
Database Management Systems, R. Ramakrishnan and J. Gehrke 1

Relational Query Optimization

Chapters 15

Database Management Systems, R. Ramakrishnan and J. Gehrke 2

Overview of Query Optimization

 Plan: Tree of R.A. ops, with choice of alg for each op.
– Each operator typically implemented using a `pull’

interface: when an operator is `pulled’ for the next
output tuples, it `pulls’ on its inputs and computes them.

 Two main issues:
– For a given query, what plans are considered?

 Algorithm to search plan space for cheapest (estimated) plan.

– How is the cost of a plan estimated?

 Ideally: Want to find best plan. Practically: Avoid
worst plans!

 We will study the System R approach.

Database Management Systems, R. Ramakrishnan and J. Gehrke 3

Highlights of System R Optimizer

 Impact:
– Most widely used currently; works well for < 10 joins.

 Cost estimation: Approximate art at best.
– Statistics, maintained in system catalogs, used to estimate

cost of operations and result sizes.
– Considers combination of CPU and I/O costs.

 Plan Space: Too large, must be pruned.
– Only the space of left-deep plans is considered.

 Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

– Cartesian products avoided.

Database Management Systems, R. Ramakrishnan and J. Gehrke 4

Types of QEP’s

Database Management Systems, R. Ramakrishnan and J. Gehrke 5

This is an illustration
Of 3 joins with 4
Relations. # left deep
Trees is 4! Or 24 +
right deep: 24 +
#Bushy trees.

#plans: O(n!)

Database Management Systems, R. Ramakrishnan and J. Gehrke 6

Schema for Examples

 Similar to old schema; rname added for variations.
 Reserves:

– Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

 Sailors:
– Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Database Management Systems, R. Ramakrishnan and J. Gehrke 7

Motivating Example

 Cost: 500+500*1000 I/Os
 By no means the worst plan!
 Misses several opportunities:

selections could have been
`pushed’ earlier, no use is made
of any available indexes, etc.

 Goal of optimization: To find more
efficient plans that compute the
same answer.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5
Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

RA Tree:

Plan:

Database Management Systems, R. Ramakrishnan and J. Gehrke 8

Alternative Plans 1
(No Indexes)

 Main difference: push selects.
 With 5 buffers, cost of plan:

– Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats,
uniform distribution).

– Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
– Sort T1 (2*2*10), sort T2 (2*4*250), merge (10+250)
– Total: 4060 page I/Os.

 If we used BNL join, join cost = 10+4*250, total cost = 2770.
 If we `push’ projections, T1 has only sid, T2 only sid and sname:

– T1 fits in 3 pages, cost of BNL drops to under 250 pages, total < 2000.

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Database Management Systems, R. Ramakrishnan and J. Gehrke 9

Alternative Plans 2
With Indexes

 With clustered index on bid of
Reserves, we get 100,000/100 =
1000 tuples on 1000/100 = 10 pages.

 INL with pipelining (outer is not
materialized).

 Decision not to push rating>5 before the join is based on
availability of sid index on Sailors.

 Cost: Selection of Reserves tuples (10 I/Os); for each,
must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

 Join column sid is a key for Sailors.
–At most one matching tuple, unclustered index on sid OK.

–Projecting out unnecessary fields from outer doesn’t help.

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

Database Management Systems, R. Ramakrishnan and J. Gehrke 10

Query Blocks: Units of
Optimization

 An SQL query is parsed into a
collection of query blocks, and these
are optimized one block at a time.

 Nested blocks are usually treated as
calls to a subroutine, made once per
outer tuple. (This is an over-
simplification, but serves for now.)

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT MAX (S2.age)
FROM Sailors S2
GROUP BY S2.rating)

Nested blockOuter block

 For each block, the plans considered are:
– All available access methods, for each reln in FROM clause.
– All left-deep join trees (i.e., all ways to join the relations one-
at-a-time, with the inner reln in the FROM clause, considering
all reln permutations and join methods.)

Database Management Systems, R. Ramakrishnan and J. Gehrke 11

Cost Estimation

 For each plan considered, must estimate cost:
– Must estimate cost of each operation in plan tree.

 Depends on input cardinalities.
 We’ve already discussed how to estimate the cost of operations

(sequential scan, index scan, joins, etc.)

– Must estimate size of result for each operation in tree!
 Use information about the input relations.
 For selections and joins, assume independence of predicates.

 We’ll discuss the System R cost estimation approach.
– Very inexact, but works ok in practice.
– More sophisticated techniques known now.

Database Management Systems, R. Ramakrishnan and J. Gehrke 12

Statistics and Catalogs

 Need information about the relations and indexes
involved. Catalogs typically contain at least:

– # tuples (NTuples) and # pages (NPages) for each relation.
– # distinct key values (NKeys) and NPages for each index.
– Index height, low/high key values (Low/High) for each

tree index.

 Catalogs updated periodically.
– Updating whenever data changes is too expensive; lots of

approximation anyway, so slight inconsistency ok.

 More detailed information (e.g., histograms of the
values in some field) are sometimes stored.

Database Management Systems, R. Ramakrishnan and J. Gehrke 13

Size Estimation and Reduction Factors

 Consider a query block:
 Maximum # tuples in result is the product of the

cardinalities of relations in the FROM clause.
 Reduction factor (RF) associated with each term reflects

the impact of the term in reducing result size. Result
cardinality = Max # tuples * product of all RF’s.

– Implicit assumption that terms are independent!
– Term col=value has RF 1/NKeys(I), given index I on col
– Term col1=col2 has RF 1/MAX(NKeys(I1), NKeys(I2))
– Term col>value has RF (High(I)-value)/(High(I)-Low(I))

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Database Management Systems, R. Ramakrishnan and J. Gehrke 14

Statistics maintained contd.
– Term Col BETWEEN value1 and value2; RF =?
– Term Col IN (list of values); RF = ?
– Term Col IN subquery; RF = ?
– Term (pred expression 1) OR (Pred expression

2)
RF = RF(pred1) + RF(pred2) – RF(pred1) *
RF(pred2)

– (pred expression 1) AND (Pred expression 2)
RF = ? (assumes independence)

– NOT pred
RF = 1- RF(pred)

Database Management Systems, R. Ramakrishnan and J. Gehrke 15

Relational Algebra Equivalences

 Allow us to choose different join orders and to
`push’ selections and projections ahead of joins.

 Selections: (Cascade)      c cn c cnR R1 1  ... . . .

        c c c cR R1 2 2 1 (Commute)

 Projections:        a a anR R1 1 . . . (Cascade)

 Joins: R (S T) (R S) T   (Associative)

(R S) (S R)   (Commute)

R (S T) (T R) S Show that:    

Database Management Systems, R. Ramakrishnan and J. Gehrke 16

More Equivalences

 A projection commutes with a selection that only
uses attributes retained by the projection.

 Selection between attributes of the two arguments of
a cross-product converts cross-product to a join.

 A selection on just attributes of R commutes with
R S. (i.e., (R S) (R) S)

 Similarly, if a projection follows a join R S, we can
`push’ it by retaining only attributes of R (and S) that
are needed for the join or are kept by the projection.

   


Database Management Systems, R. Ramakrishnan and J. Gehrke 17

Enumeration of Alternative Plans

 There are two main cases:
– Single-relation plans
– Multiple-relation plans

 For queries over a single relation, queries consist of a
combination of selects, projects, and aggregate ops:

– Each available access path (file scan / index) is considered,
and the one with the least estimated cost is chosen.

– The different operations are essentially carried out
together (e.g., if an index is used for a selection, projection
is done for each retrieved tuple, and the resulting tuples
are pipelined into the aggregate computation).

Database Management Systems, R. Ramakrishnan and J. Gehrke 18

Cost Estimates for Single-Relation Plans

 Index I on primary key matches selection:
– Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index.

 Clustered index I matching one or more selects:
– (NPages(I)+NPages(R)) * product of RF’s of matching selects.

 Non-clustered index I matching one or more selects:
– (NPages(I)+NTuples(R)) * product of RF’s of matching selects.

 Sequential scan of file:
– NPages(R).

Note: Typically, no duplicate elimination on projections!
(Exception: Done on answers if user says DISTINCT.)

Database Management Systems, R. Ramakrishnan and J. Gehrke 19

Example

 If we have an index on rating:
– (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples retrieved.
– Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(S)) =

(1/10) * (50+500) pages are retrieved. (This is the cost.)
– Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(S))

= (1/10) * (50+40000) pages are retrieved.

 If we have an index on sid:
– Would have to retrieve all tuples/pages. With a clustered

index, the cost is 50+500, with unclustered index, 50+40000.

 Doing a file scan:
– We retrieve all file pages (500).

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

Database Management Systems, R. Ramakrishnan and J. Gehrke 20

Queries Over Multiple Relations
 Fundamental decision in System R: only left-deep join

trees are considered.
– As the number of joins increases, the number of alternative

plans grows rapidly; we need to restrict the search space.
– Left-deep trees allow us to generate all fully pipelined plans.

 Intermediate results not written to temporary files.
Not all left-deep trees are fully pipelined (e.g., SM join).

BA

C

D

BA

C

D

C DBA

Database Management Systems, R. Ramakrishnan and J. Gehrke 21

N-way joins
 N-way joins are computed using a sequence

of 2-way joins. A composite relation is the
result of a join and is always used as the outer
relation (to facilitate pipelining)

 In System R
– Composite relations are not materialized unless

they need to be sorted
– Predicates are classified into:

 Sargable – applied by RSS scan during the scan
 Residual – e.g., arithmatic, subqueries which require

repeated evaluation are applied after a tuple has been
retrieved by RSS scan but before participating in any join

 Local predicates – references columns of a relation

Database Management Systems, R. Ramakrishnan and J. Gehrke 22

 Important : The cardinality of the join of n relations is
the same regardless of join order. However, the cost
of joining in different orders can be substantially
different

 If a query has n relations in its from list, then there
are n! (factorial) permutations (not left-deep trees) of
relation join orders

 For each join, a join algorithm need to be chosen!
 Once the first k relations are joined, the method to

join the composite to the k+1st relation is independent
of the order of the first k

 That is, the eligible predicates are same, the set of
interesting orderings in the possible join methods are
the same.

More on Joins

Database Management Systems, R. Ramakrishnan and J. Gehrke 23

Database Management Systems, R. Ramakrishnan and J. Gehrke 24

Enumeration of Left-Deep Plans
 Left-deep plans differ only in the order of relations,

the access method for each relation, and the join
method for each join.

 Enumerated using N passes (if N relations joined):
– Pass 1: Find best 1-relation plan for each relation.
– Pass 2: Find best way to join result of each 1-relation plan

(as outer) to another relation. (All 2-relation plans.)
– Pass N: Find best way to join result of a (N-1)-relation plan

(as outer) to the N’th relation. (All N-relation plans.)

 For each subset of relations, retain only:
– Cheapest plan overall, plus
– Cheapest plan for each interesting order of the tuples.

Database Management Systems, R. Ramakrishnan and J. Gehrke 25

Enumeration of Plans (Contd.)
 ORDER BY, GROUP BY, aggregates etc. handled as a

final step, using either an `interestingly ordered’
plan or an addional sorting operator.

 An N-1 way plan is not combined with an
additional relation unless there is a join condition
between them, unless all predicates in WHERE have
been used up.

– i.e., avoid Cartesian products if possible.

 In spite of pruning plan space, this approach is still
exponential in the # of tables.
– Because we retain 2 at each step!

Database Management Systems, R. Ramakrishnan and J. Gehrke 26

 Retrieve the name, salary, job title, and department
name of employees who are clerks and work for
departments in Denver

SELECT NAME,TITLE, SAL,DNAME
FROM EMP,DEPT,JOB
WHERE TITLE = ‘CLERK’

AND LOC = ‘DENVER’
AND EMP.DNO = DEPT.DNO
AND EMP.JOB = JOB.JOB

 No Group By or Order By

Example contd

Database Management Systems, R. Ramakrishnan and J. Gehrke 27

EMP Index Index Segment scan
EMP.DNO EMP.JOB EMP

3 access N1 N1 cheapest N1 (unordered, not in
interesting order)

paths C(EMP.DNO) C(EMP.JOB) C(EMP seg scan) pruned

DEPT Index Segment scan
cheaper DEPT.DNO on DEPT

N2 N2
C(DEPT.DNO) C(DEPT seg. scan) pruned

JOB Index Segment scan

JOB.JOB on JOB cheapest

N3 N3
C(JOB.JOB) C(JOB seg. scan)

Given

Database Management Systems, R. Ramakrishnan and J. Gehrke 28

Database Management Systems, R. Ramakrishnan and J. Gehrke 29

`

Database Management Systems, R. Ramakrishnan and J. Gehrke 30

Database Management Systems, R. Ramakrishnan and J. Gehrke 31

Schema for Examples

 Similar to old schema; rname added for variations.
 Reserves:

– Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

 Sailors:
– Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Database Management Systems, R. Ramakrishnan and J. Gehrke 32

Motivating Example

 Cost: 500+500*1000 I/Os
 By no means the worst plan!
 Misses several opportunities:

selections could have been
`pushed’ earlier, no use is made
of any available indexes, etc.

 Goal of optimization: To find more
efficient plans that compute the
same answer.

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5
Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested Loops)

(On-the-fly)

(On-the-fly)

RA Tree:

Plan:

Database Management Systems, R. Ramakrishnan and J. Gehrke 33

Alternative Plans 1
(No Indexes)

 Main difference: push selects.
 With 5 buffers, cost of plan:

– Scan Reserves (1000) + write temp T1 (10 pages, if we have 100 boats,
uniform distribution).

– Scan Sailors (500) + write temp T2 (250 pages, if we have 10 ratings).
– Sort T1 (2*2*10), sort T2 (2*4*250), merge (10+250)
– Total: 4060 page I/Os.

 If we used BNL join, join cost = 10+4*250, total cost = 2770.
 If we `push’ projections, T1 has only sid, T2 only sid and sname:

– T1 fits in 3 pages, cost of BNL drops to under 250 pages, total < 2000.

Reserves Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Database Management Systems, R. Ramakrishnan and J. Gehrke 34

Alternative Plans 2
With Indexes

 With clustered index on bid of
Reserves, we get 100,000/100 =
1000 tuples on 1000/100 = 10 pages.

 INL with pipelining (outer is not
materialized).

 Decision not to push rating>5 before the join is based on
availability of sid index on Sailors.

 Cost: Selection of Reserves tuples (10 I/Os); for each,
must get matching Sailors tuple (1000*1.2); total 1210 I/Os.

 Join column sid is a key for Sailors.
–At most one matching tuple, unclustered index on sid OK.

–Projecting out unnecessary fields from outer doesn’t help.

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

Database Management Systems, R. Ramakrishnan and J. Gehrke 35

Query Blocks: Units of
Optimization

 An SQL query is parsed into a
collection of query blocks, and these
are optimized one block at a time.

 Nested blocks are usually treated as
calls to a subroutine, made once per
outer tuple. (This is an over-
simplification, but serves for now.)

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT MAX (S2.age)
FROM Sailors S2
GROUP BY S2.rating)

Nested blockOuter block

 For each block, the plans considered are:
– All available access methods, for each reln in FROM clause.
– All left-deep join trees (i.e., all ways to join the relations one-
at-a-time, with the inner reln in the FROM clause, considering
all reln permutations and join methods.)

Database Management Systems, R. Ramakrishnan and J. Gehrke 36

Example
 Pass1:

– Sailors: B+ tree matches rating>5,
and is probably cheapest. However,
if this selection is expected to
retrieve a lot of tuples, and index is
unclustered, file scan may be cheaper.
 Still, B+ tree plan kept (because tuples are in rating order).

– Reserves: B+ tree on bid matches bid=500; cheapest.

Sailors:
B+ tree on rating
Hash on sid

Reserves:
B+ tree on bid

 Pass 2:
– We consider each plan retained from Pass 1 as the outer,
and consider how to join it with the (only) other relation.

 e.g., Reserves as outer: Hash index can be used to get Sailors tuples
that satisfy sid = outer tuple’s sid value.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Database Management Systems, R. Ramakrishnan and J. Gehrke 37

Nested Queries

 Nested block is optimized
independently, with the outer
tuple considered as providing a
selection condition.

 Outer block is optimized with
the cost of `calling’ nested block
computation taken into account.

 Implicit ordering of these blocks
means that some good strategies
are not considered. The non-
nested version of the query is
typically optimized better.

SELECT S.sname
FROM Sailors S
WHERE EXISTS

(SELECT *
FROM Reserves R
WHERE R.bid=103
AND R.sid=S.sid)

Nested block to optimize:
SELECT *
FROM Reserves R
WHERE R.bid=103

AND S.sid= outer value

Equivalent non-nested query:
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

AND R.bid=103

Database Management Systems, R. Ramakrishnan and J. Gehrke 38

Summary
 Query optimization is an important task in a

relational DBMS.
 Must understand optimization in order to understand

the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

 Two parts to optimizing a query:
– Consider a set of alternative plans.

 Must prune search space; typically, left-deep plans only.

– Must estimate cost of each plan that is considered.
 Must estimate size of result and cost for each plan node.
 Key issues: Statistics, indexes, operator implementations.

Database Management Systems, R. Ramakrishnan and J. Gehrke 39

Summary (Contd.)
 Single-relation queries:

– All access paths considered, cheapest is chosen.
– Issues: Selections that match index, whether index key has

all needed fields and/or provides tuples in a desired order.

 Multiple-relation queries:
– All single-relation plans are first enumerated.

Selections/projections considered as early as possible.

– Next, for each 1-relation plan, all ways of joining another
relation (as inner) are considered.

– Next, for each 2-relation plan that is `retained’, all ways of
joining another relation (as inner) are considered, etc.

– At each level, for each subset of relations, only best plan for
each interesting order of tuples is `retained’.

