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In-memory hash-join Algorithm

This is used for The map-side join. We are using the
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\Hash—foin Algorithms

< In-memory Hash join

- When you can hold one of the 2 relations in memory
« Simple hash-based join

- Efficient when memory is large

- Too many I/O operations when memory is small
+ GRACE hash-based join

- Separate partitioning and join phases

- Easy to parallelize

- Avoids bucket overflow
+ Hybrid hash-based join

- Combines Basic and Grace hash-join

- Better memory usage

R
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\Complexity

% Build phase
- Read R once and construct in-memory hash table
- 1/Os: M (# of pages of R)
% Probe phase
- Read all of S and search for matching tuples
- I/Os: N (# of pages of S)

< Total Cost: O(M+N) if we have enough memory to

hold one relation in memory
<+ How do you choose the relation for Build?
<+ How do you choose the relation for probe?
<+ What if we do not have enough memory?
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\Simple Hash Join algorithm

% Use whatever memory is available as buckets
of one in-memory hash table and write the
rest to disk

+ Repeat this process until the entire join is
performed

+ Disadvantages: introduces too many I/O
operations when the memory is not too large!

% Cost: O(b*(M+N)) where b is the number of
buckets (range of hash function)!
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Complexity
Xet size of R be M pages; size of S be N pages

« Let the hash function divide them uniformly into b
buckets

< If you have b hash buckets for the simple hash join
algorithms, then you need b* (M+N) 1/O’s (Try to
derive this expression!)

% You read and write each relation b times!

< Typically, b ranges from 10 to 1024 or even larger

% How can we reduce it further?

< How many buffer pages do we need
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Simple Hash Join Algorithm

/* his the hash function; h[0..n] is the range of hash function */
/*R[0..n] and S[0..n] are buckets */
i=0; do
for (each tuple r in R){
if (h(r) in current_range)
insert r into the in-memory hash table;
else write r into R_temp;}
for (each tuple s in S){
if (h(s) is in current_range{
use s to probe the in-memory hash table;
If (any match is found) output the matching tuples;
else write s into S_temp; }
R =R_temp;
S =S_temp;
current_range = h[i+1];
}
While (R_temp is not empty and S_temp is not empty);
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\GRACE Hash Join Algorithm
P

aftitioning phase

< Apply a hash function h(x) to the join attributes
of the tuples in both R and S. Assume b buckets

% According to the hash value, each tuple is put
into a corresponding bucket. Write these buckets
to disk as separate files.

Joining phase:
% Use the basic hash-join algorithm

+ Get one partition of R and the corresponding
partition of S and apply the basic hash algorithm
using a different hash function. Why?
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Grace Hash Join Algorithm

/* hjl.n]: range of hash function; R[1..n] and S[1..n] are buckets */
for (each tuple r in R){

apply hash function to the join attributes of r;

put r into the appropriate bucket R[i]}

for (each tuple s in S){
apply hash function to the join attributes of s;
put r into the appropriate bucket S[i]}

for (i=1; i <= n; i++){
build the hash table for R[i]; /* using a different hash function h2*/
for (each tuple s in SJ[i]){
apply the hash function h2 to the join attributes of S;
use s to probe the hash table;
output any matches to the result relation;}

}
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Grace Hash Join

+ Range of H(x)is 1, ..., N

+ R1,...,Rnand 51, ..., Sn are disjoint subsets
of Rand S

# R is the Union (R1, ..., Rn) and S is the
union(S1, ..., Sn)

+ We need to join only Ri with Si. Why?

# The efficiency comes from the reduction in
work load which is illustrated below.
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Workload in hash join

Nested loop join

Grace hash join
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\Observations on Hash-Join

< Given B buffer pages, the maximum # of partitions is B-1

< Assuming that partitions are of equal size, the size of each R
partition is M/ (B-1)

« The number of pages in the (in-memory) hash table built
during the building phase is f*M/(B-1) where f is the fudge
factor

+ During the probing phase, in addition to the hash table for the
R partition, we require a buffer page for scanning the S
partition, and an output buffer.

% Therefore, we require B > f*M/(B-1) +2
« Approximately, we need B>JM  for the hash join algorithm
to perform well.
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\Cost of Grace Hash Join

% In partitioning phase,
- read+write both relations; that is, 2(M+N).
- In matching phase, read both relations; that is,
M+N 1/Os.
- Total: 3*(M+N) linear instead of log or
quadratic!

% In our running example, this is a total of
45001/ Os.
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\Observations on Hash-Join

If we build an in-memory hash table to speed up the
matching of tuples, a little more memory is needed.

+ If the hash function does not partition uniformly, one
or more R partitions may not fit in memory. Can
apply hash-join technique recursively to do the join of
this R-partition with corresponding S-partition.
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\Sort—merge join vs. Hash Join

« If partitions in hash join are not uniformly sized,
hash join could cost more

< If the available number of buffers falls between 37
and VN, hash join costs less than sort-merge, since
we need enough memory to hold partitions of the
smaller relation. Sort-merge buffer needs are based
on the larger relation.

+ Hash Join is superior on this count if relation sizes
differ greatly. Also, Hash Join shown to be highly
parallelizable.

< Sort-Merge less sensitive to data skew; result is
sorted.
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General Join Conditions

lities over several attributes (e.g., R.sid=S.sid
AND R.rname=S.sname):
- For Index NL, build index on <sid, sname> (if S is inner); or
use existing indexes on sid or sname.
- For Sort-Merge and Hash Join, sort/partition on
combination of the two join columns.
% Inequality conditions (e.g., R.rname < S.sname):

- For Index NL, need (clustered!) B+ tree index.
+ Range probes on inner; # matches likely to be much higher than for
equality joins.
- Hash Join, Sort Merge Join not applicable.
- Block NL quite likely to be the best join method here.
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\Pointer Based Joins

Links represent a limited form of pre-computed results
(OO has rekindled this concept)
2. Modeled as TID joins in Ingres
3. Shekita and Carey experiment - 3 pointer based join
methods: Nested Loops, Merge-Join and Hybrid-Hash
Join
1. Tuples of R has a pointer to an embedded S tuple
- Scan R and retrieve S
- Sort R on the pointers (according to the disk address they

point to) and then retrieve all S items in one elevator pass
over the disk, reading S page at most once
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Hybrid Hash Join Algorithm

NO..n] is the range of hash; R[0..n] and S[0..n] are buckets */
for (éach tuple in R){
if (hash value of r is in H[0])
insert r into the in-memory hash table;
else putrinto the appropriate bucket R[i];}
for (each tuple s in S){
if (hash value of s is in H[0]{
use s to probe the hash table;
put any matching tuples into the result relation;}
else put s into appropriate bucket S[i];}
for (i=1; i<=n; i++){
build the hash table from R[i];
for (each tuple s in S[i]){
apply hash function to the join attributes of s;
use s to probe the hash table;
output any matches to the result relation;}
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\Pointer based Joins(contd)

Hybrid-hash join: Partitions relation R on the pointer
values ensuring that R tuples with S pointers to the
same page are bought together, and then retrieve S
pages and tuples
+ Direction of pointers fix the role of relations!
(usually, the smaller relation is used for the
build phase)
+ Maintenance effort is to be taken into account as
well.
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Alternative Join methods

Yis 10 times R, Memory size 100Kb
% Cluster Size is 8Kb, Merge fan-in and
partitioning fan-out are 10, # of R

records/ cluster is 20

125
A
100 %

75

T T T T T T T T
00 200 300 400 500 600 700 800 930 1089 1108 1200 1300 1400 1500
SizeofR,S=10xR

Fignre 16. Performance of Altermative Join Methods.

Database Management Systems, S. Chakravarthy

21

\Aggregation and Duplicate Removal

% Surprisingly, a lot in common

+ In one, duplicates are discarded whereas in
the other, some computation (e.g., COUNT,
SUM, AVG,) is performed before discarding
the tuple
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Conclusions
Nested Loop joins are unsuitable for medium

size and large relations

% sort based join is not as fast as hash join (merge
levels are determined individually for each file,
but only the smaller relation determines
partition depth)

« The step is because additional partitioning or
merge levels become necessary at that point
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Aggregation and Duplicate Removal

+ Scalar aggregates compute a single scalar
value; from a unary input relation (count of
all employees)

- requires only one pass over data set
- indices can be exploited where possible (for max,
min, count)

+ Aggregate functions determine a set of values
from a binary input relation; e.g., sum of
salaries for each department

< The result is a relation (closure property)
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\Z’Duality” of Sorting and Hashing

< Both do approx the same amount of /O

% Mirror-images in terms of sequentiality of phase 2
% Sort-based algorithms

- Large data sets are divided into subsets using physical
rule (into chunks as large as memory)

+ Hash-based algorithms

- Large data sets are divided into subsets using a logical
rule (hash values)

< Handling large inputs
- Multi-pass sort vs. recursive partitioning hash
« It actually goes deeper than this
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