=g =
Aﬂw University of Texas ab . . ab
ARLINGTON. Tutorial Outline
» Hadoop
» Map/reduce
Map/Reduce
Sharma Chakravarthy
Information Technology Laboratory
Computer Science and Engineering Department
The University of Texas at Arlington, Arlington, TX 76009
Email: sharma@cse.uta.edu
URL: http://itlab.uta.edu/sharma
10/30/2023 m‘" Sharma Chak arthy 10/30/2023 m‘” © Sharma Chakravarthy
=
gLabk Lab

Acknowledgements

» These slides are put together from a variety of
sources (both papers and slides/tutorials available
on the web)

» Mostly I have tried to: provide my perspective,
emphasize aspects that are of interest to this
course, and have tried to put forth a consolidated
view of Map/Reduce

10/30/2023 m Sharma Chakravarthy

Data Center as a computer pasron amaum

» Claim: There are dramatic differences between —
developing software for millions to use as a
service versus distributing software for millions to
run on their PCs

= Availability, dependability

= Bandwidth (with low latency) to service large
number of users

= Innovation is fast as the software is in their control!

> This has led to distributed data centers
» Microsoft model vs. the new model

10302023 m

© Sharma Chakravartl

Data Center as a COMPULET pumwnma L2

» What are the useful programming abstractions for
such a large system?

» How do thousands of computers behave differently
from a small system?

» What must you do differently to run an abstraction
on thousands of computers?

» Google proposed a two-phase primitive:

= Phase 1: maps a user supplied function onto
thousands of computers (mapper)

= Phase 2: Reduces the returned values from all those
instances into a set of results (reducer)

101302023 m Sharma Chakravarthy

Data Center as @ COMPULET pueuon o~ {Lab

» Map/Reduce was born

» Runs on heterogeneous computers (even different
generations)

» Runs on heterogeneous OSs

A\

Scheduler is dynamic and accommodates above
(as compared to batch schedulers of Grid
computing

Failures are handled transparently!

Hadoop sorted 1 TB in 209 seconds (2009) !!

Google regenerated its index using Map/Reduce

YV V V

» Fairly easy to program, easy to understand!

103012023 m © Sharma Chakravarthy

Map/Reduce T

» Is a programming paradigm

» Is a parallel programming paradigm
= Multi-threaded (typically shared memory) or
= Distributed (shared nothing) more complex

» Is derived from functional programming
(specification vs. procedural programming)
(remember SQL is non-procedural)

» Many a times the question asked is:

= [s there a difference between Map/Reduce and
traditional parallel programming?

10302023 m Sharma Chakravarthy

Data vs. Task parallelism T

» Data parallelism means concurrent execution of
the same task (code) on multiple computing nodes
(cores)
= Typically on different chunks (subsets) of data

= Amount of parallelization can be based on input size
(and affordability)

= Load balancing can be done for optimizing response
time

= No communication among the computing nodes
(difference from parallel computing)

= Number of chunks need not be the same as the
number of computing nodes

10302023 m © Sharma Chakravarthy 8

Data vs. Task parallelism L

» Task parallelism means concurrent execution of

the different tasks (code) on multiple computing

nodes (cores)

= Same or different chunks (subsets) of data

= Amount of parallelization is proportional to the

number of independent tasks performed

» Does map/reduce use data parallelism or task

parallelism?

= Data parallelism (Why?)

Map/Reduce L

» Map/Reduce was developed within Google as a
mechanism for processing large amounts of raw data; for
example, crawled documents or web request logs.

» This data is so large, it must be distributed across
thousands of machines in order to be processed in a
reasonable time.

» This distribution implies parallel computing since the same
computations are performed on each CPU, but with a
different dataset.

» Map/Reduce is an abstraction that allowed Google
engineers to perform simple computations while hiding
the details of parallelization, data distribution, load
balancing and fault tolerance.

101302023 = W Sharma Chakravarthy 9 103012023 A © Sharma Chakravarthy 10
9 10
. = What is Map/Reduce used for? =
What is Map/Reduce? (G o/ G
* At Google:
L Note that most/all of
— Index building for Google Search these applications are
_ f _ : : very different from
» Data paréllel programmmg model for clusters of Article clustering for Google News o L DBMS
commodity machines — Statistical machine translation applications:
. . very large data sizes
At Yahoo!: one time computation
» Pioneered by Google — Index building for Yahoo! Search versus data storage
= Processes 20 PB of data per da — Spam detection for Yahoo! Mail ang management
p y p : SQL is not a good.
» Popularized by open-source Hadoop project At Facebook: :l;};‘f;:f"“ for doing
= Used by Yahoo!, Facebook, Amazon, ... — Data mining Defining schema and
P loading this data into a
— Ad optimization DBMS is difficult
— Spam detection
11 12

What is Map/Reduce used for (2)? . @ . =7
o/ (2) | What is Map/Reduce used for? |
» Also used for:
. Note that most/all of
- Graph mining these applications are * Inresearch:
= PageRank calculation :’;Zf;g:{%‘é&osm — Analyzing Wikipedia conflicts (PARC)
= Machine learning applications: — Natural language processing (CMU)
very large data sizes Rini .
= Shortest path one time computation Bioinformatics (Maryland)
» Problems are being ported to versus data storage — Astronomical image analysis (Washington)
map/reduce on a daily basis ;giﬁ?::;’imgeon;d — Ocean climate simulation (Washington)
» Is a popular research area! vehicle/tool for doing — Graph Mining (UTA)
this task . .
> Porting algorithms into Defining schema and - Multllayer Network Ana|y5|5 (MLN)
map/reduce is not always loading this data into a — Storm Identification from rainfall data (UTA)
straightforward! DEMS s difficlt
13 14
- =

. Scalability to large data volumes:

MapReduce Design Goals

= Scan 100 TB on 1 node @ 50 MB/s = 23 days

= Scan on 1000-node cluster = 33 minutes
Cost-efficiency:

= Commodity nodes (cheap, but unreliable)

= Commodity disks (cheap and raid makes them reliable)
= Commodity network

= Automatic fault-tolerance (fewer admins)

= Easy to use (fewer programmers)

Map/Reduce

Automatic parallelization & distribution
Fault-tolerant

Provides status and monitoring tools
Clean abstraction for programmers

YV VYV V V

Borrows from functional programming

\4

Users implement interface of two functions:

map (in_key, in_value) = (int_key, intermediate_value list)
reduce (int_key, intermediate_value list) = (out_key, value list)

In_key, int_key, and out_key need not be same!

10302023 m

© Sharma Chakravarth

15

16

Typical cluster farm &2 The Basics (5) g &

> Note that we cannot assume that every problem
can be parallelized

» Some problems are easier to parallelize and some
are inherently sequential

» So it is important to understand whether a
problem can be parallelized and to what extent!

» Cryptography hash-chaining computations are
very difficult to parallelize

» Parallelizing 1/0 is difficult (needs additional
technology)

103012023 m © Sharma Chakravarthy 18

17 18

Map/Reduce Framework T Map/Reduce Framework T

> Needs to be understood at several levels: Job level > Needs to be understood at several levels: Map/Reduce

= Configuring a map/reduce job to run it on desired
number of mappers and reducers

= Code that you write and its understanding as well conformity
with the paradigm (we will see this later)

= Mapper code (one or more)

* Whether a single input is processed or multiple - Setup part
inputs - Main part
= Whether a single job (which is a map/reduce pair) is - Cleanup part

used or they are chained

Whether it is an iterative algorithm or one-shot
algorithm

= Same for the reducer code

= Combiner code (if needed)

= Writing intermediate results and computations, if
any, between iterations, etc.

Other issues, such as reading other files in the
mapper or reducer etc.

10302023 m Sharma Chakravarthy 9 10302023 m © Sharma Chakravarthy 20

19 20

Map/Reduce Framework T Map/Reduce Framework T
» Needs to be understood at several levels: Behind » Without clearly understanding all the three levels,
the Scenes (including shuffle) you cannot write meaningful map/reduce
» What is done transparently by the Hadoop algorithms
framework? » Please understand each clearly
* At the end of mapper code » The fact that many machine learning algorithms
* At the end of combiner code(if there is) have been successfully translated/mapped to this
= How are partitions (shards) handled by Hadoop? framework is indicative of its utility
= How are multiple mappers used for the same input? = Although the paradigm seems very simple
= What is partitioning? And who does it? = User code is typically not very big
= What is sorting needed? And who does it? = Some of the heavy lifting is done by the underlying
= What is shuffle? Principle behind the shuffle framework (hence need to understand it)
103012023 m c th 103012023 m © Sharma Chakravarthy
21 22
- 4 - 4
(Lab | &

MapReduce

> Input: a set of key/value pairs (generated from input
data)

» User supplies two functions:
= map(k,v) 2 (k1, v1), ... = list of (k1,list(v1))
= reduce(kl, list(v1l)) = list of (k2, v2)

Map(k,v=> (K,v’) Sort
Group (K’, v’)s by kK’

Partition

Reduce(k’, v[]) 2 v”

Mapper Reducer

output

MapReduce Programming Model

» Data type: key-value records

» Map function:
(K‘ Vin) 9 (Koutl Vout)l

In’

e D {<K e NStV), -}

inters

» Reduce function processes EACH key-valuelList
(Kinter NiSt(Vineer)) =2 list(Kyye V.

inter out’ out)

23

24

. . . H Lab
Distributed Execution Overview
- Namenode
§ " fork

fork fork P or Takes care
Tasktracker ‘ Jobtracker of the job
Takes care of //aésign assi‘gn
each worker /map .~ “reduce

remote
read,
Mapper nodes Sort

(shuffle)

Reducer nodes

Map/Reduce: job execution

The MASTER:

initializes the data and splits it as specified or based on

the number of available WORKERS (# of mappers can be

chosen, irrespective of the number of splits)

Sends each WORKER its partition/split (task)

receives the results from each WORKER (its location and

some meta information)

The WORKER:

= receives the partition/split (actually its location) from
the MASTER

= performs processing on the partition (with user-supplied
code)

= Notifies the MASTER when completed (with meta info)

103012023 m

© Sharma Chakravarthy 26

25 26
Map/Reduce: job execution T What happens in the Mapper Lab
> Map COde/methOd written by a user usmg the Map/Reduce » Map code/method takes an input <key, value> pair and produces zero or
library takes as input <key, value> pair and produces more intermediate <key, value> pairs
a set of intermediate <key, value> pairs. * Mapper processed ONE <key, value> at a time
» Each spill (will be discussed later) is partitioned (using a hash function), a group by
> Mapper is done on the key (i.e., sorted on the key and all key values grouped)
groups together all intermediate values associated with the = All values for the same key are merged creating a value-list
same intermediate key k as <k, value-List> » This is done for each spill as there can be many spills within a Mapper
. = Each spill corresponds to a buffer size (actually 80%)
> Results from ma!;)per is sent to the reducer(s) thrOUgh the » Number of partitions above is based on the number of reducers specified (default
process of shuffling is 1)
= After bringing them to <key, value-list> format »> At this point, the mapper has n partitions for each spill (on the disk) (why?)
. . > If a combiner is provided, it is executed on each partition of each spill.
» Reduce code written by a user using the Map/Reduce provided, it P P
library takes as input multiple <key, value-list>'s (a > The output of a combiner is also a <key, value-list>
! X y P p Vs X » Same partitions from different spills are merged and sorted on key value.
partition) and produces the result for that job. Each » These partitions from each mapper is sent to different reducers
reducer writes its output separately to HDFS ® Thisis the shuffle
» If a combiner is defined, it is executed before shuffle
10/30/2023 m Sharma Chakravarthy 2 10/30/2023 m © your name 28
27 28

What does the framework do in the mapper La
» Remember, any computation has to be done in a physicéi
processor (or core). Cannot be done in thin air!
= partitioning
= Sorting
= merging
» Shuffle is NOT a computation! It is shuffling or exchanging
data from all mappers to all reducers over the network!
» Many students think shuffling is sort of magic!
= |tis not!

= |tis a step to send data from different mappers to EACH
reducer!

= Without understanding this, you cannot write reduce code

your name 29

In the Reducer
» Shuffle sends several <key, value-list> to each reducer from all
mappers (how does it determine which <key, value-list> to
send to who?)
» Areducer reads the same numbered partition from each
mapper over the network!

» Each reducer merges the value-list of the same key coming
from different mappers to create a single global <key, value-
list> for each key in the partition
= Now, they are sorted on key

» The reduce function, also written by the user, acts upon each
<key, value-list> in that partition
= |t operates on one <key, value-list> at a time and produces the
desired result and writes to HDFS

29 30
Testing Your understanding g NFS
» Are the keys in <key, value-list> generated by the mappers ordered
before applying the combiner? » Let us understand the network file system (NFS)
" Yes(Why?) before going into HDFS
» Are the keys in <key, value-list> generated by the mappers ordered . . .
after applying the combiner? » Provides remote access to a single logical volume
* They are already ordered(Why?) stored on a single machine
» Are the keys in <key, value-list> from each mapper ordered when it > Makes portions of its local file system visible to
comes to the reducer? .
external clients
= Yes (Why?) . :
> Are the values in the <key, value-list> produced by the mapper > Chentvs can mount Fhe remote file system and make it
ordered? look like a local drive
= No (why?) + transparency
» Are the values in each <key, value-list> processed by the reducer - Size, because it is on one single machine
code ordered? o . .
* No(why?) - Single point of failure
- bottleneck
)2 A our name 10/3012023 A © Sharma Chakravarth
31 32

I - . HDFS /

Hadoop Distributed File System (HDFS)*=" =

» HDFS can store large amounts of data (TB to PB)
> Z\Ies split |ntc;§;l,l\\//;§:lo;k; " Namenode (¥ > s spread across several machines
ccess uses efault 00
] y mlﬁ » Much larger file sizes than NFS
» Blocks replicated across several : . > q liablv. If individual hi o th
datanodes (usually 3) stores data re |a- y. Ifin IYI u.a mac |.nes in the
. cluster malfunction, data is still be available.
> Single namenode stores . o i
metadata (file names, block ol el el » Provides fast, scalable access to this information.
locations, etc.) s w''e s It is possible to serve more clients by simply
> Optimized for large files, adding more machines to the cluster.
sequential reads e » Integrates well with Hadoop MapReduce, allowing
Datanodes data to be read and computed upon locally when
possible.
>
A 105302023 A Sharma Chakravartt
33 34
HDFS (2) b HDFS (4) b
> HDFS is not a general-purpose NFS » Due to the large size of files, and the sequential nature of

» Applications that use HDFS are assumed to perform long read§, the system does not provide a rT\ec.hanlsm for local

. . . caching of data. The overhead of caching is great enough
sequential streaming reads from files. A
) o . . that data should simply be re-read from HDFS source.
» HDFS is optimized to provide streaming read . . .
) » Individual machines are assumed to fail on a frequent
performance; this comes at the expense of random seek . . .
.) " o basis, both permanently and intermittently.
times to arbitrary positions in files. . .

N . . » The cluster must be able to withstand the complete failure
Data W'”. be written to the.HDFS once and then read of several machines, possibly many happening at the same
;everal| tlm;es; updates to fllesdafter they have already time (e.g., if a rack fails all together).

eenc os? are not supporte. ’) » While performance may degrade proportional to the
> An extension to Hadoop provides support for appending number of machines lost, the system as a whole should
new data to the ends of files. not become overly slow, nor should information be lost.
Data replication strategies combat this problem.
10/30/2023 x> W Sharma Chakravarth 10/30/2023 = W © Sharma Chakravarth
35 36

HDFS details >r . HDFS >
» HDFS is a distributed, scalable, and portable file » HDFS stores large files (an ideal file size is a
system written in Java for the Hadoop framework. multiple of 64MB!), across multiple machines.
» Each node in a Hadoop instance can be a > It achieves reliability by replicating the data across
DataNode; a cluster of DataNodes form the HDFS multiple hosts, and hence does not
cluster. require RAID storage on hosts.
> Each DataNode serves up blocks of data over the » With the default replication value of 3, data is
network using a block protocol specific to HDFS. stored on three nodes: two on the same rack, and
» The file system uses the TCP/IP layer for one on a different rack.
communication; clients use RPC to communicate » Data nodes can talk to each other to rebalance
between each other. data, to move copies around, and to keep the
replication of data high.
10/30/2023 m Sharma Chakravar 10/30/2023 m"‘
37 38
s Failures (fault tolerance) gy &

Data Flow

> Input, final output are stored on a distributed file sy
stem (e.g., HDFS)

» Scheduler tries to schedule map tasks “close” to
physical storage location of input data

> Intermediate results are stored on local FS of map
and reduce workers

> Output is often input to another map reduce job

» Not all problems solved with one round of map
/reduce computation!

» Map worker failure

= Map tasks completed or in-progress at worker are
reset to idle

= Reduce workers are notified when task is rescheduled
on another worker

» Reduce worker failure
= Only in-progress tasks are reset to idle
» Master failure
= MapReduce task is aborted and client is notified

How does this compare with recovery of DBMS?

Y

= Similarities and differences?

39

40

10

Lab

Map/Reduce Execution Overview
» Map invocations are distributed across multiple machines
by automatically partitioning the input data into a set of S spl

its/shards. The input shards can be processed in parallel on
different machines.

= Each shard becomes a mapper task

= One mapper processes one shard at a time

= Number of mapper nodes need not be the same as the number

of splits

» Reduce invocations are distributed by partitioning

the intermediate key space into R disjoint

groups using a partitioning function (e.g., hash(key) mod R).
» Number of reducers can be specified.

» By writing your own partition function, you can determine
the number of partitions

your name 41

Testing Your understanding Lai
» What happens if the number of splits are more than the number of
mappers?
= Splits are processed using the same mapper nodes until all splits are processed!
» What happens if the number of splits are less than the number of
mappers?
= Some mapper nodes are unused (waste of resources!)
» When do we get maximum parallelism for mapper processing?
= Splits = number of mapper nodes

= However, a mapper node is capable of processing several mapper tasks. There is
a formula associated with it.

» If number of reducers are given, what is its effect on the partitioner?
= Number of partitions created is equal to the number of reducers
» If number of custom partitions is greater than the reducers specified, what
happens?
= | believe partition numbers greater than the number of reducers are NOT
processed!

» Do the reducers have to wait for all mapper tasks to complete?
= Yes. User reduce code cannot start until all mapper tasks are done

= However, shuffle can overlapped with mapper task to improve response time
(user can set this parameter)

41

42

-
Lab

Testing Your understanding

» Can the number of reducer nodes be more than the number

of mapper nodes?
= Yes (under what circumstances)

= Space of mapper output keys can be larger than mapper input
keys! So more reducers may be needed to process them!

» How does one determine the number of reducers?

= Based on the key space produced by the mappers!

» Are there situations where more than one reducer cannot be

used?
= Yes! Depends on what you are computing

= If you are computing average of entire input, they cannot be
computed on (key) partitions. Only one partition need to be used

= However, by computing the numerator and denominator
separately, multiple reducers can be used

- But the final result need to be computed outside (after the job)

your name 43

Testing Your understanding y
» What about the hash function? How complex is it?

= A simple mod function is used as default
» Do all mappers need to use the SAME hash function?
= Absolutely! Otherwise, same keys from different

mappers will end up in different reducers messing up
the whole thing

You need to keep this mind if you are specifying your
own partition function

= You also need to make sure number of reducers
specified matches the number of partitions generated
by the custom partitioner

p— m

© your name 44

43

44

11

Clarity on Map/Reduce .

User can specify the number of splits (using size) or it is done by
the system using default size (64 or 128MB)

Number of mapper nodes can be specified. A node corresponds
to a processor (physical resource). Each node can perform ONE
mapper task at a time or in case of cores may be able to
perform multiple mapper tasks on the same node using cores
Number of Reducer nodes can be specified. Hadoop will
partition the output of mappers and send it to corresponding
reducers. A reducer task is run on a reducer node. But each
reducer task processes a number of <key, value-list>s

Number of mapper and reducer nodes can be determined
independently. But is usually not ad hoc. They are determined
based on the amount of computation to be done and dividing
the computation among mappers/reducers (response time)

= Or for experiments to understand speed up etc.

10/30/2023 m

Sharma Chakravarthy 45

Clarity on Map/Reduce (2) >

» Mapper method/function written by the user is executed by
each instantiation of mapper task. It processes one <key1,
valuel> pair at a time and produces one or more <keyi, valuei>
pairs

» Optionally, a combiner method/function written by the user is
executed AFTER each input split is processed completely by the
mapper method/function as part of the mapper task

» All the <key, value> pairs are partitioned, sorted on the key and
grouped on the key into <key, value-list> pairs as input to the
combiner. We will later see that this input is similar to the input
to the reducer with a subtle (local vs. global) difference!

» The output of the combiner is converted to a set of <key, value-
list> and partitioned on the key before shuffling

» These <key, value-list> are shuffled to one or more reducers,
and they are merged in each reducer BEFORE applying the
reduce method/function

103012023 m

© Sharma Chakravarthy

Lab

45 46
Data distribution across nodes (= Mapping Lists T
Large amount of input data... » A list of data elements are provided, one at a time,
to a function called mapper, which transforms each
element individually to one or
Data loading step more output elements
Input list
Node 1 Node 2 Node 3
Slice of Slice of Slice of Mapping function
input input input
Output list
10/30/2023 m‘” Sharma Chakravarthy 47 10/30/2023 m‘” © your name 48
47 48

12

Reducing List g &

» Reducing lets you aggregate values together. A
reducer function receives an iterator of input values
from an input list. It them combines these values
together, returning an output value

Input list |DDDDEDDDD[

Reducing function v

Output value

Shuffling in Map/Reduce (high level view/diagram)’(Léb

Node 1 Node 2 Node 3

B e W vy

| Mapping process ‘ ‘ Mapping process | | Mapping process |

0600 | | 00000 | | 00000

Intermediate data
from mappers

Values exchanged
by shuffle process

A \
Node 1 Node 2 Node 3

GOGG | | GGG | G

[Reducing process | [Reducing process | [Reducing process |

Reducing process
generates outputs

Outputs stored
locally

© Sharma Chakravarthy 50

49 50
o - Coordination -
| DN
| | | | | | | » Master data structures
Partitioning, sort, and Explain what T [
Group by are done in T h:;?pz:ls‘ze:e = Task status: (idle, in-progress, completed)
the mapper priorto a1 b 2 c3c6 as5c2 b7 ¢8 clearly! = |dle tasks get scheduled as workers become available
Combiner execution .
F * F * = When a map task completes, it sends the master the
A s . . location and sizes of its R intermediate files, one for
a ab c 7 ¢
Shuffle or each reducer
exchange of ..
- - - - data happens = Master pushes this info to reducers
over the
network » Master pings workers periodically to detect failures
a 15 b 27 c 298
l l l merge is done » Static load balancer: allocates processes to
in the reducer processors at run time while taking no account of
d d d
|re e reciee |re e current network load.
I [l |
mw oS ns, I s, m
51 52

13

Distributed Execution Overview La2b

o

4 [S
W) for (D fork i (1) fork
¢ (7) wakéup
Vo D
maj "
Input Data P {Sduce;\

(6) write

(4) local
(3)fead write ‘
(5) remote
read,
Input files Map phase sort Reduce phase

A

RecordReader

RecordReader

RecordReader

RecordReader

RecordReader

U

53

54
1‘5'° Behind the scenes: Partition, Sort and group by in Mapper €-2°
LETE LETE LECE LIS LETE > Probably the most complex aspect of this paradigm
» Also, transparent to the user
» Difficult to write combiner or reducer code without
understanding this!
Partitioner Partitioner Partitioner Partitioner Partitioner > Map Slde
= Map outputs are buffered in memory in a circular buffer (ring
buffer). Default size 100MB
= When buffer reaches threshold (80%), contents are “spilled” to
Same hash disk
function is i . .)
used by all! = Each “spill” is partitioned (on key) and group by is applied
(sorted and values in each partition are merged into value-list)
Reducer Reducer Reduce before writing each partition as separate files on disk
= How many files are there for each spill?
55 56

14

A e University of Teas
ARLINGTON.

Partition, sort, merge, and shuffle

4]

Partition, Output
sort and
spill to disk

written to 1 Reduce Task

Map Task
local disk

Buffer in
memory

Fetch

Reduce

Input Output
Split \ Output
\ \ written to
Partitions \ \ HDFS
\
Other Reducers (reduce task 2 and 3)
Other maps

10/30/2023 © Enamul Karim 57

eVl 2: Partition, Sort and group by in Hadoop (2) ﬁ:

» Once all the spills are processed, each partition file from each
spill is merged to create a <key, value-list> for EACH key

» This is processed by the combiner, if there is one

» If not, this is shuffled to reducers!

» Now, you can see why a combiner is very similar to a reducer,
EXCEPT, it works on the output of a SINGLE mapper tas
= hence, does local reduce, where as a reducer does a global

reduce

» Whereas a reducer works on the global <key, value-list> as

SAME <key, value-list> comes from DIFFERENT mappers

» Hence, it must merge them BEFORE applying the reduce
function!

57 58
Behind the scenes: Partition, Sort and group by in Hadoop ©€-2° ‘(Lfb
, Hadoop MapReduce Architecture
» Reducer side
= Each mapper sends the SAME partition (read multiple eatiion output
<key, value-list>) to each reducer. Map Task sort and written to Reduce Task
spill to disk local disk
= They are sorted on key! Values are NEVER processed by)
Bufferin Fetch
Hadoop! memory
= If 3 partitions come to a reducer from 3 different mappers
each containing a number of <key, value-list> e \ oUz”:f”‘
- Each <key, value-list> with the SAME key, but from different o % Witere®
mappers need to be MERGED into one <key, value-list> for ertons X \
processing by the reduce code!
- These merged <key, value-list> is processed by the user
reduce code
Other Reducers
- Reducer outputs <key, value-list> Other maps
mw 10/30/2023 m © Enamul Karim 60
59 60

15

Partition and shuffle La» Partition and shuffle La»
» The Partitioner class determines which partition a given

(key, value) pair will go to. The default partitioner

computes a hash value for the key based on the number of

> After the initial map tasks have completed, the map nodes may
still be performing several more map tasks each. But they also
begin exchanging the intermediate outputs from the map tasks

to where they are required by the reducers. reducers.

» This process of moving map outputs to the reducers can overlap > Merge: Each reducer is responsible for merging the values
wit other map tasks and what the reducer does transparently associated with several intermediate keys. The set of
(considered part of shuffling) intermediate keys on a single node is automatically

> A different subset of the intermediate key space is assigned to merged by Hadoop before they are presented to the user
each reduce node; these subsets (known as "partitions") are the written Reducer code
inputs to the reduce tasks. > Reducer can receive shuffle (data collection from different

> Each map task may emit (key, value) pairs to any partition; all mappers) even if all mapper tasks are not complete! This
values for the same key are always reduced together regardless % can be user specified. (why is this good?)

of which mapper is its origin. Therefore, the map nodes must all

agree on where to send the different pieces of the intermediate However, merge and reduce cannot happen until all

data mapper tasks are done and shuffle is complete! (why is
: this?)
10/3012023 m Sharma Chakravarthy 61 10/30/2023 m © Sharma Chakravarthy 62
61 62

ARLINGTON. . ARLINGTON.
Use of Combiner e 2 MapReduce Example (not a good one!) R
» Combiner works as a mini reducer Spliting Mapping - Combiner Merging Reducing
<Key, Value> <key, value-list>
Rarttiony Deer Bear River) Bear, (1,1)
Map Task sort and Final
spill to disk Output
Bufferin Car, (2,1)
Deer, (1,1)
Final \
spill1 | spill2 | Spill3 Output Deer Car Bear — River, (1,1) River, 2
Partitions
10/30/2023 © your name 63 10/30/2023 © your name 64

63 64

Memor:

o[merge

lLab

Partition, shuffle, sort

Copy "Sort” Reduce

phase phase phase
B reduce task
SOrt, a
spill to disk fetch >

i >, | e

[0 reduce &

:-‘ output

mixture of in-memory and on-disk data

on disk
partftions

b T ’
Other maps e, Other reduces

10/30/2023

lLab

Partition, shuffle, sort

~—p HDFS

replication

~—p HDFS
replication

65

66

Map tasks and mapper nodes

Map Phase 1

Lab

Shuffle Phase

sl

B

Reduce Phase !

Output 0

- Outpt |

Intermediate Results

Output
(HDFS)

10/30/2023

© Sharma Chakravarthy 6

lLab

A not so good example

» Counting letters

ey [B1)

80

D) i —

E }
L)

(B.D)
€8

.0y
{C.AY
DA
{EC)
{EB)
)] o

Block 1

Block 2

© Sharma Chakravarthy 68

67

68

17

Hadoop Workflow

/Noad data into HDFS

2. Develop code locally

3. Submit MapReduce job
3a. Go back to Step 2

Hadoop Cluster

- v
4. Retrieve data from HDFS

Mapper .
» The Mapper performs the interesting user-defined work of
the first phase of the Map/Reduce program.

» Given a key and a value, the map() method emits (key,
value) pair(s) which are forwarded to the Reducers.

» A new instance of Mapper is instantiated in a separate
Java process for each map task (InputSplit) that makes up
part of the total job input.

» The individual mappers are intentionally not provided with
a mechanism to communicate with one another in any
way. This allows the reliability of each map task to be
governed solely by the reliability of the local machine.

» The map() method receives two parameters in addition to
the key and the value: output collector and reporter
objects

103012023 m

© Sharma Chakravarthy 70

69

70

Reduce .

» A Reducer instance is created for each reduce task. This is
an instance of user-provided code that performs the
second important phase of job-specific work.

» For each key in the partition assigned to a Reducer, the
Reducer's reduce() method is called once. This receives a
key as well as an iterator over all the values associated
with the key. The values associated with a key are returned
by the iterator in an undefined order.

» The Reducer also receives as
parameters OutputCollector and Reporter objects; they are
used in the same manner as in the map() method.

Sharma Chakravarthy

10302023 m

Additional Map/Reduce functionality ias

Node 1 Node 2

Input (k. ¥) pairs Input (k. v) pairs

Intermediate (K, v) pairs

Substitute intermediate (k, v)
pais

Partiioner
“Shufling” process
ntarmediats (k, v)

pairs exchanged
by all nodes.

© Sharma Chakravarthy

10302023 m

71

72

18

Fault tolerance L
» This fault tolerance underscores the need for program execution
to be side-effect free.

» If Mappers and Reducers had individual identities and
communicated with one another or the outside world, then
restarting a task would require the other nodes to communicate
with the new instances of the map and reduce tasks, and the re-
executed tasks would need to reestablish their intermediate
state (remember cascading rollbacks or aborts)

» This process is notoriously complicated and error-prone in the
general case.

» Map/Reduce simplifies this problem drastically by eliminating
task identities or the ability for task partitions to communicate
with one another. An individual task sees only its own direct
inputs and knows only its own outputs, to make this failure and
restart process clean and dependable.

103012023 = W Sharma Chakravarthy

MR Fault tolerance and DBMS Recovery-=y,

» This fault tolerance underscores the need for program execution
to be side-effect free.

» This requirement is also needed/used in the recovery of a DBMS
using logs.

» If a transaction were to communicate with outside (i.e., outside
of reading and writing from disks, and with others), recovery
becomes very complicated and may not even be feasible.

» DBMS recovery aims at restoring the state of the DBMS to a
consistent state so that transactions aborted can be re-executed
from a consistent state

» It also requires that each transaction leaves the DBMS in a
consistent state if it completes!

» ACID property (which is much stronger than what is used in MR)
is guaranteed in a DBMS

103012023 = W

© Sharma Chakravarthy

73 74
. . . -y ini i -y
Multiple input jobs - Chaining jobs -
» Not every problem can be solved with a Map/Reduce job,
> Suppose you want to do a equi-join of two relations using but fewer still are those which can be solved with a single
map/reduce Map/Reduce job. Many problems can be solved with
» This requires two inputs to be processed by different Map/Reduce, by writing several Map/Reduce jobs which
mappers and sent to common set of reducers by all the run in sequence to accomplish a goal:
mappers » Mapl -> Reducel -> Map2 -> Reduce2 -> Map3...
> Further, you will have to keep track of which tuple/list > You can easily chain jobs together in this fashion by writing
came from which input. multiple driver methods, one for each job. Call the first
= This is done through tagging. driver method, which uses JobClient.runJob() to run the
job and wait for it to complete. When that job has
completed, then call the next driver method, which
creates a new JobConf object referring to different
instances of Mapper and Reducer, etc.
10/30/2023 x> W Sharma Chakravarthy 10/30/2023 = W © Sharma Chakravarth
75 76

19

— = Chaining jobs =g
Chaining examples [= G
» The first job in the chain should write its output to a path
> Suppose you want to compute which is then used as the input path for the second job.
This process can be repeated for as many jobs are
. necessary to arrive at a complete solution to the problem.
= Single Source Shortest Path)) . .
» Many problems which at first seem impossible in
Map/Reduce can be accomplished by dividing one job into
= Page Rank two or more.
h sub » Hadoop provides another mechanism for managing
L]
Graph substructures batches of jobs with dependencies between jobs. Rather
than submit a JobConf to
> The above problems cannot be done in one the JobClient's runJob() or submitJob() methods,
iteration. org.apache.hadoop.mapred.jobcontrol.Job objects can be
» This means several map/reduce pairs have to be created to represent each job;
chained to solve the problem! > Dependencies can be accommodated
)2 A 105302023 A © Sharma Chakravarthy 78
77 78
Summary . _ T
» Additional features such as pipes and streaming are available in Qu e5t|o ns I
Hadoop.
» If you are familiar with C++ or Java, it is not very difficult to
understand the basic concept and use it
» Of course, if you want to use advanced features, you need to
learn them
» Much easier than using a DBMS for some jobs where the data is
in free format; will discuss more of this later!
» https://hadoop.apache.or;
» https://hadoop.apache.org/docs/r3.2.2/hadoop-mapreduce-
client/hadoop-mapreduce-client-core/MapReduceTutorial.html
» https://hadoop.apache.org/docs/r3.2.2/hadoop-project-dist/hadoop-
hdfs/HdfsUserGuide.html
101302023 = W Sharma Chakravarthy A Sharma Chakravarthy 80
79 80

20

