
1

Database Management Systems, S. Chakravarthy 1

Hash Join Algorithms

Instructor: Sharma Chakravarthy
sharma@cse.uta.edu

The University of Texas @ Arlington

Database Management Systems, S. Chakravarthy 2

Hash-Join Algorithms

 In-memory Hash join
– When you can hold one of the 2 relations in memory

 Simple hash-based join
– Efficient when memory is large
– Too many I/O operations when memory is small

 GRACE hash-based join
– Separate partitioning  and join phases
– Easy to parallelize
– Avoids bucket overflow

 Hybrid hash-based join
– Combines Basic and Grace hash-join
– Better memory usage

Database Management Systems, S. Chakravarthy 3

In-memory hash-join Algorithm
This is used for The map-side join. We are using the 
reduce-side join for project 3

Emp Dept

Smith 2

boral 10

Chang 12

Miller 15

Entry0 R2

Entry1

Entry2 R1, R3

Entry5 R4

In-memory hash table

Proj Dept

P1 3

P2 2

P3 15

P4 11

P5 9

P6 12

R

S

Emp Dept Proj Dept

Smith 2 P2 2

Chang 12 P6 12

Maller 15 P3 15

R join S (output)

Build

Probe

Database Management Systems, S. Chakravarthy 4

Complexity

 Build phase
– Read R once and construct in-memory hash table
– I/Os: M (# of pages of R)

 Probe phase
– Read all of S and search for matching tuples
– I/Os: N (# of pages of S)

 Total Cost: O(M+N) if we have enough memory to 
hold one relation in memory

 How do you choose the relation for Build?
 How do you choose the relation for probe?
 What if we do not have enough memory?



2

Database Management Systems, S. Chakravarthy 5

Simple Hash Join algorithm

 Use whatever memory is available as buckets 
of one in-memory hash table and write the 
rest to disk

 Repeat this process until the entire join is 
performed

 Disadvantages: introduces too many I/O 
operations when the memory is not too large!

 Cost: O(b*(M+N)) where b is the number of 
buckets (range of hash function)!

Database Management Systems, S. Chakravarthy 6

Simple Hash Join Algorithm
/* h is the hash function; h[0..n] is the range of hash function */
/* R[0..n] and S[0..n] are buckets */

i=0; do
for ( each tuple r in R){

if (h(r) in current_range)
insert r into the in-memory hash table;

else write r into R_temp;}
for (each tuple s in S){

if (h(s) is in current_range{
use s to probe the in-memory hash table;
If (any match is found) output the matching tuples;

else write s into S_temp; }
R = R_temp;
S = S_temp;
current_range = h[i+1];

}
While (R_temp is not empty and S_temp is not empty);

Database Management Systems, S. Chakravarthy 7

Complexity

 Let size of R be M pages; size of S be N pages
 Let the hash function divide them uniformly into b 

buckets
 If you have b hash buckets for the simple hash join 

algorithms, then you need b* (M+N) I/O’s (Try to 
derive this expression!)

 You read and write  each relation b times!
 Typically, b ranges from 10 to 1024 or even larger
 How can we reduce it further?
 How many buffer pages do we need

Database Management Systems, S. Chakravarthy 8

GRACE Hash Join Algorithm
Partitioning phase
 Apply a hash function h(x) to the join attributes 

of the tuples in both R and S.  Assume b buckets
 According to the hash value, each tuple is put 

into a corresponding bucket. Write these buckets 
to disk as separate files.

Joining phase:
 Use the basic hash-join algorithm
 Get one partition of R and the corresponding

partition of S and apply the basic hash algorithm 
using a  different hash function. Why?



3

Database Management Systems, S. Chakravarthy 9

Hash-Join
 Partition both 

relations using hash 
fn h:  R tuples in 
partition i will only 
match S tuples in 
partition i.

 Read in a partition 
of R, hash it using 
h2 (<> h!). Scan 
matching partition 
of S, search for 
matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output 
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original 
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Database Management Systems, S. Chakravarthy 10

Grace Hash Join

 Range of H(x) is 1, …, N
 R1, …, Rn and S1, …, Sn are disjoint subsets 

of R and S
 R is the Union (R1, …, Rn) and S is the 

union(S1, …, Sn)
 We need to join only Ri with Si. Why?
 The efficiency comes from the reduction in 

work load which is illustrated below.

Database Management Systems, S. Chakravarthy 11

Grace Hash Join Algorithm
/* h[1..n]: range of hash function;  R[1..n] and S[1..n] are buckets */
for ( each tuple r in R){

apply hash function to the join attributes of r;
put r into the appropriate bucket R[i]}

for (each tuple s in S){
apply hash function to the join attributes of s;
put r into the appropriate bucket S[i]}

for (i=1; i <= n; i++){
build the hash table for R[i]; /* using a different hash function  h2*/
for (each tuple s in  S[i]){

apply the hash function h2 to the join attributes of S;
use s to probe the hash table;
output any matches to the result relation;}

}

Database Management Systems, S. Chakravarthy 12

Workload in hash join

Nested loop join
Grace hash join



4

Database Management Systems, S. Chakravarthy 13

Observations on Hash-Join

 Given B buffer pages, the maximum # of partitions is B-1
 Assuming that partitions are of equal size, the size of each R 

partition is M/(B-1)
 The number of pages in the (in-memory) hash table built 

during the building phase is f*M/(B-1) where f is the fudge 
factor

 During the probing phase, in addition to the hash table for the 
R partition, we require a buffer page for scanning the S 
partition, and an output buffer.

 Therefore, we require B > f*M/(B-1) +2
 Approximately, we need B >           for the hash join algorithm 

to perform well. 
M

Database Management Systems, S. Chakravarthy 14

Observations on Hash-Join

If we build an in-memory hash table to speed up the 
matching of tuples, a little more memory is needed.

 If the hash function does not partition uniformly, one 
or more R partitions may not fit in memory.  Can 
apply hash-join technique recursively to do the join of 
this R-partition with corresponding S-partition.

Database Management Systems, S. Chakravarthy 15

Cost of Grace Hash Join

 In partitioning phase, 
– read+write both relations; that is, 2(M+N). 
– In matching phase, read both relations; that is, 

M+N I/Os.
– Total: 3*(M+N)  linear instead of log or 

quadratic!

 In our running example, this is a total of 
4500 I/Os.

Database Management Systems, S. Chakravarthy 16

Sort-merge join vs. Hash Join

 If partitions in hash join are not uniformly sized, 
hash join could cost more

 If the available number of buffers falls between  
and      , hash join costs less than sort-merge, since 
we need enough memory to hold partitions of the 
smaller relation. Sort-merge buffer needs are based 
on the larger relation. 

 Hash Join is superior on this count if relation sizes 
differ greatly.  Also, Hash Join shown to be highly 
parallelizable.

 Sort-Merge less sensitive to data skew; result is 
sorted.

M
N



5

Database Management Systems, S. Chakravarthy 17

General Join Conditions
 Equalities over several attributes (e.g.,  R.sid=S.sid 

AND R.rname=S.sname):
– For Index NL, build index on <sid, sname> (if S is inner); or 

use existing indexes on sid or sname.
– For Sort-Merge and Hash Join, sort/partition on 

combination of the two join columns.
 Inequality conditions (e.g.,  R.rname < S.sname):

– For Index NL, need (clustered!) B+ tree index.
 Range probes on inner; # matches likely to be much higher than for 

equality joins.

– Hash Join, Sort Merge Join not applicable.
– Block NL quite likely to be the best join method here.

Database Management Systems, S. Chakravarthy 18

Hybrid Hash Join Algorithm
/* H[0..n] is the range of hash; R[0..n] and S[0..n] are buckets */
for ( each tuple in R){

if (hash value of r is in H[0])
insert r into the in-memory hash table;

else put r into the appropriate bucket R[i];}
for (each tuple s in S){

if (hash value of s is in H[0]{
use s to probe the hash table;
put any matching tuples into the result relation;}

else put s into appropriate bucket S[i];}
for (i=1; i<=n; i++){

build the hash table from R[i];
for (each tuple s in S[i]){

apply hash function to the join attributes of s;
use s to probe the hash table;
output any matches to the result  relation;}

}

Database Management Systems, S. Chakravarthy 19

Pointer Based Joins
1. Links represent a limited form of pre-computed results 

(OO has rekindled this concept)
2. Modeled as TID joins in Ingres
3. Shekita and Carey experiment – 3 pointer based join 

methods: Nested Loops, Merge-Join and Hybrid-Hash 
Join

1. Tuples of R has a pointer to an embedded S tuple
– Scan R and retrieve S
– Sort R on the pointers (according to the disk address they 

point to) and then retrieve all S items in one elevator pass 
over the disk, reading S page at most once

Database Management Systems, S. Chakravarthy 20

Pointer based Joins(contd)
– Hybrid-hash join: Partitions relation R on the pointer 

values ensuring that R tuples with S pointers to the 
same page are bought together, and then retrieve S 
pages and tuples

 Direction of pointers fix the role of relations! 
(usually, the smaller relation is used for the 
build phase)

 Maintenance effort is to be taken into account as 
well.



6

Database Management Systems, S. Chakravarthy 21

Alternative Join methods
 S is 10 times R, Memory size 100Kb
 Cluster Size is 8Kb, Merge fan-in and 

partitioning fan-out are 10, # of R 
records/cluster is 20

Database Management Systems, S. Chakravarthy 22

Conclusions
 Nested Loop joins are unsuitable for medium 

size and large relations
 sort based join is not as fast as hash join (merge 

levels are determined individually for each file, 
but only the smaller relation determines 
partition depth)

 The step is because additional partitioning or 
merge levels become necessary at that point

Database Management Systems, S. Chakravarthy 23

Aggregation and Duplicate Removal

 Surprisingly, a lot in common

 In one, duplicates are discarded whereas in 
the other, some computation (e.g., COUNT, 
SUM, AVG) is performed before discarding 
the tuple

Database Management Systems, S. Chakravarthy 24

Aggregation and Duplicate Removal

 Scalar aggregates compute a single scalar 
value; from a unary input relation (count of 
all employees)
– requires only one pass over data set
– indices can be exploited where possible (for max, 

min, count)

 Aggregate functions determine a set of values 
from a binary input relation; e.g., sum of 
salaries for each department

 The result is a relation (closure property)



7

Database Management Systems, S. Chakravarthy 25

“Duality” of Sorting and Hashing
 Both do approx the same amount of I/O
 Mirror-images in terms of sequentiality of phase 2
 Sort-based algorithms

– Large data sets are divided into subsets using physical 
rule (into chunks as large as memory)

 Hash-based algorithms
– Large data sets are divided into subsets using a logical 

rule (hash values)
 Handling large inputs

– Multi-pass sort vs. recursive partitioning hash
 It actually goes deeper than this


