
Database Management Systems, R. Ramakrishnan and J. Gehrke 1

Evaluation of Relational Operations

Chapter 12, Part A

Database Management Systems, R. Ramakrishnan and J. Gehrke 2

Overview of Query Optimization
 Input: Sql query
 Output: Query Plan: Tree of Relational algebra

operators, with choice of algorithm for each operator
 Main issues:

– For a given query, what plans are generated/considered?
 Algorithm to search plan space for cheapest (estimated) plan.

– How is the cost of a plan estimated?
Using the cost formulas studied so far + assumptions

 Ideally: Want to find best plan.
 Practically: Avoid worst plans!
 We will study the System R approach.

Database Management Systems, R. Ramakrishnan and J. Gehrke 3

Why System R Optimizer

 Most widely used currently; works well for < 10
joins.

 Cost estimation: Approximate art at best.
– Statistics, maintained in system catalogs, are used to

estimate cost of operations and result sizes.
– Considers combination of CPU and I/O costs.

 Plan Space: Too large, must be pruned.
– Only the space of left-deep plans is considered.

 Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

– Cartesian products avoided.

Database Management Systems, R. Ramakrishnan and J. Gehrke 4

Types of Qeps

Database Management Systems, R. Ramakrishnan and J. Gehrke 5

Relational Operations

 We will consider how to implement:
– Selection () Selects a subset of rows from relation.
– Projection () Deletes unwanted columns from relation.
– Join () Allows us to combine two relations.
– Set-difference () Tuples in reln. 1, but not in reln. 2.
– Union () Tuples in reln. 1 and in reln. 2.
– Aggregation (SUM, MIN, etc.) and GROUP BY

 Since each op returns a relation, ops can be composed!
After we cover the operations, we will discuss how to
optimize queries formed by composing them.









Database Management Systems, R. Ramakrishnan and J. Gehrke 6

Schema for Examples

 Similar to old schema; rname added for variations.
 Reserves:

– Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

 Sailors:
– Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

 Assumption: 4K page size

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Database Management Systems, R. Ramakrishnan and J. Gehrke 7

Equality Joins With One Join Column

 In algebra: R S. Common! Must be carefully optimized.
 R X S is large; so, R S followed by a selection is inefficient.
 Assume: M pages in R, pR tuples per page, N pages in S, pS

tuples per page.
– In our examples, R is Reserves and S is Sailors.

 We will consider more complex join conditions later.
 Cost metric: # of I/Os. We will ignore output costs. We will

also ignore cpu costs.

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid




Database Management Systems, R. Ramakrishnan and J. Gehrke 8

Simple Nested Loops Join

 For each tuple in the outer relation R, we scan the
entire inner relation S.

– Cost: M + pR * M * N = 1000 + 100*1000*500 I/Os.
– If 5 msec is the access time per page (and each tuple

accesses a new page), the time taken is
 50,000,000 * 5/1000 which is 250,000 secs or 69 hours

– Assumption of retrieving N pages for each of M* pR tuples
is not realistic

foreach tuple r in R do
foreach tuple s in S do

if ri == sj then add <r, s> to result

Database Management Systems, R. Ramakrishnan and J. Gehrke 9

Page-oriented Nested Loops Join

 For each page of R, get each page of S, and write out
matching pairs of tuples <r, s>, where r is in R-
page and S is in S-page.
– Cost: M + M*N = 1000 + 1000*500 = 501000
– Time taken is: .69 hours

 Which relation should be chosen as outer/inner?
– S outer, and R inner
– Cost: N + N*M = 500 + 500*1000 = 500500
– Time taken is: ~.69 hours

Database Management Systems, R. Ramakrishnan and J. Gehrke 10

Index Nested Loops Join

 If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.

– Cost: M + ((M*pR) * cost of finding matching S tuples)
 For each R tuple, cost of probing S index is about 1.2

for hash index, 2-4 for B+ tree. Cost of then finding S
tuples (assuming Alt. (2) or (3) for data entries)
depends on clustering.

– Clustered index: 1 I/O (typical), unclustered: up to 1 I/O
per matching S tuple.

– Incremental (join only the tuples that are of interest)

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Database Management Systems, R. Ramakrishnan and J. Gehrke 11

Examples of Index Nested Loops
 Hash-index (Alt. 2) on sid of Sailors (as inner):

– Scan Reserves: 1000 page I/Os, 100*1000 tuples.

– For each Reserves tuple: 1.2 I/Os to get data entry in
index, plus 1 I/O to get (the exactly one) matching Sailors
tuple. Total: 221,000 I/Os.

– M + M*Pr*1.2 +M*Pr*1
– 1000 + 120,000 + 100,000

– 0.3 hours (contrast this with 69 and .69 hours)

Database Management Systems, R. Ramakrishnan and J. Gehrke 12

Examples of Index Nested Loops
 Hash-index (Alt. 2) on sid of Reserves (as inner):

– Scan Sailors: 500 page I/Os, 80*500 tuples.
– For each Sailors tuple: 1.2 I/Os to find index page with data entries,

plus cost of retrieving matching Reserves tuples. Assuming uniform
distribution, 2.5 reservations per sailor (100,000 / 40,000). Cost of
retrieving them is 1 or 2.5 I/O’s depending on whether the index is
clustered or not.

– 500 + 40,000*1.2 + 40,000*1 (assuming 1 I/O, clustered)
– .13 hours -- clustered
– 500 + 40,000*1.2 + 100,000 (assuming 2.5 I/O, not clustered)
– or .2 hours -- unclustered

 Even with unclustered index, the cost is likely to be less (than
simple nested loop join) if the number of matching tuples is
small

Database Management Systems, R. Ramakrishnan and J. Gehrke 13

Block Nested Loops Join

 Use one page as an input buffer for scanning the
inner S, one page as the output buffer, and use all
remaining pages to hold ``block’’ of outer R.
– For each matching tuple r in R-block, s in S-page, add

<r, s> to result. Then read next R-block, scan S, etc.

. . .

. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

Database Management Systems, R. Ramakrishnan and J. Gehrke 14

Examples of Block Nested Loops
 Cost: Scan of outer + #outer blocks * scan of inner

– #outer blocks =
– Cost = M + M/(B-2) * N

 If one relation can fit in the buffer, then the inner
relation needs to be scanned only ONCE!

 The cost becomes M + N (Optimal!!!)
 If neither of the relations fit entirely in the buffer, we

need to allocate the buffers judiciously.

 # /of pages of outer blocksize

Database Management Systems, R. Ramakrishnan and J. Gehrke 15

Examples of Block Nested Loops
 Cost: Scan of outer + #outer blocks * scan of inner

– #outer blocks =
 With Reserves (R) as outer, and 100 pages for R:

– Assuming 102 buffer pages (100+1+1)
– Cost of scanning R is 1000 I/Os; a total of 10 blocks.
– Per block of R, we scan Sailors (S); 10*500 I/Os.
– Cost = M + M/b *N
– For the above example, it is
– 1000 + 10*500 = 6000; That is 30 secs (assuming 5 msec per

I/0)
 If 54 buffer pages (52+1+1), we would scan S 20 times

– Cost: 1000 + 20*500 = 11000; that is 55 secs

 # /of pages of outer blocksize

Database Management Systems, R. Ramakrishnan and J. Gehrke 16

Examples of Block Nested Loops

 With 100-page block of Sailors as outer:
– Cost of scanning S is 500 I/Os; a total of 5 blocks.
– Per block of S, we scan Reserves; 5*1000 I/Os.
– Cost: 500 + 5*1000 = 5500
– That is 27.5 secs

 With sequential reads (blocked) considered, analysis
changes: may be best to divide buffers evenly
between R and S.

 Double buffering can also be used.

Database Management Systems, R. Ramakrishnan and J. Gehrke 17

Summary (join operation)

 If we can hold the smaller relation in memory
+ 2 buffers; cost = M + N I/Os (optimal)

 R as outer relation and S as inner; B buffers
Cost = M + M/(B-2)*N
If M >>N, pick smaller as outer
When M=B–2, pick N as outer; only one scan of M
e.g., if we has 502 buffers, allocate 500 to S as outer,

1 to R as inner and 1 to output
Cost: 500 + 1*1000 = 500 + 1000 = 1500 (minimal

cost)

Database Management Systems, R. Ramakrishnan and J. Gehrke 18

Sort-Merge Join (R S)
 Sort R and S on the join column, then scan them to do

a ``merge’’ (on join col.), and output result tuples.
– Advance scan of R until current R-tuple >= current S tuple,

then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.

– At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in Sj (current S
group) match; output <r, s> for all pairs of such tuples.

– Then resume scanning R and S.
 R is scanned once; each S group is scanned once per

matching R tuple. (Multiple scans of an S group are
likely to find needed pages in buffer!). Depends upon
buffer management policy!!


i=j

Database Management Systems, R. Ramakrishnan and J. Gehrke 19

Example of Sort-Merge Join

 Cost: Sort(R1) + sort(R2) + Merge (R1, R2)
M log M + N log N + (M+N)

– The cost of merging, M+N, could be M*N (very unlikely!)

 With 35, 100 or 300 buffer pages, both Reserves and Sailors can
be sorted in 2 passes; total join cost: 7500.

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname

28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

(BNL cost: 2500 to 15000 I/Os)

R

S

Database Management Systems, R. Ramakrishnan and J. Gehrke 20

Sort-Merge Join

 With 35 buffers, we can sort both relations in 2 passes
the cost of sort-merge is 7500,
where as the cost of BNL is more than 15000

 With 100 buffers, we can sort both relations in 2
passes

Cost of sort-merge: still 7500
where as the cost of BNL is: 6500

 With 300 buffers,
the cost of sort-merge is still 7500
where as the cost of BNL drops to 2500.

 The number of buffers available makes a difference !!
 The worst case scenario is O(M*N) I/Os

Database Management Systems, R. Ramakrishnan and J. Gehrke 21

Sort-Merge join Examples
 Assume 35 buffers.
 Sort of R (1000 pages)

– Pass 0: 29 runs of 35 buffers each=2*1000 I/O’s
– Pass 1: Sort complete=2*1000 I/O’s (29-way merge join)
– Total: 4000 I/O’s

 Sort of S (500 pages)
– Pass 0: 15 runs of 35 buffers each;
– Pass 1: 15-way join using 35 buffers
– Total: 2*2*500= 2000 I/O’s

 Merge= 1000+500= 1500 I/O’s
 Total cost: 4000 + 2000 + 1500 = 7500

Database Management Systems, R. Ramakrishnan and J. Gehrke 22

Sort-Merge join Examples
 Assume 100 buffers.
 Sort of R

– Pass 0: 10 runs of 100 buffers each=2*1000 I/O’s
– Pass 1: Sort complete=2*1000 I/O’s
– Total: 4000 I/O’s

 Sort of S
– Pass 0: 5 runs of 100 buffers each;
– Pass 1: 5-way join using 100 buffers
– Total: 2*2*500= 2000 I/O’s

 Merge= 1000+500= 1500 I/O’s
 Total cost: 4000 + 2000 + 1500 = 7500

Database Management Systems, R. Ramakrishnan and J. Gehrke 23

Examples (Contd…)
 With 35 buffers; cost of s-m is 7500
 Block Nested loop join cost is

– M + M/(B-2)*N
– 1000+ 31*500= 16500 I/O’s; 1000/33 is 30.30

 With 300 buffers, the cost of sort-merge is still
7500 where as the cost of BNL drops to
– 1000 + 1000/298 * 500 = 1000 + 4*500 = 3000 or
– 500 + 500/298 * 1000 = 500 + 2*1000 = 2500

 The number of buffers available makes a
difference !!

 The worst case scenario is O(M*N) I/Os

Database Management Systems, R. Ramakrishnan and J. Gehrke 24

Two-Way External Merge Sort
 Each pass we read + write

each page in file.
 N pages in the file => the

number of passes

 So total cost is:

 Idea: Divide and conquer:
sort subfiles and merge

 Can we improve upon
this? How?

  log2 1N

  2 12N Nlog 

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5
6

1,2

2,3

3,4

4,5

6,6

7,8

Database Management Systems, R. Ramakrishnan and J. Gehrke 25

Refinement-1 of Sort-Merge Join
 We can combine the merging phase of sorting of R and

S with the merging phase of join.
– Let L be the size (in pages) of the larger relation
– In order to manage L/B runs in pass 1, you need at least

L/B + 1 buffers

– Hence, B > L/B or B2 > L or B >
– If the # of buffers available for the merge phase is 2 , that

is, more than the number of runs of R and S
We allocate one buffer for each run of R and one for each run of S
We then merge the runs of R and S streams as they are generated.

we apply the join condition and discard tuples if they do not join.

L

L

Database Management Systems, R. Ramakrishnan and J. Gehrke 26

Refinement-1 of Sort-Merge Join (Contd.)

 Cost: read+write each relation in Pass 0 + (only) read
each relation in merging pass (+ writing of result
tuples).

– 3 * (M+N)

 In example, cost goes down from 7500 to 4500 I/Os
– 3 * (1000+500) = 4500

 In practice, cost of sort-merge join, like the cost of
external sorting, can be linear.

Database Management Systems, R. Ramakrishnan and J. Gehrke 27

Refinement-2 of Sort-Merge Join
 This increases the number of buffers required to
 We apply the heapsort optimization to produce runs

of size 2*B.
 Hence, we will have L /2*B runs of each relation,

given the assumption that we have B buffers.
 Thus the number of buffers is B > L/2*b +1, or
 B >
 Hence we only need B > buffers instead of 2*

with this optimization.

L*2

2/L

L2 L

