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Evaluation of Relational Operations

Chapter 12, Part A
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Overview of Query Optimization
 Input: Sql query
 Output: Query Plan: Tree of Relational algebra 

operators, with choice of algorithm for each operator
 Main issues:

– For a given query, what plans are generated/considered?
 Algorithm to search plan space for cheapest (estimated) plan.

– How is the cost of a plan estimated?
Using the cost formulas studied so far + assumptions

 Ideally: Want to find best plan.  
 Practically: Avoid worst plans!
 We will study the System R approach.
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Why System R Optimizer

 Most widely used currently; works well for < 10 
joins.

 Cost estimation:  Approximate art at best.
– Statistics, maintained in system catalogs, are used to 

estimate cost of operations and result sizes.
– Considers combination of CPU and I/O costs.

 Plan Space:  Too large, must be pruned.
– Only the space of left-deep plans is considered.

 Left-deep plans allow output of each operator to be pipelined into 
the next operator without storing it in a temporary relation.

– Cartesian products avoided.
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Types of Qeps
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Relational Operations

 We will consider how to implement:
– Selection (     )    Selects a subset of rows from relation.
– Projection (     )   Deletes unwanted columns from relation.
– Join (        )  Allows us to combine two relations.
– Set-difference (     )  Tuples in reln. 1, but not in reln. 2.
– Union (     )  Tuples in reln. 1 and in reln. 2.
– Aggregation (SUM, MIN, etc.) and GROUP BY

 Since each op returns a relation, ops can be composed!  
After we cover the operations, we will discuss how to 
optimize queries formed by composing them.








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Schema for Examples

 Similar to old schema; rname added for variations.
 Reserves:

– Each tuple is 40 bytes long,  100 tuples per page, 1000 pages.

 Sailors:
– Each tuple is 50 bytes long,  80 tuples per page, 500 pages.

 Assumption: 4K page size

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)
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Equality Joins With One Join Column

 In algebra: R       S.  Common!  Must be carefully optimized.  
 R  X    S is large;  so, R     S followed by a selection is inefficient.
 Assume: M pages in R, pR tuples per page, N pages in S, pS

tuples per page.
– In our examples, R is Reserves and S is Sailors.

 We will consider more complex join conditions later.
 Cost metric:  # of I/Os.  We will ignore output costs. We will 

also ignore cpu costs.

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid



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Simple Nested Loops Join

 For each tuple in the outer relation R, we scan the 
entire inner relation S. 

– Cost:  M +  pR * M * N  =  1000 + 100*1000*500  I/Os.
– If 5 msec is the access time per page (and each tuple 

accesses a new page), the time taken is
 50,000,000 * 5/1000 which is 250,000 secs or 69 hours

– Assumption of retrieving N pages for each of M* pR tuples 
is not realistic

foreach tuple r in R do
foreach tuple s in S do

if ri == sj then add <r, s> to result
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Page-oriented Nested Loops Join

 For each page of R, get each page of S, and write out 
matching pairs of tuples     <r, s>, where r is in R-
page and S is in S-page.
– Cost:  M + M*N = 1000 + 1000*500 = 501000
– Time taken is: .69 hours

 Which relation should be chosen as outer/inner?
– S outer, and R inner
– Cost: N + N*M = 500 + 500*1000  = 500500
– Time taken is: ~.69 hours
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Index Nested Loops Join

 If there is an index on the join column of one relation 
(say S), can make it the inner and exploit the index.

– Cost:  M + ( (M*pR) * cost of finding matching S tuples) 
 For each R tuple, cost of probing S index is about 1.2 

for hash index, 2-4 for B+ tree.  Cost of then finding S 
tuples (assuming Alt. (2) or (3) for data entries) 
depends on clustering.

– Clustered index:  1 I/O (typical), unclustered: up to 1 I/O 
per matching S tuple.

– Incremental (join only the tuples that are of interest)

foreach tuple r in R do
foreach tuple s in S where ri == sj  do

add <r, s> to result
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Examples of Index Nested Loops
 Hash-index (Alt. 2) on sid of Sailors (as inner):

– Scan Reserves:  1000 page I/Os, 100*1000 tuples.

– For each Reserves tuple:  1.2 I/Os to get data entry in 
index, plus 1 I/O to get (the exactly one) matching Sailors 
tuple.  Total:  221,000 I/Os.  

– M + M*Pr*1.2 +M*Pr*1
– 1000 + 120,000 + 100,000

– 0.3 hours (contrast this with 69 and .69 hours)
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Examples of Index Nested Loops
 Hash-index (Alt. 2) on sid of Reserves (as inner):

– Scan Sailors:  500 page I/Os, 80*500 tuples.
– For each Sailors tuple:  1.2 I/Os to find index page with data entries, 

plus cost of retrieving matching Reserves tuples.  Assuming uniform 
distribution, 2.5 reservations per sailor (100,000 / 40,000).  Cost of 
retrieving them  is 1 or 2.5 I/O’s depending on whether the index is 
clustered or not.

– 500 + 40,000*1.2 + 40,000*1  (assuming 1 I/O, clustered)
– .13 hours -- clustered
– 500 + 40,000*1.2 + 100,000 (assuming 2.5 I/O, not clustered)
– or .2 hours -- unclustered

 Even with unclustered index, the cost is likely to be less (than 
simple nested loop join) if the number of matching tuples is 
small
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Block Nested Loops Join

 Use one page as an input buffer for scanning the 
inner S, one page as the output buffer, and use all 
remaining pages to hold ``block’’ of outer R.
– For each matching tuple r in R-block, s in S-page, add      

<r, s> to result.  Then read next R-block, scan S, etc.

. . .

. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result
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Examples of Block Nested Loops
 Cost:  Scan of outer +  #outer blocks * scan of inner

– #outer blocks =
– Cost = M +  M/(B-2) * N

 If one relation can fit in the buffer, then the inner 
relation needs to be scanned only ONCE!

 The cost becomes M + N   (Optimal!!!)
 If neither of the relations fit entirely in the buffer, we 

need to allocate the buffers judiciously.

 # /of pages of outer blocksize
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Examples of Block Nested Loops
 Cost:  Scan of outer +  #outer blocks * scan of inner

– #outer blocks =
 With Reserves (R) as outer, and 100 pages for R:

– Assuming 102 buffer pages (100+1+1)
– Cost of scanning R is 1000 I/Os;  a total of 10 blocks.
– Per block of R, we scan Sailors (S);  10*500 I/Os.
– Cost = M + M/b *N
– For the above example, it is
– 1000 + 10*500 = 6000; That is 30 secs (assuming 5 msec per 

I/0)
 If 54 buffer pages (52+1+1), we would scan S 20 times

– Cost: 1000 + 20*500 = 11000; that is 55 secs

 # /of pages of outer blocksize
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Examples of Block Nested Loops

 With 100-page block of Sailors as outer:
– Cost of scanning S is 500 I/Os; a total of 5 blocks.
– Per block of S, we scan Reserves;   5*1000 I/Os.
– Cost: 500 + 5*1000  = 5500
– That is 27.5 secs

 With sequential reads (blocked) considered, analysis 
changes:  may be best to divide buffers evenly 
between R and S.

 Double buffering can also be used.
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Summary (join operation)

 If we can hold the smaller relation in memory 
+ 2 buffers; cost = M + N  I/Os (optimal)

 R as outer relation and S as inner; B buffers
Cost = M + M/(B-2)*N
If M >>N, pick smaller as outer
When M=B–2, pick N as outer; only one scan of M
e.g., if we has 502 buffers, allocate 500 to S as outer, 

1 to R as inner and 1 to output
Cost: 500 + 1*1000 = 500 + 1000 = 1500 (minimal 

cost)

Database Management Systems, R. Ramakrishnan and J. Gehrke 18

Sort-Merge Join  (R     S)
 Sort R and S on the join column, then scan them to do 

a ``merge’’ (on join col.), and output result tuples.
– Advance scan of R until current R-tuple >= current S tuple, 

then advance scan of S until current S-tuple >= current R 
tuple; do this until current R tuple = current S tuple.

– At this point, all R tuples with same value in Ri (current R 
group) and all S tuples with same value in Sj (current S 
group) match;  output <r, s> for all pairs of such tuples.

– Then resume scanning R and S.
 R is scanned once; each S group is scanned once per 

matching R tuple.  (Multiple scans of an S group are 
likely to find needed pages in buffer!). Depends upon 
buffer management policy!!


i=j
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Example of Sort-Merge Join

 Cost:  Sort(R1) + sort(R2) + Merge (R1, R2)
M log M + N log N + (M+N)

– The cost of merging, M+N, could be M*N (very unlikely!)

 With 35, 100 or 300 buffer pages, both Reserves and Sailors can 
be sorted in 2 passes; total join cost: 7500. 

sid sname rating age 
22 dustin 7 45.0 
28 yuppy 9 35.0 
31 lubber 8 55.5 
44 guppy 5 35.0 
58 rusty 10 35.0 

 

 

sid bid day rname

28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

(BNL cost:  2500 to 15000 I/Os)

R

S
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Sort-Merge Join

 With 35 buffers, we can sort both relations in 2 passes
the cost of sort-merge is  7500, 
where as the cost of BNL is more than 15000

 With 100 buffers,  we can sort both relations in 2 
passes

Cost of sort-merge:  still 7500
where as the cost of BNL is: 6500

 With 300 buffers, 
the cost of sort-merge is still 7500 
where as the cost of BNL drops to 2500.

 The number of buffers available makes a difference !!
 The worst case scenario is O(M*N) I/Os
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Sort-Merge join Examples
 Assume 35 buffers. 
 Sort of R (1000 pages)

– Pass 0: 29 runs of 35 buffers each=2*1000 I/O’s
– Pass 1: Sort complete=2*1000 I/O’s (29-way merge join)
– Total:  4000 I/O’s

 Sort of S (500 pages)
– Pass 0: 15 runs of 35 buffers each; 
– Pass 1: 15-way join using 35 buffers
– Total:  2*2*500= 2000 I/O’s

 Merge= 1000+500= 1500 I/O’s
 Total cost: 4000 + 2000 + 1500  = 7500
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Sort-Merge join Examples
 Assume 100 buffers. 
 Sort of R

– Pass 0: 10 runs of 100 buffers each=2*1000 I/O’s
– Pass 1: Sort complete=2*1000 I/O’s
– Total:  4000 I/O’s

 Sort of S
– Pass 0: 5 runs of 100 buffers each; 
– Pass 1: 5-way join using 100 buffers
– Total:  2*2*500= 2000 I/O’s

 Merge= 1000+500= 1500 I/O’s
 Total cost: 4000 + 2000 + 1500  = 7500
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Examples (Contd…)
 With 35 buffers; cost of s-m is 7500
 Block Nested loop join cost is 

– M + M/(B-2)*N
– 1000+ 31*500= 16500 I/O’s; 1000/33 is 30.30

 With 300 buffers, the cost of sort-merge is still 
7500 where as the cost of BNL drops to 
– 1000 + 1000/298 * 500 = 1000 + 4*500 = 3000  or
– 500 + 500/298 * 1000 = 500 + 2*1000 = 2500

 The number of buffers available makes a 
difference !!

 The worst case scenario is O(M*N) I/Os
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Two-Way External Merge Sort
 Each pass we read + write 

each page in file.
 N pages in the file => the 

number of passes

 So total cost is:

 Idea: Divide and conquer: 
sort subfiles and merge

 Can we improve upon 
this?  How?

  log2 1N

  2 12N Nlog 

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6

4,7

8,9

1,3

5,6 2

2,3

4,4

6,7

8,9

1,2

3,5
6

1,2

2,3

3,4

4,5

6,6

7,8
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Refinement-1 of Sort-Merge Join
 We can combine the merging phase of sorting of R and 

S with the merging phase of join.
– Let L be the size (in pages) of the larger relation
– In order to manage L/B runs in  pass 1, you need at least 

L/B + 1 buffers

– Hence, B > L/B or B2 > L   or B >  
– If the # of buffers available for the merge phase is 2    , that 

is, more than the number of runs of R and S
We allocate one buffer for each run of R and one for each run of S
We then merge the runs of R and S streams as they are generated. 

we apply the join condition and discard tuples if they do not join.

L

L

Database Management Systems, R. Ramakrishnan and J. Gehrke 26

Refinement-1 of Sort-Merge Join (Contd.)

 Cost:  read+write each relation in Pass 0 + (only) read 
each relation in merging pass  (+ writing of result 
tuples).

– 3 * (M+N)

 In example, cost goes down from 7500 to 4500 I/Os 
– 3 * (1000+500)  = 4500

 In practice, cost of sort-merge join, like the cost of 
external sorting, can be linear.
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Refinement-2  of Sort-Merge Join
 This increases the number of buffers required to 
 We apply the heapsort optimization to produce runs 

of size 2*B.
 Hence, we will have   L /2*B runs of each relation, 

given the assumption that we have B buffers.    
 Thus the number of buffers   is B > L/2*b +1, or
 B > 
 Hence we only need B >      buffers instead of  2*

with this optimization.

L*2

2/L

L2 L


