]){
apply hash function to the join attributes of s;
use s to probe the hash table;
output any matches to the result relation;}

Database Management Systems, S. Chakravarthy

\Pointer based Joins(contd)

Hybrid-hash join: Partitions relation R on the pointer
values ensuring that R tuples with S pointers to the
same page are bought together, and then retrieve S
pages and tuples
+ Direction of pointers fix the role of relations!
(usually, the smaller relation is used for the
build phase)
+ Maintenance effort is to be taken into account as
well.

Database Management Systems, S. Chakravarthy 20

Alternative Join methods

Yis 10 times R, Memory size 100Kb
% Cluster Size is 8Kb, Merge fan-in and
partitioning fan-out are 10, # of R

records/ cluster is 20

125
A
100 %

75

T T T T T T T T
00 200 300 400 500 600 700 800 930 1089 1108 1200 1300 1400 1500
SizeofR,S=10xR

Fignre 16. Performance of Altermative Join Methods.

Database Management Systems, S. Chakravarthy

21

\Aggregation and Duplicate Removal

% Surprisingly, a lot in common

+ In one, duplicates are discarded whereas in
the other, some computation (e.g., COUNT,
SUM, AVG,) is performed before discarding
the tuple

Database Management Systems, S. Chakravarthy

23

Conclusions
Nested Loop joins are unsuitable for medium

size and large relations

% sort based join is not as fast as hash join (merge
levels are determined individually for each file,
but only the smaller relation determines
partition depth)

« The step is because additional partitioning or
merge levels become necessary at that point

Database Management Systems, S. Chakravarthy

22

Aggregation and Duplicate Removal

+ Scalar aggregates compute a single scalar
value; from a unary input relation (count of
all employees)

- requires only one pass over data set
- indices can be exploited where possible (for max,
min, count)

+ Aggregate functions determine a set of values
from a binary input relation; e.g., sum of
salaries for each department

< The result is a relation (closure property)

Database Management Systems, S. Chakravarthy 24

\Z’Duality” of Sorting and Hashing

< Both do approx the same amount of /O

% Mirror-images in terms of sequentiality of phase 2
% Sort-based algorithms

- Large data sets are divided into subsets using physical
rule (into chunks as large as memory)

+ Hash-based algorithms

- Large data sets are divided into subsets using a logical
rule (hash values)

< Handling large inputs
- Multi-pass sort vs. recursive partitioning hash
« It actually goes deeper than this

Database Management Systems, S. Chakravarthy 25

