
1

Database Management Systems, S. Chakravarthy 1

Hash Join Algorithms

Instructor: Sharma Chakravarthy
sharma@cse.uta.edu

The University of Texas @ Arlington

Database Management Systems, S. Chakravarthy 2

Hash-Join Algorithms

 In-memory Hash join
– When you can hold one of the 2 relations in memory

 Simple hash-based join
– Efficient when memory is large
– Too many I/O operations when memory is small

 GRACE hash-based join
– Separate partitioning and join phases
– Easy to parallelize
– Avoids bucket overflow

 Hybrid hash-based join
– Combines Basic and Grace hash-join
– Better memory usage

Database Management Systems, S. Chakravarthy 3

In-memory hash-join Algorithm
This is used for The map-side join. We are using the
reduce-side join for project 3

Emp Dept

Smith 2

boral 10

Chang 12

Miller 15

Entry0 R2

Entry1

Entry2 R1, R3

Entry5 R4

In-memory hash table

Proj Dept

P1 3

P2 2

P3 15

P4 11

P5 9

P6 12

R

S

Emp Dept Proj Dept

Smith 2 P2 2

Chang 12 P6 12

Maller 15 P3 15

R join S (output)

Build

Probe

Database Management Systems, S. Chakravarthy 4

Complexity

 Build phase
– Read R once and construct in-memory hash table
– I/Os: M (# of pages of R)

 Probe phase
– Read all of S and search for matching tuples
– I/Os: N (# of pages of S)

 Total Cost: O(M+N) if we have enough memory to
hold one relation in memory

 How do you choose the relation for Build?
 How do you choose the relation for probe?
 What if we do not have enough memory?

2

Database Management Systems, S. Chakravarthy 5

Simple Hash Join algorithm

 Use whatever memory is available as buckets
of one in-memory hash table and write the
rest to disk

 Repeat this process until the entire join is
performed

 Disadvantages: introduces too many I/O
operations when the memory is not too large!

 Cost: O(b*(M+N)) where b is the number of
buckets (range of hash function)!

Database Management Systems, S. Chakravarthy 6

Simple Hash Join Algorithm
/* h is the hash function; h[0..n] is the range of hash function */
/* R[0..n] and S[0..n] are buckets */

i=0; do
for (each tuple r in R){

if (h(r) in current_range)
insert r into the in-memory hash table;

else write r into R_temp;}
for (each tuple s in S){

if (h(s) is in current_range{
use s to probe the in-memory hash table;
If (any match is found) output the matching tuples;

else write s into S_temp; }
R = R_temp;
S = S_temp;
current_range = h[i+1];

}
While (R_temp is not empty and S_temp is not empty);

Database Management Systems, S. Chakravarthy 7

Complexity

 Let size of R be M pages; size of S be N pages
 Let the hash function divide them uniformly into b

buckets
 If you have b hash buckets for the simple hash join

algorithms, then you need b* (M+N) I/O’s (Try to
derive this expression!)

 You read and write each relation b times!
 Typically, b ranges from 10 to 1024 or even larger
 How can we reduce it further?
 How many buffer pages do we need

Database Management Systems, S. Chakravarthy 8

GRACE Hash Join Algorithm
Partitioning phase
 Apply a hash function h(x) to the join attributes

of the tuples in both R and S. Assume b buckets
 According to the hash value, each tuple is put

into a corresponding bucket. Write these buckets
to disk as separate files.

Joining phase:
 Use the basic hash-join algorithm
 Get one partition of R and the corresponding

partition of S and apply the basic hash algorithm
using a different hash function. Why?

3

Database Management Systems, S. Chakravarthy 9

Hash-Join
 Partition both

relations using hash
fn h: R tuples in
partition i will only
match S tuples in
partition i.

 Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

. . .

Database Management Systems, S. Chakravarthy 10

Grace Hash Join

 Range of H(x) is 1, …, N
 R1, …, Rn and S1, …, Sn are disjoint subsets

of R and S
 R is the Union (R1, …, Rn) and S is the

union(S1, …, Sn)
 We need to join only Ri with Si. Why?
 The efficiency comes from the reduction in

work load which is illustrated below.

Database Management Systems, S. Chakravarthy 11

Grace Hash Join Algorithm
/* h[1..n]: range of hash function; R[1..n] and S[1..n] are buckets */
for (each tuple r in R){

apply hash function to the join attributes of r;
put r into the appropriate bucket R[i]}

for (each tuple s in S){
apply hash function to the join attributes of s;
put r into the appropriate bucket S[i]}

for (i=1; i <= n; i++){
build the hash table for R[i]; /* using a different hash function h2*/
for (each tuple s in S[i]){

apply the hash function h2 to the join attributes of S;
use s to probe the hash table;
output any matches to the result relation;}

}

Database Management Systems, S. Chakravarthy 12

Workload in hash join

Nested loop join
Grace hash join

4

Database Management Systems, S. Chakravarthy 13

Observations on Hash-Join

 Given B buffer pages, the maximum # of partitions is B-1
 Assuming that partitions are of equal size, the size of each R

partition is M/(B-1)
 The number of pages in the (in-memory) hash table built

during the building phase is f*M/(B-1) where f is the fudge
factor

 During the probing phase, in addition to the hash table for the
R partition, we require a buffer page for scanning the S
partition, and an output buffer.

 Therefore, we require B > f*M/(B-1) +2
 Approximately, we need B > for the hash join algorithm

to perform well.
M

Database Management Systems, S. Chakravarthy 14

Observations on Hash-Join

If we build an in-memory hash table to speed up the
matching of tuples, a little more memory is needed.

 If the hash function does not partition uniformly, one
or more R partitions may not fit in memory. Can
apply hash-join technique recursively to do the join of
this R-partition with corresponding S-partition.

Database Management Systems, S. Chakravarthy 15

Cost of Grace Hash Join

 In partitioning phase,
– read+write both relations; that is, 2(M+N).
– In matching phase, read both relations; that is,

M+N I/Os.
– Total: 3*(M+N) linear instead of log or

quadratic!

 In our running example, this is a total of
4500 I/Os.

Database Management Systems, S. Chakravarthy 16

Sort-merge join vs. Hash Join

 If partitions in hash join are not uniformly sized,
hash join could cost more

 If the available number of buffers falls between
and , hash join costs less than sort-merge, since
we need enough memory to hold partitions of the
smaller relation. Sort-merge buffer needs are based
on the larger relation.

 Hash Join is superior on this count if relation sizes
differ greatly. Also, Hash Join shown to be highly
parallelizable.

 Sort-Merge less sensitive to data skew; result is
sorted.

M
N

5

Database Management Systems, S. Chakravarthy 17

General Join Conditions
 Equalities over several attributes (e.g., R.sid=S.sid

AND R.rname=S.sname):
– For Index NL, build index on <sid, sname> (if S is inner); or

use existing indexes on sid or sname.
– For Sort-Merge and Hash Join, sort/partition on

combination of the two join columns.
 Inequality conditions (e.g., R.rname < S.sname):

– For Index NL, need (clustered!) B+ tree index.
 Range probes on inner; # matches likely to be much higher than for

equality joins.

– Hash Join, Sort Merge Join not applicable.
– Block NL quite likely to be the best join method here.

Database Management Systems, S. Chakravarthy 18

Hybrid Hash Join Algorithm
/* H[0..n] is the range of hash; R[0..n] and S[0..n] are buckets */
for (each tuple in R){

if (hash value of r is in H[0])
insert r into the in-memory hash table;

else put r into the appropriate bucket R[i];}
for (each tuple s in S){

if (hash value of s is in H[0]{
use s to probe the hash table;
put any matching tuples into the result relation;}

else put s into appropriate bucket S[i];}
for (i=1; i<=n; i++){

build the hash table from R[i];
for (each tuple s in S[i]){

apply hash function to the join attributes of s;
use s to probe the hash table;
output any matches to the result relation;}

}

Database Management Systems, S. Chakravarthy 19

Pointer Based Joins
1. Links represent a limited form of pre-computed results

(OO has rekindled this concept)
2. Modeled as TID joins in Ingres
3. Shekita and Carey experiment – 3 pointer based join

methods: Nested Loops, Merge-Join and Hybrid-Hash
Join

1. Tuples of R has a pointer to an embedded S tuple
– Scan R and retrieve S
– Sort R on the pointers (according to the disk address they

point to) and then retrieve all S items in one elevator pass
over the disk, reading S page at most once

Database Management Systems, S. Chakravarthy 20

Pointer based Joins(contd)
– Hybrid-hash join: Partitions relation R on the pointer

values ensuring that R tuples with S pointers to the
same page are bought together, and then retrieve S
pages and tuples

 Direction of pointers fix the role of relations!
(usually, the smaller relation is used for the
build phase)

 Maintenance effort is to be taken into account as
well.

6

Database Management Systems, S. Chakravarthy 21

Alternative Join methods
 S is 10 times R, Memory size 100Kb
 Cluster Size is 8Kb, Merge fan-in and

partitioning fan-out are 10, # of R
records/cluster is 20

Database Management Systems, S. Chakravarthy 22

Conclusions
 Nested Loop joins are unsuitable for medium

size and large relations
 sort based join is not as fast as hash join (merge

levels are determined individually for each file,
but only the smaller relation determines
partition depth)

 The step is because additional partitioning or
merge levels become necessary at that point

Database Management Systems, S. Chakravarthy 23

Aggregation and Duplicate Removal

 Surprisingly, a lot in common

 In one, duplicates are discarded whereas in
the other, some computation (e.g., COUNT,
SUM, AVG) is performed before discarding
the tuple

Database Management Systems, S. Chakravarthy 24

Aggregation and Duplicate Removal

 Scalar aggregates compute a single scalar
value; from a unary input relation (count of
all employees)
– requires only one pass over data set
– indices can be exploited where possible (for max,

min, count)

 Aggregate functions determine a set of values
from a binary input relation; e.g., sum of
salaries for each department

 The result is a relation (closure property)

7

Database Management Systems, S. Chakravarthy 25

“Duality” of Sorting and Hashing
 Both do approx the same amount of I/O
 Mirror-images in terms of sequentiality of phase 2
 Sort-based algorithms

– Large data sets are divided into subsets using physical
rule (into chunks as large as memory)

 Hash-based algorithms
– Large data sets are divided into subsets using a logical

rule (hash values)
 Handling large inputs

– Multi-pass sort vs. recursive partitioning hash
 It actually goes deeper than this

