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Abstract

Database management systems will continue to manage large data volumes. Thus, efficient algorithms for access-

ing and manipulating large sets and sequences will be required to provide acceptable performance. The advent of

object-oriented and extensible database systems will not solve this problem; on the contrary, modern data models

exacerbate the problem. In order to manipulate large sets of complex objects as efficiently as today’s database sys-

tems manipulate simple records, query processing algorithms and software will become more complex, and a solid

understanding of algorithm and architectural issues is essential for the designer of database management software.

This survey provides a foundation for the design and implementation of query execution facilities in new database

management systems. It describes a wide array of practical query evaluation techniques for both relational and

post-relational database systems, including iterative execution of complex query evaluation plans, the duality of

sort- and hash-based set matching algorithms, types of parallel query execution and their implementation, and spe-

cial operators for emerging database application domains.

Index Terms

Relational, Extensible, and Object-Oriented Database Systems; Query Execution Architecture; Iterators; Complex

Query Evaluation Plans; Set Matching Algorithms; Sort-Hash Duality; Dynamic Query Evaluation Plans; Operator

Model of Parallelization; Parallel Algorithms; Emerging Database Application Domains.

Introduction

Effective and efficient management of large data volumes is necessary in virtually all computer applications,

from business data processing to library information retrieval systems, multimedia applications with images and

sound, computer aided design and manufacturing, real-time process control, and scientific computation. While

database management systems are standard tools in business data processing, they are only slowly being intro-

duced to all the other emerging database application areas.

In most of these new application domains, database management systems have traditionally not been used

for two reasons. First, restrictive data definition and manipulation languages can make application development

and maintenance unbearably cumbersome. Research into semantic and object-oriented data models and into per-

sistent database programming languages has been addressing this problem and will eventually lead to acceptable

solutions. Second, data volumes might be so large or complex that the real or perceived performance advantage of

file systems is considered more important than all other criteria, e.g., the higher level of abstraction and program-

mer productivity typically achieved with database management systems. Thus, object-oriented database manage-

ment systems that are designed for non-traditional database application domains and extensible database manage-

ment systems toolkits that support a variety of data models must provide excellent performance to meet the
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challenges of very large data volumes, and techniques for manipulating large data sets will find renewed and

increased interest in the database community.

The purpose of this paper is to survey the software architecture of database query execution engines and

efficient algorithms for executing complex queries over large databases. A "complex" query is one that requires a

number of query processing algorithms to work together, and a "large" database uses files with sizes from several

megabytes to many terabytes, which are typical for database applications in the present and the near future [252].

This survey discusses a large variety of query execution techniques that must be considered when designing and

implementing the query execution module of a new database management system: algorithms and their execution

costs, sorting vs. hashing, parallelism, resource allocation and scheduling issues in complex queries, special opera-

tions for emerging database application domains such as statistical and scientific databases, and general

performance-enhancing techniques such as precomputation and compression. While many, although not all, tech-

niques discussed in this paper have been developed in the context of relational database systems, most of them are

applicable to and useful in the query processing facility for any database management system and any data model,

provided the data model permits non-procedural queries over "bulk" data types such as sets and lists.

It is assumed that the reader possesses basic textbook knowledge of database query languages, in particular

of relational algebra, and of file systems, including some basic knowledge about indices. As shown in Figure 1,

query processing fills the gap between database query languages and file systems, It can be divided into optimiza-

tion and execution. A query optimizer translates a query expressed in a high-level query language into a sequence

of operations that are provided by the query execution engine or the file system. The goal of query optimization is

to find a query evaluation plan that minimizes the most relevant performance measure, which can be elapsed time,

the database user’s waiting time for the first or last result item, the number of I/O operations, the total resource

usage, the amount of memory required for query execution, all of the above, or some other performance measure.

Query optimization is a special form of planning, employing techniques from artificial intelligence such as plan

representation, search including directed search and pruning, dynamic programming, branch-and-bound algo-

rithms, etc. The query execution engine is a collection of query execution operators and mechanisms for operator

communication and synchronization — it uses concepts from algorithm design, operating systems, networks, and

parallel and distributed computation. The facilities of the query execution engine define the space of possible plans

that can be chosen by the query optimizer.

A general outline of the steps required for processing a database query are shown in Figure 2. Of course,

this sequence is only a general guideline, and different database systems may use different steps or merge multiple

steps into one, in particular extensible and object-oriented systems. After a query or request has been entered into

the database system, be it interactively or by an application program, the query is parsed into an internal form.
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Query Optimizer
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Figure 1. Query Processing in a Database System.
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Figure 2. Query Processing Steps.

Next, the query is validated against the meta-data (data about data, also called schema or catalogs) to ensure that

the query references only existing database objects. If the database system provides a macro facility such as rela-

tional views, referenced macros and views are expanded into the query [262]. Integrity constraints might be

expressed as views (externally or internally) and would also be integrated into the query at this point in most sys-

tems [193]. The optimizer then maps the expanded query expression into an optimized plan that operates directly

on the stored database objects. This mapping process can be very complex and might require substantial search

and cost estimation effort. Optimization is not discussed in this paper; a relatively recent survey can be found in

[150]. The optimizer’s output is called a query execution plan, query evaluation plan, QEP, or simply plan. This

plan is translated using a simple tree traversal algorithm for execution by the database’s query execution engine;

the result of this translation can be compiled machine code or a semi-compiled or interpreted language.

This survey explicitly discusses only read-only queries; however, most of the techniques are also applicable

to update requests. In most database management systems, update requests may include a search predicate to

specify which database objects are to be modified. Standard query optimization and execution techniques apply to

this search; the actual update procedure can be either applied in a second phase, a method called deferred updates,

or merged into the search phase if there is no danger of creating ambiguous update semantics.1 The problem of

ensuring ACID semantics for updates, — making updates Atomic (all-or-nothing semantics), Consistent (translat-

ing any consistent database state into another consistent database state), Isolated (from other queries and requests),

and Durable (persistent across all failures) — is beyond the scope of this paper; suitable techniques have been

described by many other authors [20, 22, 117, 127].

Embedded queries, i.e., database queries that are contained in an application program written in a standard

programming language such as Cobol, PL/1, C, or Fortran, are also not addressed specifically in this paper because

all techniques discussed here can be used for interactive as well as embedded queries. Embedded queries usually

are optimized when the program is compiled in order to avoid the optimization overhead when the program runs.

This method was pioneered in System R, including mechanisms for storing optimized plans and invalidating stored���������������������������������������������������������
1 A standard example for this danger is the "Halloween" problem: Consider the request to "give all employees

with salaries greater than $30,000 a 3% raise." If (i) these employees are found using an index on salaries, (ii) in-
dex entries are scanned in increasing salary order, and (iii) the index is updated immediately as index entries are
found, each such employee will get an infinite number of raises.
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plans when they become infeasible, e.g., when an index is dropped from the database [49].

Recursive queries are omitted from this survey because the entire field of recursive queries — optimization

rules and heuristics, selectivity and cost estimation, algorithms and their parallelization — is still developing

rapidly; suffice it to point to a survey by Bancilhon and Ramakrishnan [9].

Section 1 discusses the architecture of query execution engines. Sorting and hashing, the two general

approaches to managing and matching elements of large sets, are described in Section 2. Section 3 focuses on

accessing large data sets on disk, including a discussion of indexing methods and disk arrays. Section 4 begins the

discussion of actual data manipulation methods with algorithms for aggregation and duplicate removal, continued

in Section 5 with binary matching operations such as join and intersection and in Section 6 with operations for

universal quantification. Section 7 reviews the many dualities between sorting and hashing and points out their

differences that have an impact on the performance of algorithms based on either one of these approaches. Execu-

tion of very complex query plans with many operators and with non-trivial plan shapes is discussed in Section 8.

Section 9 is devoted to mechanisms for parallel execution, including architectural issues, load balancing, and tun-

ing, and Section 10 discusses specific parallel algorithms. Section 11 outlines some non-standard operators for

emerging database applications such as statistical and scientific database management systems. Section 12 is a

potpourri of additional techniques that enhance the performance of many algorithms, e.g., compression, precompu-

tation, and specialized hardware. The final section contains a brief summary and an outlook on query processing

research and its future.

1. Architecture of Query Execution Engines

This survey focuses on useful mechanisms for processing sets of items. These items can be records, tuples,

entities, or objects. Furthermore, most of the techniques discussed in this survey apply to sequences, not only sets,

of items, although most query processing research has assumed relations and sets. All query processing algorithm

implementations iterate over the members of their input sets; thus, sets are always represented by sequences.

Sequences can be used to represent not only sets but also other one-dimensional "bulk" types such as lists, arrays,

and time series, and many database query processing algorithms and techniques can be used to manipulate these

other bulk types as well as sets. The important point is to think of these algorithms as algebra operators consuming

zero or more inputs (sets or sequences) and producing one (or sometimes more) outputs. A complete query execu-

tion engine consists of a collection of operators and mechanisms to execute complex expressions using multiple

operators, including multiple occurrences of the same operator. Taken as a whole, the query processing algorithms

form an algebra which we call the physical algebra of a database system.

The physical algebra is equivalent to, but quite different from, the logical algebra of the data model or the

database system. The logical algebra is more closely related to the data model and defines what queries can be

expressed in the data model; for example, the relational algebra is a logical algebra. A physical algebra, on the

other hand, is system-specific. Different systems may implement the same data model and the same logical alge-

bra but may use very different physical algebras. For example, while one relational system may use only nested

loops joins, another system may provide both nested loops join and merge-join, while a third one may rely entirely

on hash join algorithms. (Join algorithms are discussed in detail later in the section on binary matching operators

and algorithms.)

Another significant difference between logical and physical algebras is the fact that specific algorithms and

therefore cost functions are associated only with physical operators, not with logical algebra operators. Because of

Query Evaluation Survey 4 Draft of Friday, June 5, 1992, 16:32



Intersection

Set A Set B

Merge-Join (Intersect)

Sort Sort

File Scan A File Scan B

Figure 3. Logical and Physical Algebra Expressions.

the lack of an algorithm specification, a logical algebra expression is not directly executable and must be mapped

into a physical algebra expression. For example, it is impossible to determine the execution time for the left

expression in Figure 3, i.e., a logical algebra expression, without mapping it first into a physical algebra expression

such as the query evaluation plan on the right of Figure 3. This mapping process can be trivial in some database

systems but usually is fairly complex in real database systems because it involves algorithms choices and because

logical and physical operators frequently do not map directly into one another, as shown in these three examples.

First, some operators in the physical algebra may implement multiple logical operators. For example, all serious

implementations of relational join algorithms include a facility to output fewer than all attributes, i.e., a relational

delta-project (a projection without duplicate removal) is included in the physical join operator. Second, some phy-

sical operators implement only part of a logical operator. For example, a duplicate removal algorithm implements

only the "second half" of a relational projection operator. Third, some physical operators do not exist in the logical

algebra. For example, a sort operator has no place in pure relational algebra because it is an algebra of sets and

sets are, by their definition, unordered.

Finally, some properties that hold for logical operators do not hold, or only with some qualifications, for the

counterparts in physical algebra. For example, while intersection and union are entirely symmetric and commuta-

tive, algorithms implementing them (e.g., nested loops or hybrid hash join) do not treat their two inputs equally.

The purpose of the query execution engine is to execute physical algebra expressions produced by the query

optimizer from a logical algebra expression. Thus, the premier design goal for the query execution engine is to

implement a variety of efficient query execution mechanisms. The policies for using these mechanisms are built

into an optimizer.

Synchronization and data transfer between operators is the main issue to be addressed in the architecture of

the query execution engine. Imagine a query with two joins and consider how the result of the first join is passed

to the second one. The simplest method is to create (write) and read a temporary file. The need for temporary

files, whether they are kept in the buffer or not, is a direct result of executing an operator’s input subplans com-

pletely before starting the operator. Alternatively, it is possible to create one process for each operator and then to

use interprocess communication mechanisms (e.g., pipes) to transfer data between operators, leaving it to the

operating system to schedule and suspend operator processes as pipes are full or empty. While such data-driven

execution removes the need for temporary disk files, it introduces another cost, that of operating system scheduling

and interprocess communication. In order to avoid both temporary files and operating system scheduling, Freytag

proposed writing rule-based translation programs that transform a plan represented as a tree structure into a single

iterative program with nested loops and other control structures [89]. However, the required rule set is not simple,

in particular for algorithms with complex control logic such as sorting, merge-join, or even hybrid hash join (to be
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discussed later in the section on matching).

The most practical alternative is to implement all operators in such a way that they schedule each other

within a single operating system process. The basic idea is to define a granule, typically a single record, and to

iterate over all granules comprising an intermediate query result2. Each time an operator needs another granule, it

calls its input (operator) to produce one. This call is a simple procedure call, much cheaper than inter-process

communication since it does not involve the operating system at all. The calling operator waits (just as any calling

routine waits) until the input operator has produced an item. That input operator, in a complex query plan, might

require an item from its own input to produce an item; in that case, it calls its own input (operator) to produce one.

Two important features of operators implemented in this way are that they can be combined into arbitrarily com-

plex query evaluation plans and that any number of operators can execute and schedule each other in a single pro-

cess without assistance from or interaction with the underlying operating system. This model of operator imple-

mentation and scheduling resembles very closely those used in relational systems, e.g., System R (and later

SQL/DS and DB2), Ingres, Informix, and Oracle; as well as in extensible systems, e.g., Exodus’ E programming

language [214], Genesis [11, 12], and Starburst [125, 126]. Operators implemented in this model are called itera-

tors, streams, synchronous pipelines, row-sources, or similar names in the "lingo" of commercial systems.

To make the implementation of operators a little easier, it makes sense to separate the functions (a) to

���������������������������������������������������������������������������������������������������������������������������������������������������������������
Iterator Open Next Close���������������������������������������������������������������������������������������������������������������������������������������������������������������
Print open input close inputcall next on input; for-

mat the item on screen���������������������������������������������������������������������������������������������������������������������������������������������������������������
Scan open file read next item close file���������������������������������������������������������������������������������������������������������������������������������������������������������������
Select open input close inputcall next on input until

an item qualifies���������������������������������������������������������������������������������������������������������������������������������������������������������������
Hash join
(without
overflow
resolution)

allocate hash directory;
open left "build" input;
build hash table calling next
on build input; close build
input; open right "probe" in-
put

call next on probe in-
put until a match is
found

close probe input;
deallocate hash direc-
tory

���������������������������������������������������������������������������������������������������������������������������������������������������������������
Merge-Join open both inputs close both inputsget next item from in-

put with smaller key
until a match is found���������������������������������������������������������������������������������������������������������������������������������������������������������������

Sort open input; build all initial
run files calling next on in-
put and quicksort or re-
placement selection; close
input; merge run files until
only one merge step is left;
open the remaining run files

determine next output
item; read new item
from the correct run
file

destroy remaining run
files

�����������������������������������������������������������������������������������������������������������������������������������������������������������������
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Table 1. Examples of Iterator Functions.

���������������������������������������������������������
2 It is possible to use multiple granule sizes within a single query processing system, and to provide special

iterators with the sole purpose of translating from one granule size to another. An example is a query processing
system that uses records as iteration granule except for the inputs of merge-join (see later in the section on binary
matching), for which it uses "value packets," i.e., groups of records with equal join attribute values.
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prepare an operator for producing data, (b) to produce an item, and (c) to perform final house-keeping. In a file

scan, these functions are called open, next, and close procedures; we adopt these names for all operators. Table 1

gives a rough idea what the open, next, and close procedures for some operators do. The first three examples are

trivial, but the hash join operator shows how an operator can schedule its inputs in a non-trivial manner. The

interesting observations are that (i) the entire query plan is executed within a single process, (ii) operators produce

one item at a time on request, (iii) this model effectively implements, within a single process, (special-purpose)

co-routines and demand-driven dataflow, (iv) items never wait in a temporary file or buffer between operators

because they are never produced before they are needed, (v) therefore this model is very efficient in its time-

space-product memory costs, (vi) iterators can schedule any tree, including bushy trees (see below), (vii) no opera-

tor is affected by the complexity of the whole plan, i.e., this model of operator implementation and synchronization

works for simple as well as very complex query plans. As a final remark, there are effective ways to combine the

iterator model with parallel query processing, as will be discussed later.

Since query plans are algebra expressions, they can be represented as trees. Query plans can be divided into

prototypical shapes, and query execution engines can be divided into groups according to which shapes of plans

they can evaluate. Figure 4 shows prototypical left-deep, right-deep, and bushy plans for a four-way join. Left-

deep and right-deep plans are different because join algorithms use their two inputs in different ways; for example,

in the nested loops join algorithm, the outer loop iterates over one input (usually drawn as left input) while the

inner loop iterates over the other input. The set of bushy plans is the most general as it includes the sets of both

left-deep and right-deep plans. These names are taken from [100]; left-deep plans are also called "linear process-

ing trees" [173] or "plans with no composite inner" [204].

For queries with common subexpressions, the query evaluation plan is not a tree but an acyclic directed

graph (DAG). Most systems, if they identify and exploit common subexpressions, execute the plan equivalent to a

common subexpression separately, saving the intermediate result in a temporary file to be scanned repeatedly and

destroyed after the last scan. Each plan fragment that is executed as a unit is indeed a tree. The alternative is a

"split" iterator that can deliver data to multiple consumers, i.e., that can be invoked as iterator by multiple consu-

mer iterators. The split iterator paces its input subtree as fast as the fastest consumer requires it and holds items

until the slowest consumer has consumed them. If the consumers request data at about the same rate, the split

operator does not require a temporary spool file; such a file and its associated I/O cost is required only if the data

rate required by the consumers diverges above some predefined threshold.

Join C-D

D
Join B-C

C
Join A-B

BA

Join B-C

Join
A-B

A B

Join
C-D

C D

Join A-B

A
Join B-C

B
Join C-D

C D

Figure 4. Left-Deep, Bushy, and Right-Deep Plans.

Query Evaluation Survey 7 Draft of Friday, June 5, 1992, 16:32



Among the implementations of iterators for query processing, one group can be called "stored-set-oriented"

and the other "algebra-oriented." In System R, an example for the first group, complex join plans are constructed

using binary join iterators that "attach" one more set (stored relation) to an existing intermediate result [4, 182], a

design that supports only left-deep plans. This design led to a significant simplification of the System R optimizer

which could be based on dynamic programming techniques but ignores the optimal plan for some queries3 [239].

A similar design was used, although not strictly required by the design of the execution engine, in the Gamma

database machine [72, 74, 92]. On the other hand, some systems use binary operators for which both inputs can be

intermediate results, i.e., the output of arbitrarily complex subplans. This design is more general as it also permits

bushy plans. Examples for this approach are the second query processing engine of Ingres based on Kooi’s thesis

[169, 170], the Starburst execution engine [125], and the Volcano query execution engine [111]. The tradeoff

between left-deep and bushy query evaluation plans is reduction of the search space in the query optimizer against

generality of the execution engine and efficiency for some queries. Right-deep plans have only recently received

more interest and may actually turn out to be very efficient, in particular in systems with ample memory [233,

234].

The remainder of this section provides more details of how iterators are implemented in the Volcano extensi-

ble query processing system. We use the Volcano system as an example repeatedly in this survey because it pro-

vides a large variety of mechanisms for database query processing, but mostly because its model of operator imple-

mentation and scheduling resembles very closely those used in relational and extensible systems. The purpose of

this section is to provide implementation concepts from which a new query processing engine could be derived.

Figure 5 shows how iterators are represented in Volcano. A box stands for a record structure in Volcano’s

implementation language (C [160]), and an arrow represents a pointer. Each operator in a query evaluation plan

consists of two record structures, a small structure of four pointers and a state record. The small structure is the

same for all algorithms. It represents the stream or iterator abstraction and can be invoked with the open, next, and

close procedures. The function of state records is similar to activation records allocated by compiled-generated

code upon entry into a procedure. Both hold values local to the procedure or the iterator. Their main difference is

that activation records reside on the stack and vanish upon procedure exit while state records must persist from one

invocation of the iterator to the next, e.g., from the invocation of open to the each invocation of next and the invo-

cation of close. Thus, state records do not reside on the stack but in heap space.

The type of state records is different for each iterator as it contains iterator-specific arguments and local vari-

ables (state) while the iterator is suspended, e.g., currently not active between invocation of the operators next pro-

cedure. Query plan nodes are linked together by means of input pointers, which are also kept in the state records.

Since pointers to functions are used extensively in this design, all operator code (i.e., the open, next, and close pro-

cedures) can be written in such a way that the names of input operators and their iterator procedures are not "hard-

wired" into the code, and the operator modules do not need to be recompiled for each query. Furthermore, all

operations on individual items, e.g., printing, are imported into Volcano operators as functions, making the opera-

tors independent of the semantics and representation of items in the data streams they are processing. This organi-

zation using function pointers for input operators is fairly standard in commercial database management systems.���������������������������������������������������������
3 Since each operator in such a query execution system will access a permanent relation, the name "access

path selection" used for System R optimization, although including and actually focusing on join optimization, was
entirely correct and more descriptive than "query optimization."
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open-filter
next-filter
close-filter

Arguments Input State

print ()

open-filescan
next-filescan
close-filescan

Arguments Input State

predicate ()

Figure 5. Two Operators in a Volcano Query Plan.

In order to make this discussion more concrete, Figure 5 shows two operators in a query evaluation plan that

prints selected records from a file. The purpose and capabilities of the filter operator in Volcano includes printing

items of a stream using a print function passed to the filter operator as one of its arguments. The small structure at

the top gives access to the filter operator’s iterator functions (the open, next, and close procedures) as well as to its

state record. Using a pointer to this structure, the open, next, and close procedures of the filter operator can be

invoked and their local state can be passed to them as a procedure argument. Filter’s iterator functions themselves,

e.g., open-filter, can use the input pointer contained in the state record to invoke the input operator’s functions, e.g.,

open-file-scan. Thus, the filter functions can invoke the file scan functions as needed, and can pace the file scan

according to the needs of the filter.

In this section, we have discussed general physical algebra issues and synchronization and data transfer

between operators. Iterators are relatively straightforward to implement and are suitable building blocks for

efficient, extensible query processing engines. In the following sections, we consider individual operators and

algorithms including a comparison of sorting and hashing, detailed treatment of parallelism, special operators for

emerging database applications such as scientific databases, and auxiliary techniques such as precomputation and

compression.
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2. Sorting and Hashing

Before discussing specific algorithms, two general approaches to managing sets of data are introduced. The

purpose of many query processing algorithms is to perform some kind of matching, i.e., bringing items that are

"alike" together and performing some operation on them. There are two basic approaches used for this purpose,

sorting and hashing. This pair permeates many aspects of query processing, from indexing and clustering over

aggregation and join algorithms to methods for parallelizing database operations. Therefore, we discuss these

approaches first in general terms, without regard to specific algorithms. After a survey of specific algorithms for

unary (aggregation, duplicate removal) and binary (join, semi-join, intersection, division, etc.) matching problems

in the following sections, the duality of sort- and hash-based algorithms is discussed in detail.

2.1. Sorting

Sorting is used very frequently in database systems, both for presentation to the user in sorted reports or list-

ings and for query processing in sort-based algorithms such as merge-join. Therefore, the performance effects of

the many algorithmic tricks and variants of external sorting deserve detailed discussion in this survey. All sorting

algorithms used in database systems use merging, i.e., the input data are written into initial sorted runs and then

merged into larger and larger runs until only one run is left, the sorted output. Only in the unusual case that a data

set is smaller than the available memory can in-memory techniques such as quicksort be used. An excellent refer-

ence for many issues discussed here is Knuth [167].

In order to ensure that the sort module interfaces well with the other operators, e.g., file scan or merge-join,

sorting should be implemented as an iterator, i.e., with open, next, and close procedures as all other operators of the

physical algebra. In the Volcano query processing system (which is based on iterators) most of the sort work is

done during open-sort [105, 111]. This procedure consumes the entire input and leaves appropriate data structures

for next-sort to produce the final, sorted output. If the entire input fits into the sort space in main memory, open-

sort leaves a sorted array of pointers to records in I/O buffer memory which is used by next-sort to produce the

records in sorted order. If the input is larger than main memory, the open-sort procedure creates sorted runs and

merges them until only one final merge phase is left. The last merge step is performed in the next-sort procedure,

i.e., when demanded by the consumer of the sorted stream, e.g., a merge-join. The input to the sort module must

be an iterator, and sort uses open, next, and close procedures to request its input; therefore, sort input can come

from a scan or a complex query plan, and the sort operator can be inserted into a query plan at any place or at

several places.

There are two alternative methods for creating initial runs, also called "level-0 runs" here. First, an in-

memory sort algorithm can be used, typically quicksort. Using this method, each run will have the size of memory

and the number of initial runs W will be W = � R / M � for input size R and memory size M . Second, runs can be

produced using replacement selection. Replacement selection starts by filling memory with items which are organ-

ized into a priority heap, i.e., a data structure that efficiently supports the operations insert and remove-smallest.

Next, the item with the smallest key is removed from the priority heap and written to a run file, and then immedi-

ately replaced in the priority heap with another item from the input. With high probability, this new item has a key

larger than the item just written, and therefore will be included in the same run file. Notice that if this is the case,

the first run file will be larger than memory. Now the second item (the currently smallest item in the priority heap)

is written to the run file, and also replaced immediately in memory by another item from the input. This process

repeats, always keeping the memory and the priority heap entirely filled. If a new item has a key smaller than the
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last key written, the new item cannot be included in the current run file and is marked for the next run file. In com-

parisons among items in the heap, items marked for the current run file are always considered "smaller" than items

marked for the next run file. Eventually, all items in memory are marked for the next run file, at which point the

current run file is closed and a new one is created.

Using replacement selection, run files are typically larger than memory. If the input is already sorted or

almost sorted, there will be only one run file. This situation could arise, for example, if a file is sorted on field A

but should be sorted on A as major and B as minor sort key. If the input is sorted in reverse order, which is the

worst case, each run file will be exactly as large as memory. If the input is random, the average run file will be

twice the size of memory, except the first few runs (which get the process started) and the last run. On the average,

the expected number of runs is about W = � R / (2 × M ) � + 1, i.e., about half as many runs as created with quick-

sort. A more detailed discussion and an analysis of replacement selection was provided by Knuth [167].

An additional difference between quicksort and replacement selection is the resulting I/O pattern during ini-

tial run creation. Quicksort results in bursts of reads and writes for entire memory loads from the input file and to

initial run files, while replacement selection alternates between individual read and write operations. If only a sin-

gle device is used, quicksort may result in faster I/O because fewer disk arm movements are required. However, if

different devices are used for input and temporary files, or if the input comes as a stream from another operator, the

alternating behavior of replacement selection may permit more overlap of I/O and processing and therefore result

in faster sorting.

The problem with replacement selection is memory management. If input items are kept in their original

pages in the buffer (in order to save copying data, a real concern for large data volumes) each page must be kept in

the buffer until its last record has been written to a run file. On the average, half a page’s records will be in the

priority heap. Thus, the priority heap must be reduced to half the size (the number of items in the heap is one half

the number of records that fit into memory), cancelling the advantage of longer and fewer run files. The solution to

this problem is to copy records into a holding space and to keep them there while they are in the priority heap and

until they are written to a run file. If the input items are of varying sizes, memory management is more complex

than for quicksort because a new item may not fit into the space vacated in the holding space by the last item writ-

ten into a run file. Solutions to this problem will introduce memory management overhead and some amount of

fragmentation, i.e., the size of runs will be less than twice the size of memory. Thus, the advantage of having

fewer runs must be balanced with the different I/O pattern and the disadvantage of more complex memory

management.

The level-0 runs are merged into level-1 runs, which are merged into level-2 runs, etc., to produce the sorted

output. During merging, a certain amount of buffer memory must be dedicated to each input run and the merge

output. We call this amount of memory the cluster size C in this survey. The number of I/O clusters that fit in

memory is the quotient of memory size and cluster size. The maximal merge fan-in F , i.e., the number of runs that

can be merged at one time, is this quotient minus one cluster for the output. Thus, F = � M / C − 1 	 . Since the

sizes of runs grow by a factor F from level to level, the number of merge levels L , i.e., the number of times each

item is written to a run file, is logarithmic with the input size, namely L = �
 logF (W ) ��
 .

There are four considerations that can improve the merge efficiency. The first two issues pertain to schedul-

ing of I/O operations. First, scans are faster if read-ahead and write-behind are used; therefore, double buffering

using two pages of memory per input run and two for the merge output might speed the merge process [228, 229].

The obvious disadvantage is that the fan-in is cut in half. However, instead of reserving 2 × F + 2 clusters, a
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predictive method called forecasting can be employed in which the largest key in each input buffer is used to deter-

mine from which input run the next cluster will be read. Thus, the fan-in can be set to any number in the range

� M / (2 × C ) − 2 	 ≤ F ≤ � M / C − 1 	 . One or two read-ahead buffers per input disk are sufficient, and

F = � M / C 	 − 3 will be reasonable in most cases because it uses maximal fan-in with one forecasting input

buffer and double-buffering for the merge output.

Second, if the operating system and the I/O hardware support them, using large cluster sizes for the run files

is very beneficial. Larger cluster sizes will reduce the fan-in and therefore may increase the number of merge lev-

els. However, each merging level is performed much faster because fewer I/O operations and disk seeks and

latency delays are required. Furthermore, if the unit of I/O is equal to a disk track, rotational latencies can be

avoided entirely with a sufficiently smart disk controller. Usually, relatively small fan-ins with large cluster sizes

are the optimal choice, even if the sort requires multiple merge levels [105]. The precise tradeoff depends on disk

seek, latency, and transfer times. It is interesting to note that the optimal cluster size and fan-in basically do not

depend on the input size.

As a concrete example, consider sorting a file of R = 50 MB = 51,200 KB using M = 160 KB of memory.

The number of runs created by quicksort will be W = � 51200 / 160 � = 320. Depending on the disk access and

transfer times (e.g., 25 ms disk seek and latency, 2 ms transfer time for a page of 4 KB), C = 16 KB will typically

be a good cluster size for fast merging. If one cluster is used for read-ahead and two for the merge output, the

fan-in will be F = � 160 / 16 	 − 3 = 7. The number of merge levels will be L = �
 log7(320) ��
 = 3. If a 16 KB I/O

operation takes T = 33 ms, the total I/O time, including a factor of two for writing and reading at each merge level,

for the entire sort will be 2 × L × � R / C � × T = 10.56 min.

An entirely different approach to determining optimal cluster sizes and the amount of memory allocated to

forecasting and read-ahead is based on processing and I/O bandwidths and latencies. The cluster sizes should be

set such that the I/O bandwidth matches the processing bandwidth of the CPU. Bandwidths for both I/O and CPU

are measured here in record or bytes per unit time; instructions per unit time (MIPS) are irrelevant. It is interesting

to note that the CPU’s processing bandwidth is largely determined by how fast the CPU can assemble new pages;

in other words, how fast the CPU can copy records within memory. This performance measure is usually ignored

in modern CPU and cache designs geared towards high MIPS or MFLOPS numbers [205].

Tuning the sort based on bandwidth and latency proceeds in three steps. First, the cluster size is set such that

the processing and I/O bandwidths are equal or very close to equal. If the sort is I/O-bound, the cluster size is

increased for less disk access overhead per record and therefore faster I/O; if the sort is CPU-bound, the cluster

size is decreased to slow the I/O in favor of a larger merge fan-in. Next, in order to ensure that the two processing

components (I/O and CPU) never (or almost never) have to wait for one another, the amount of space dedicated to

read-ahead is determined as the I/O time for one cluster multiplied by the processing bandwidth. Typically, this

will result in one cluster of read-ahead space per disk used to store and read inputs run into a merge. Of course, in

order to make read-ahead effective, forecasting must be used. Finally, the same amount of buffer space is allo-

cated for the merge output (access latency times bandwidth) to ensure that merge processing never has to wait for

the completion of output I/O. — It is an open issue whether these two alternative approaches to cluster size and

read-ahead space result in different allocations and sorting speeds and whether one of them is more effective than

the other.

The third and fourth merging issues focus on using (and exploiting) the maximal fan-in as effectively and

often as possible. Both issues require adjusting the fan-in of the first merge step using the formula given below,
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either the first merge step of all merge steps or, in semi-eager merging [105], the first merge step after the end of

the input has been reached. This adjustment is used for only one merge step, called the initial merge here, not for

an entire merge level.

The third issue to be considered is that the number of runs W is typically not a power of F ; therefore, some

merges proceed with fewer than F inputs, which creates the opportunity for some optimization. Instead of always

merging runs of only one level together, the optimal strategy is to merge as many runs as possible using the smal-

lest run files available. The only exception is the fan-in of the first merge, which is determined to ensure that all

subsequent merges will use the full fan-in F .

Let us explain this idea with the example shown in Figure 6a. Consider a sort with a maximal fan-in F = 10

and an input file that requires W = 12 initial runs. Instead of merging only runs of the same level as shown in Fig-

ure 6a, merging is delayed until the end of the input has been reached. In the first merge step, only 3 of the 12 runs

are combined and the result is then merged with the other 9 runs, as shown in Figure 6b. The I/O cost (measured

by the number of memory loads that must be written to disk to any of the runs created) for the first strategy is

12 + 10 + 2 = 24, while for the second strategy it is 12 + 3 = 15, meaning that the first strategy requires 60% more

I/O to temporary files than the second one. The general rule is to merge just the right number of runs after the end

of the input file has been reached, and to always merge the smallest runs available for merging. More detailed

examples are given in [105]. One consequence of this optimization is that the merge depth L , i.e., the number of

runs files a record is written to during the sort or the number of times is written and read from disk, is not uniform

for all records. Therefore, it makes sense to calculate an average merge depth (as required in cost estimation dur-

ing query optimization), which may be a fraction.

Fourth, since some operations require multiple sorted inputs, for example merge-join (to be discussed in the

section on matching) and sort output can be passed directly from the final merge into the next operation (as is

natural when using iterators), memory must be divided among multiple final merges. Thus, the final fan-in f and

Figure 6. Naive Merging.

Figure 6. Optimized Merging.
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the "normal" fan-in F should be specified separately in an actual sort implementation. Using a final fan-in of 1

also allows the sort operator to produce output into a very slow operator, e.g., a display operator that allows scrol-

ling by a human user, without occupying a lot of buffer memory for merging input runs over an extended period of

time.

Considering the last two optimization options for merging, the following formula determines the fan-in of

the first merge. Each merge with normal fan-in F will reduce the number of run files by F − 1 (removing F runs,

creating one new one), and the goal is to reduce the number of runs from W to f and then to 1 (the final output).

Thus, the first merge should reduce the number of runs to f + k (F − 1) for some integer k . In other words, the

first merge should use a fan-in of F 0 = ((W − f − 1) mod (F − 1)) + 2. In the example of Figure 6a and Figure 6b,

(12 − 10 − 1) mod (10 − 1) + 2 results in a fan-in for the initial merge of F 0 = 3. If the sort of Figure 6b were the

input into a merge-join and a final fan-in of 5 were desired, the initial merge should proceed with a fan-in of

F 0 = (12 − 5 − 1) mod (10 − 1) + 2 = 8.

If multiple sort operations produce input data for a common consumer operator, e.g., a merge-join, the two

final fan-ins should be set proportionally to the size of the two inputs. For example, if two merge-join inputs are 1

MB and 9 MB, and 20 clusters are available for inputs into the two final merges, 2 clusters should be allocated for

the first and 18 clusters for the second input (1 / 9 = 2 / 18).

Sorting is sometimes criticized because it requires, unlike hybrid hashing (discussed in the next subsection),

that the entire input be written to run files and then retrieved for merging. This difference has a particularly large

effect for files only slightly larger than memory, e.g., 11⁄4 times the size of memory. In hybrid hashing, only

slightly more than 1⁄4 of the memory size must be written to temporary files on disk while the remainder of the file

remains in memory. In sorting, the entire file (11⁄4 memory sizes) is written to one or two run files and then read

for merging. Thus, sorting seems to require five times more I/O for temporary files than hybrid hashing. However,

this is not necessarily true. The simple trick is to write initial runs in decreasing (reverse) order. When the input is

exhausted and merging in increasing order commences, buffer memory is still full of useful pages with small sort

keys that can be merged immediately without I/O and that never have to be written to disk.

To demonstrate the effect of cluster size optimizations (the second of the four merging issues discussed

above), we sorted 100,000 100-byte records, about 10 MB, with the Volcano query processing system, which

includes all merge optimizations described above with the exception of read-ahead and forecasting.4 We used a

sort space of forty pages (160 KB) within a fifty-page (200 KB) I/O buffer, varying the cluster size from one page

(4 KB) to fifteen pages (60 KB). The initial run size was 1,600 records, for a total of 63 initial runs. We counted

the number of I/O operations and the transferred pages for all run files, and calculated the total I/O cost by charg-

ing 25 ms per I/O operation (for seek and rotational latency) and 2 ms for each transferred page (assuming 2

MB/sec transfer rate). As can be seen in Table 2 and Figure 7, there is an optimal cluster size with minimal I/O

cost. It is clearly suboptimal to always choose the smallest cluster size (one page) to obtain the largest fan-in and

fewest merge levels. Furthermore, it seems that the range of cluster sizes that result in near-optimal total I/O costs

is fairly large; thus, it is not as important to determine the exact value as it is to use a cluster size "in the right ball

park." The optimal fan-in is typically fairly small; however, it is not e or 3 as derived by Bratbergsengen under

the (unrealistic) assumption that the cost of an I/O operation is independent of the amount of data being transferred

[41].���������������������������������������������������������
4 This experiment has been reported before in [105].

Query Evaluation Survey 14 Draft of Friday, June 5, 1992, 16:32



���������������������������������������������������������������������������������������������������������������������������
Cluster Average Disk Pages Total I/O

Size
Fan-in

Depth Operations Transferred Cost
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1 40 1.376 6874 6874 185.598
2 20 1.728 4298 8596 124.642
3 13 1.872 3176 9528 98.456
4 10 1.936 2406 9624 79.398
5 8 2.000 1984 9920 69.440
6 6 2.520 2132 12792 78.884
7 5 2.760 1980 13860 77.220
8 5 2.760 1718 13744 70.438
9 4 3.000 1732 15588 74.476

10 4 3.000 1490 14900 67.050
11 3 3.856 1798 19778 84.506
12 3 3.856 1686 20232 82.614
13 3 3.856 1628 21164 83.028
14 2 5.984 2182 30548 115.646
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Table 2. Effect of Cluster Size Optimizations.
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Figure 7. Effect of Cluster Size Optimizations.

2.2. Hashing

For many matching tasks, hashing is an alternative to sorting. In general, when equality matching is

required, hashing should be considered because the expected complexity of set algorithms based on hashing is

O (N ) rather than O (N log N ) as for sorting. Of course, this makes intuitive sense if hashing is viewed as radix

sorting on a virtual key [167].

Hash-based query processing algorithms use an in-memory hash table of database objects to perform their

matching task. If the entire hash table (including all records or items) fits into memory, hash-based query process-

ing algorithms are very easy to design, understand, and implement, and outperform sort-based alternatives. Note

that for binary matching operations, such as join or intersection, only one of the two inputs must fit into memory.

However, if the required hash table (i.e., the input into the hash-based query processing algorithm) is larger than
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memory, hash table overflow occurs and must be dealt with.

There are basically two methods for managing hash table overflow, namely avoidance and resolution. In

either case, the input is divided into multiple partition files such that partitions can be processed independently

from one another and the concatenation of the results of all partitions is the result of the entire operation. Partition-

ing should ensure that the partitioning files are of roughly even size, and can be done using either hash-partitioning

or range-partitioning, i.e., based on keys estimated to be quantiles. Usually, partition files can be processed using

the original hash-based algorithm. The maximal partitioning fan-out F , i.e., number of partition files created, is

determined by the memory size M divided over the cluster size C minus one cluster for the partitioning input, i.e.,

F = � M / C − 1 	 , just like the fan-in for sorting.

In hash table overflow avoidance, the input set is partitioned into F partition files before any in-memory

hash table is built. If it turns out that fewer partitions than have been created would have been sufficient to obtain

partition files that will fit into memory, bucket tuning (collapsing multiple small buckets into larger ones) and

dynamic destaging (determining which buckets should stay in memory) can improve the performance of hash-

based operations [164, 194].

Algorithms based on hash table overflow resolution start with the assumption that overflow will not occur,

but resort to basically the same set of mechanisms as hash table overflow avoidance once it does occur. No real

system uses this naive hash table overflow resolution because so-called hybrid hashing is as efficient but more

flexible. Hybrid hashing combines in-memory hashing and overflow resolution [70, 244]5. Hybrid hash algo-

rithms start out with the (optimistic) premise that no overflow will occur; if it does, however, they partition the

Hash
Directory

Hash Buckets
in Memory

Partition
Files

On Disk

Figure 8. Hybrid Hashing.

���������������������������������������������������������
5 Although invented for relational join and known as hybrid hash join, hybrid hashing is equally applicable to

all hash-based query processing algorithms.
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input into multiple partitions of which only one is written immediately to temporary files on disk. The other F − 1

partitions remain in memory. If another overflow occurs, another partition is written to disk. If necessary, all F

partitions are written to disk. Thus, hybrid hash algorithms use all available memory for in-memory processing,

but at the same time are able to process large input files by overflow resolution. Figure 8 shows the idea of hybrid

hash algorithms. As many hash buckets as possible are kept in memory, e.g., as linked lists as indicated by solid

arrows. The other hash buckets are spooled to temporary disk files, called the overflow or partition files, and are

processed in later stages of the algorithm. Hybrid hashing is useful if the input size R is larger than the memory

size M but smaller than the memory size multiplied by the fan-out F , i.e., M < R ≤ F × M .

In order to predict the number of I/O operations (which actually is not necessary for execution because the

algorithm adapts to its input size but may be desirable for cost estimation during query optimization), the number

of required partition files on disk must be determined. Call this number K , which must satisfy 0 ≤ K ≤ F .

Presuming that the assignment of buckets to partitions is optimal and each partition file is equal to the memory size

M , the amount of data that may be written to K partition files is equal to K × M . The number of required I/O

buffers is 1 for the input and K for the output partitions, leaving M − (K + 1) × C memory for the hash table. The

optimal K for a given input size R is the minimal K for which K × M + (M − (K + 1) × C ) ≥ R . Solving this ine-

quality and taking the smallest such K results in K = � (R − M + C ) / (M − C ) � . The minimal possible I/O cost,

including a factor of 2 for writing and reading the partition files and measured in the amount of data that must be

written or read, is 2 × (R − (M − (K + 1) × C )). To determine the I/O time, this amount must be divided by the

cluster size and multiplied with the I/O time for one cluster.

For example, consider an input of R = 240 pages, a memory of M = 80 pages, and a cluster size of C = 8

pages. The maximal fan-out is F = � 80 / 8 − 1 	 = 9. The number of partition files that need to be created on disk

is K = � (240 − 80 + 8) / (80 − 8) � = 3. In other words, in the best case, K × C = 3 × 8 = 24 pages will be used as

output buffers to write K = 3 partition files of no more than M = 80 pages, and M − (K + 1) × C = 80 − 4 × 8 = 48

pages of memory will be used as hash table. The total amount of data written to and read from disk is

2 × (240 − (80 − 4 × 8)) = 384 pages. If writing or reading a cluster of C = 8 pages takes 40 msec, the total I/O

time is 384 / 8 × 40 = 1.92 sec.

In the calculation of K , we assumed an optimal assignment of hash buckets to partition files. If buckets were

assigned in the most straightforward way, e.g., by dividing the hash directory into F equal-size regions and assign-

ing the buckets of one region to a partition as indicated in Figure 8, all partitions were of nearly the same size and

either all or none of them will fit into their output cluster and therefore into memory. In other words, once hash

table overflow occurred, all input were written to partition files. Thus, we presumed in the earlier calculations that

hash buckets were assigned more intelligently to output partitions.

There are three ways to assign hash buckets to partitions. First, each time the hash table overflow occurs, a

fixed number of hash buckets is assigned to a new output partition. In the Gamma database machine, the number

of disk partitions is chosen "such that each bucket6 can be reasonably be expected to fit in memory" [71], e.g., 10%

of the hash buckets in the hash directory for a fan-out of 10 [233]. In other words, the fan-out is set a priori by the

query optimizer based on the expected (estimated) input size. Since the page size in Gamma is relatively small,

only a fraction of memory is needed for output buffers, and an in-memory hash table can be used even while out-

put partitions are being written to disk. Second, in bucket tuning and dynamic destaging [164, 194], a large���������������������������������������������������������
6 Bucket in [71] means what is called an output partition in this survey.
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number of small partition files is created and then collapsed into fewer partition files no larger than memory. In

order to obtain a large number of partition files and, at the same time, retain some memory for a hash table, the

cluster size is set quite small, e.g. C = 1 page, and the fan-out is very large though not maximal, e.g.,

F = M / C / 2. In the example above, F = 40 output partitions with an average size of R / F = 6 pages could be

created, even though only K = 3 output partitions are required. The smallest partitions are assigned to fill an in-

memory hash table of size M − K × C = 80 − 3 × 1 = 77 pages. Hopefully, the dynamic destaging rule — when an

overflow occurs, assign the largest partition still in memory to disk — ensures that indeed the smallest partitions

are retained in memory. The partitions assigned to disk are collapsed into K = 3 partitions of no more than M = 80

pages, to be processed in K = 3 subsequent phases. In binary operations such as intersection and relational join,

bucket tuning is quite effective for skew in the first input, i.e., if the hash value distribution is non-uniform and the

partition files are of uneven sizes. It avoids spooling parts of the second (typically larger) input to temporary parti-

tion files because the partitions in memory can be matched immediately using a hash table in the memory not

required as output buffer and because a number of small partitions have been collapsed into fewer, larger parti-

tions, increasing the memory available for the hash table. For skew in the second input, bucket tuning and

dynamic destaging has no advantage. Another disadvantage of bucket tuning and dynamic destaging is that the

cluster size has to be relatively small, thus requiring a large number of I/O operations with disk seeks and rota-

tional latencies to write data to the overflow files. Third, statistics gathered before hybrid hashing commences can

be used to assign hash buckets to partitions [110].

Unfortunately, it is possible that one or more partition files are larger than memory. In that case, partitioning

is used recursively until the file sizes have shrunk to memory size. Figure 9 shows how a hash-based algorithm for

a unary operation such as aggregation or duplicate removal partitions its input file over multiple recursion levels.

The recursion terminates when the files fit into memory. In the deepest recursion level, hybrid hashing may be

employed.

If the partitioning (hash) function is good and creates a uniform hash value distribution, the file size in each

recursion level shrinks by a factor equal to the fan-out, and therefore the number of recursion levels L is loga-

rithmic with the size of the input being partitioned. After L partitioning levels, each partition file is of size

Figure 9. Recursive Partitioning.
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R ′ = R / F L . In order to obtain partition files suitable for hybrid hashing (with M < R ′ ≤ F × M ), the number of

full recursion levels L , i.e., levels at which hybrid hashing is not applied, is L =


� logF (R / M )



	 . The I/O cost of

the remaining step using hybrid hashing can be estimated using the hybrid hash formula above with R replaced by

R ′ and multiplying the cost with F L because hybrid hashing is used for this number of partition files. Thus, the

total I/O cost for partitioning an input and using hybrid hashing in the deepest recursion level is

2 × R × L + 2 × F L ×
�

R ′ − (M − K × C )

��

= 2 ×
�

R × (L + 1) − F L × (M − K × C )

��

= 2 ×
�

R × (L + 1) − F L ×
�

M − � (R ′ − M ) / (M − C ) � × C

�� ��
.

A major problem with hash-based algorithms is that their performance depends on the quality of the hash

function. In many situations, fairly simple hash functions will perform reasonably well. Remember that the pur-

pose of using hash-based algorithms usually is to find database items with a specific key or to bring like items

together; thus, methods as simple as using the value of a join key as hash value will frequently perform satisfac-

torily. For string values, good hash values can be determined by using binary exclusive "or" operations or by

determining cyclic redundancy check (CRC) values as used for reliable data storage and transmission. If the qual-

ity of the hash function is a potential problem, universal hash functions should be considered [46].

If the partitioning is skewed, the recursion depth may be unexpectedly high, making the algorithm rather

slow. This is analogous to the worst-case performance of quicksort, O (N 2) comparisons for an array of N items, if

the partitioning pivots are chosen extremely poorly and do not divide arrays into nearly equal subarrays.

Skew is the major danger for inferior performance of hash-based query processing algorithms. There are

several ways to deal with skew. For hash-based algorithms using overflow avoidance, bucket tuning and dynamic

destaging are quite effective. Another method is to obtain statistical information about hash values and to use it to

carefully assign hash buckets to partitions. Such statistical information can be kept in the form of histograms, and

can either come from permanent system catalogs (meta-data), from sampling the input, or from previous recursion

levels. For example, for an intermediate query processing result for which no statistical parameters are known a

priori, the first partitioning level might have to proceed naively pretending that the partitioning hash function is

perfect, but the second recursion and further levels should be able to use statistics gathered in earlier levels to

ensure that each partitioning step creates even partitions, i.e., that the data is partitioned with maximal effective-

ness [42]. As a final resort, if skew cannot be managed otherwise or if not distribution skew but duplicates are the

problem, some systems resort to algorithms that are not affected by data or hash value skew. For example,

Tandem’s hash join algorithm resorts to nested loops join (to be discussed later) [298].

As for sorting, larger cluster sizes result in faster I/O at the expense of smaller fan-outs, with the optimal

fan-out being fairly small [112]. Thus, multiple recursion levels are not uncommon for large files, and statistics

gathered on one level to limit skew effects on the next level are a realistic method for large files to control the per-

formance penalties of uneven partitioning.
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3. Disk Access

All query evaluation systems have to access base data stored in the database. For databases in the megabyte

to terabyte range, base data are typically stored on secondary storage in form of rotating random-access disks.

However, deeper storage hierarchies including optical storage, (maybe robot-operated) tape archives, and remote

storage servers will also have to be considered in future high-functionality high-volume database management sys-

tems, e.g., as outlined by Stonebraker [272]. Research into database systems supporting and exploiting a deep

storage hierarchy is still in its infancy.

3.1. File Scans

The first operator to access base data is the file scan, typically combined with a built-in selection facility.

There is not much to be said about file scan except that it can be made very fast using read-ahead, particularly

large-chunk (e.g., "track-at-a-crack") read-ahead. Efficient read-ahead requires contiguous file allocation, which is

supported by many operating systems. Such contiguous disk regions are frequently called extents. The UNIX

operating system does not provide contiguous files, and many database systems running on UNIX use "raw" dev-

ices instead, even though this means that the database management system must provide operating system func-

tionality such as file structures, disk space allocation, and buffering.

The disadvantages of large units of I/O are buffer fragmentation and the waste of I/O and bus bandwidth if

only individual records are required. Permitting different page sizes may seem to be a good idea, even at the added

complexity in the buffer manager [43, 251], but this does not solve the problem of mixed sequential scans and ran-

dom record accesses within one file. The common solution is to choose a middle-of-the-road page size, e.g., 8 KB,

and to support multi-page read-ahead.

3.2. Associative Access using Indices

In order to reduce the number of accesses to secondary storage (which is relatively slow compared to main

memory), most database systems employ associative search techniques in the form of indices that map key or attri-

bute values to locator information with which database objects can be retrieved. The best-known and most-often

used database index structure is the B-tree [14, 64]. A large number of extensions to the basic structure and its

algorithms have been proposed, e.g., B+-trees for faster scans, for fast loading from a sorted file, increased fan-out

and reduced depth by prefix and suffix truncation, B*-trees for better space utilization in random insertions, and

top-down B-trees for better locking behavior through preventive maintenance [119]. Interestingly, B-trees seem to

be having a renaissance as a research subject, in particular with respect to improved space utilization [8], con-

currency control [258], recovery [176], parallelism [236], and on-line creation of B-trees for very large databases

[259, 260]. On-line reorganization and modification of storage structures, though not a new idea [200], is likely to

become an important research topic within database research over the next few years as databases become larger

and larger and are spread over many disks and nodes in parallel and distributed systems.

While most current database system implementations only use some form of B-trees, there is an amazing

variety of index structures described in the literature, e.g., [16, 18, 118, 121-123, 133, 143-145, 149, 156, 168, 171,

172, 181, 197, 215, 230, 253]. One of the few multi-dimensional index structures actually implemented in a com-

plete database management system are R-trees in Postgres [123, 270].

The large variety of index types can be described by the following six characteristics. First, does the index

support range retrievals and ordered scans, or only exact-match equality lookups? This issue is the main difference
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between sort-based indices such as B-trees and hash-based indices. Indices that support ordered key domains tend

to have logarithmic insertion, deletion, and search costs, while index and storage structures based on hashing typi-

cally have constant average maintenance complexity.

Second, is the index structure static (e.g., ISAM) or dynamic (e.g., B-tree)? In other words, either the index

structure allocates a fixed number of "buckets" when it is first created and resorts to overflow pages if buckets can-

not hold all data items that logically belong in them, or it reorganizes itself incrementally as items are inserted and

deleted.

Third, an index structure can be programmed to permit only single-attribute search or it can support multiple

attributes in a hierarchical fashion. Such index implementations supporting composite keys, e.g., last name and

first name, are still single-dimensional indices because the components of the composite key are ordered hierarchi-

cally into a major and a minor key. Note that this is an implementation detail; logically, multiple attributes are

concatenated into one search key.

Fourth, does the index support only single-dimensional data or also data representing multiple dimensions?

True multi-dimensional indices support all dimensions as equals, for example the x- and y-axes in a geometric

application. Figure 10 shows a node in a quadtree [17, 230, 281], the simplest multi-dimensional index structure.

The region represented by this node is divided along both dimensions, and each of the four subregions is

represented by its own node.

The use of multi-dimensional indices for record-keeping applications has been largely ignored, despite their

effectiveness for conjunctive queries. Consider a search for employees within both a certain age and salary range,

e.g., 20 ≤ employee.age ≤ 30 and 60 ≤ employee.salary ≤ 70. In a system with single-dimensional indices only,

either only one index can be utilized or two pointer lists must be intersected. Using only one index results in more

data accesses since all employee records satisfying one clause must be inspected to evaluate the other clause.

Intersection of two lists (or sets) can be quite expensive as will be seen in the subsequent section on binary match-

ing, which includes relational join and set intersection. A two-dimensional index, on the other hand, permits more

direct access to only the required employees because it supports both restriction clauses simultaneously. Presum-

ing that the two dimensions represent age and salary, the relevant search region is shaded in Figure 10. It is clear
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Figure 10. A Node in a Quadtree.
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from the figure that more than one pointer from one node may need to be followed for some range queries, possi-

bly at each index level. However, a multi-dimensional index promises to be still faster for large data sets than any

method using single-dimensional indices. Of course, multi-dimensional indices can also be used for disjunctive

queries, although their performance advantage is not as obvious for disjunctive as for conjunctive queries.

Fifth, do the indices support point data or range data? Range data have two data points in each dimension;

the standard example is the case of two-dimensional rectangles. One method to support N -dimensional range data

is to use an index structure for point data in 2 × N dimensions. For example, the region shaded in Figure 10 could

be represented in a four-dimensional index for point data as x 1 = 20, x 2 = 30, x 3 = 60, and x 4 = 70. One of the

problems with this solution is that pairs of dimensions (the start and end value in the original dimensions) will

likely be correlated, and the data structure may or may not include space- and search-efficient balancing mechan-

isms.

Sixth, most index implementations can be switched to accept or reject duplicate keys. Thus, indices are used

to enforce the uniqueness constraint for identifying keys in database systems.

Finally, storage structures typically thought of as index structures may be used as primary structures to store

actual data or as redundant structure ("access paths") that do not contain actual data but pointers to the actual data

items in a separate data file. For example, Tandem’s NonStop SQL system uses B-trees for actual data as well as

for redundant index structures. In this case, a redundant index structure contains not absolute locations of the data

items but keys used to search the primary B-tree. If indices are redundant structures, they can still be used to clus-

ter the actual data items, i.e., the order or organization of index entries determines the order of items in the data

file. Such indices are called clustering indices; other indices are called non-clustering indices. Clustering indices

do not necessarily contain an entry for each data item in the primary file, but only one entry for each page of the

primary file; in this case, the index is called sparse. Non-clustering indices must always be dense, i.e., there are the

same number of entries in the index as there are items in the primary file.

The common theme for all index structures is that they associatively map some attribute of a data object to

some locator information that can then be used to retrieve the actual data object. Typically, in relational systems,

an attribute value is mapped to a tuple or record identifier (TID or RID). Different systems use different

approaches, but it seems that most new designs do not firmly attach the record lookup to the index scan.

There are several advantages to separating index scan and record lookup. First, it is possible to scan the

index only. For example, if only salary values are needed (e.g., to determine the count or sum of all salaries), it is

sufficient to access the salary index only without actually retrieving the data records. The advantages are that (i)

fewer I/O’s are required (consider the number of I/O’s for retrieving N successive index entries and those to

retrieve N index entries plus N full records, in particular if the index is non-clustering [185], and (ii) the remaining

I/O operations are basically sequential along the leaves of the index (at least for a B+-tree; other index types

behave differently). The optimizers of several commercial relational products have recently been revised to recog-

nize situations in which an index-only scan is sufficient. Second, if two or more indices can be used for a query, it

may be more effective to union or intersect two RID lists obtained from two index scans than using only one index

(algorithms for union and intersection are discussed below as join algorithms in the section on binary matching).

Third, for non-clustering indices, sets of RID’s can be sorted by physical location and the records retrieved very

efficiently, reducing substantially the number of disk seeks and their seek distances. Obviously, the second and

third advantages can be combined.

Query Evaluation Survey 22 Draft of Friday, June 5, 1992, 16:32



Record access performance for non-clustering indices can also be addressed without performing the entire

index scan first (as required if all RID’s are to be sorted) by using a "window" of RID’s. Instead of obtaining one

RID from the index scan, retrieving the record, getting the next RID from the index scan, etc., the lookup operator

(sometimes called "functional join") could load N RID’s, sort them into a priority heap, retrieve the most con-

veniently located record, get another RID, insert it into the heap, retrieve a record, etc. Thus, a functional join

operator using a window always has N open references to items that must be retrieved, giving the functional join

operator significant freedom to fetch items from disk efficiently. Of course, this technique works most effectively

if no other transactions or operators use the same disk drive at the same time.

This idea has been generalized to assemble complex objects. In object-oriented systems, objects can contain

pointers to (identifiers of) other objects or components, which in turn may contain further pointers, etc. If multiple

objects and all their unresolved references can be considered concurrently when scheduling disk accesses,

significant savings in disk seek times can be achieved [154].

3.3. Faster Storage Devices

Both for file scans and for index retrieval, the raw performance of the underlying storage (disk) system is

crucial. Numerous ideas for faster disk access have been proposed, including RAM disks, i.e., simulation of disk

drives using semi-conductor memory, and improvements in disk hardware speed, including physically smaller

disks for faster seeks, faster disk rotation for shorter rotational latencies, and improved channel transfer rates.

Other commonly used techniques are dual- or even quadruple-ported memory for concurrent transfer to or from

multiple disks and processors, multiple paths from disks arms to I/O channels, and the insertion of RAM caches at

various points in the data staging hierarchy, e.g., the disk controller or the drive. Write-only disk caches are an

interesting proposal for cache use because most disk writes can be delayed in safe RAM and later piggy-backed

transparently onto disk reads to the right cylinder or track, thus giving the illusion of instantaneous writes [257].

Recently, the idea of using multiple disk devices as a single, more powerful device has received considerable

attention, and is now commonly known as Redundant Array of Inexpensive Disks (RAID) [209], although essen-

tially the same idea had been proposed earlier as disk striping [226]. Put simply, by distributing the data and

blocks of a file over multiple disk devices, higher transfer rates can be achieved. Furthermore, by using controlled

redundancy, the mean time to failure as well as the mean time to repair can be improved substantially [30, 53, 65,

91, 97]. The idea can be further generalized from multiple disks to multiple nodes in a distributed system [269].

One problem with all disk array designs is ensuring proper placement of data on the disks to obtain the

benefits of parallel I/O without incurring the additional overhead of controlling multiple devices for relatively sim-

ple and small requests [266, 267, 286]. Furthermore, RAID disk controller prohibit accessing the individual disks

in a disk array separately, although it could be very useful for database query processing, in particular while merg-

ing multiple sorted runs or while partitioning large files. In sort- and hash-based query processing algorithms,

access to individual disk drives could guarantee sequential I/O for temporary files including the merge input and

partitioning output. Without solving these problems, it will be difficult to maximize disk array benefits; nonethe-

less, several vendors are making disk arrays commercially available, including the implementation of RAID con-

trol logic within device controllers to permit replacing a disk drive by a disk array.

While RAID-style disk arrays provide increased capacity, reliability, availability, and bandwidth for per-

manent data, they might not be the optimal I/O architecture for temporary data. The first reason is that writing par-

ity blocks will be unnecessary (if a disk fails, most probably the entire transaction will abort) and reduce
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processing performance (two writes instead of one). Second, important operations using multiple temporary files

might not make optimal use of multiple disk drives if they are controlled as a single unit in a disk array. Consider

sorting7 a very large file using a disk array, with each run file striped across all disk drives. Merging is faster using

a disk array than using a single disk because many disk arms perform the required number of disk seeks. If each

merge input file were stored contiguously on its own disk, however, merging could proceed without any disk seeks

at all. Recall that our earlier discussion on cluster size and fan-in justifies and even recommends fairly small fan-

ins; therefore, a modest disk array will permit one input file per disk. Thus, for run files in a sort operation, disk

striping as built into disk array controllers is not optimal. It would be desirable if disk array controllers provided

disk striping and parity blocks for permanent files but at the same time permitted sophisticated application software

such as database management systems to set their own disk space allocation strategies. Current disk array controll-

ers are examples of useful mechanisms packaged with fixed strategies deplored in all papers on the interface

between operating systems and database systems, e.g. [263]. Space allocation for temporary files on multiple disk

drives for sorting and partitioning in database query processing is an interesting issue that is not completely

resolved at this time.

3.4. Buffer Management

I/O cost can be further reduced by caching data in an I/O buffer. A large number of buffer management

techniques have been devised; we point out only a few references. Effelsberg surveys many of the buffer manage-

ment issues, including those pertaining to issues of recovery, e.g., write-ahead logging [80]. In his survey paper on

the interactions of operating systems and database management systems, Stonebraker pointed out that the "stan-

dard" buffer replacement policy, LRU (least recently used), is wrong for many database situations [263]. For

example, a file scan reads a large set of pages but uses them only once, "sweeping" the buffer clean of all other

pages, even if they might be useful in the future and should be kept in memory. Sacco and Schkolnick focused on

the non-linear performance effects of buffer allocation to many relational algorithms, e.g., nested loops join [223,

224]. Chou and DeWitt combined these two ideas in their DBMIN algorithm which allocates a fixed number of

buffer pages to each scan, depending on its needs, and uses a local replacement policy for each scan appropriate to

its reference pattern [59, 60]. A recent study into buffer allocation is the study by Faloutsos et al. on using margi-

nal gain for buffer allocation [85, 198]. A very promising research direction for buffer management in object-

oriented database systems is the work by Palmer and Zdonik on saving reference patterns and using them to predict

future object faults and to prevent them by prefetching the required pages [208].

The interactions of index retrieval and buffer management were studied by Sacco as well as Mackert and

Lohman [185, 225], while several authors studied database buffer management and virtual memory provided by

the operating system, e.g., [249, 263, 278].

���������������������������������������������������������
7 For hash-based query processing algorithms, the same concern about disk arrays applies because merging

and partitioning are quite similar, as discussed later in the section on the duality of sorting and hashing.
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3.5. Physical Database Design

In order to minimize the I/O costs in a database system, it is important that (a) the data structures on disk

permit efficient retrieval of only relevant data through effective access paths, and (b) data be arranged and placed

on disk such that the I/O cost for relevant data is minimized. Both of these concerns are addressed in physical

database design. Because physical database design is a wide area in which there are many studies on individual

techniques but no comprehensive set of rules or guidelines on how to consider all of them in combination, we only

list a number of choices to be made in physical database design and a few selected references:

(1) index selection, i.e., indexed attributes and index structure, e.g. [118, 129, 156],

(2) clustering, i.e., assignment of data items such as records to disk locations, e.g. [50, 56, 95, 132, 202, 255],

(3) declustering (striping) over multiple disks or nodes [116, 209, 226, 269, 286],

(4) replication for reliability and performance, e.g. [30, 65, 139, 209],

(5) physical representation types for abstract data types,

(6) management of derived information, e.g. [34, 142, 151, 211, 220, 277],

(7) physical pointers to represent relationships, e.g. [44, 52, 216, 248],

(8) data compression, e.g. [66, 106, 148, 179, 184, 199],

(9) assignment of data to deeper archival storage levels, e.g. [272], and

(10) automatic staging (rules) of data between storage levels, e.g. [96, 208].

It is important to recognize that most of these choices exist independently of the data model. For example,

replication has beneficial availability and performance effects in network, relational, semantic, and object-oriented

databases alike. On the other hand, clustering might have more effect in systems with logical or physical refer-

ences, i.e., network and object-oriented databases, but master-detail clustering is used in relational system as well

and is particularly effective in conjunction with index and pointer joins (to be discussed later in the section on

binary matching). Thus, extensible database systems designed to build high-performance database systems must

allow for a wide array of physical database design options.

While the number of choices for physical database design is confusing, the most significant source of com-

plexity in physical database design is that many decisions are interdependent. For example, the optimal clustering

of data items depends on whether or not replication of data items is supported. For example, when the clustering

module cannot decide among two advantageous locations for a data item, it might choose to place a copy in each

location. Replication can increase system performance by giving the optimizer or retrieval algorithm the choice of

which copy to use; however, it must not be used too freely since it can also decrease overall performance if the

cost of updating and maintaining multiple copies dominates their benefits [32, 142]. Moreover, the performance

effects of replication are different depending on whether or not replicas of collections are declustered over multiple

storage media as wholes or by means of partitioning, and whether or not the replicas are clustered equally. There

is only limited research into making physical database design easier, e.g., [87, 152]. Considering the complexity of

physical database design, automating physical database design in a comprehensive and extensible way seems to be

an extremely fruitful area for database research, in particular in light of the added choices and complexity faced by

the database implementor and administrator in extensible and object-oriented database management systems.
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4. Aggregation and Duplicate Removal

Aggregation is a very important statistical concept to summarize information about large amounts of data.

The idea is to represent a set of items by a single value or to classify items into groups and determine one value per

group. Most database systems support aggregate functions for minimum, maximum, sum, count, and average

(arithmetic mean). Other aggregates, e.g., geometric mean or standard deviation, are typically not provided, but

may be constructed in some systems with extensibility features. Aggregation has been added to relational calculus

and algebra and adds the same expressive power to each of them [166].

Aggregation is typically supported in two forms, called scalar aggregates and aggregate functions [82].

Scalar aggregates calculate a single scalar value from a unary input relation, e.g., the sum of the salaries of all

employees. Scalar aggregates can easily be determined using a single pass over a data set. Some systems exploit

indices, in particular for minimum, maximum, and count.

Aggregate functions, on the other hand, determine a set of values from a binary input relation, e.g., the sum

of salaries for each department. Aggregate functions are relational operators, i.e., they consume and produce rela-

tions. Figure 11 shows the output of the query "count of employees by department." The "by-list" or grouping

attributes are the key of the new relation, the Department attribute in this example.

Algorithms for aggregate functions require grouping, e.g., employee items may be grouped by department,

and then one output item is calculated per group. This grouping process is very similar to duplicate removal in

which equal data items must be brought together, compared, and removed. Thus, aggregate functions and dupli-

cate removal are always implemented by the same module. There are only two differences between aggregate

functions and duplicate removal. First, in duplicate removal, items are compared on all their attributes, but only on

the attributes in the by-list of aggregate functions. Second, an identical item is immediately dropped from further

consideration in duplicate removal whereas in aggregate functions some computation is performed before the

second item of the same group is dropped. Both differences can easily be dealt with using a switch in an actual

algorithm implementation. Because of their similarity, duplicate removal and aggregation are described and used

interchangeably here.

In most existing commercial relational systems, aggregation and duplicate removal algorithms are based on

sorting, following Epstein’s work [82]. Since aggregation requires that all data be consumed before any output can

be produced, and since main memories were significantly smaller 15 years ago when the prototypes of these sys-

tems were designed, these implementations used temporary files for output, not streams and iterator algorithms.

However, there is no reason why aggregation and duplicate removal cannot be implemented using iterators.

� �������������������������������������
Department Count� �������������������������������������
Toy 3
Shoe 9
Hardware 7� ���������������������������������������

��
�

��
��
�

Figure 11. Count of Employees by Department.
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4.1. Aggregation Algorithms Based on Sorting

There are basically two types of algorithms for duplicate removal, one based on sorting and one based on

hashing. Sorting will bring equal items together, and duplicate removal will then be easy. The cost of duplicate

removal is dominated by the sort cost, and the cost of this naive duplicate removal algorithm based on sorting can

be assumed to be that of the sort operation. For aggregation, items are sorted on their grouping attributes.

This simple method can be improved by detecting duplicate removal as possible, easily implemented in the

routines that write run files during sorting. With early duplicate removal, a run file can never contain more items

than the final output (because otherwise it would contain duplicates!), which may speed up the final merges

significantly [29].

Since aggregation implemented by sorting using replacement selection can perform aggregation of matching

items in the priority heap, it is only necessary that the output, not the input, fit into memory to make the entire sort

and aggregation operation proceed without I/O to temporary run files. A corresponding optimization for sort-based

aggregation using quicksort can be designed, but would be fairly cumbersome to implement.

As for any external sort operation, the optimizations discussed in the section on sorting, namely read-ahead

using forecasting, merge optimizations, large cluster sizes, and reduced final fan-in for binary consumer opera-

tions, are fully applicable when sorting is used for aggregation and duplicate removal. However, to limit the com-

plexity of the formulas, we derive I/O cost formulas without the effects of these optimizations.

The amount of I/O in sort-based aggregation is determined by the number of merge levels and the effect of

early aggregation on each merge step. The total number of merge levels is unaffected by aggregation; in sorting

with quicksort and without optimized merging, the number of merge levels is L = �
 logF (R / M ) ��
 for input size

R , memory size M , and fan-in F . In the first merge levels, the likelihood is negligible that items of the same

group end up in the same run file, and we therefore assume that the sizes of run files are unaffected until their sizes

would exceed the size of the final output. Runs on the first few merge levels are of size M × F i for level i , and

runs of the last levels have the same size as the final output. Assuming the output cardinality (number of items) is

G -times less than the input cardinality (G = R / O ), where G is called the average group size or the reduction fac-

tor, only the last �
 logF (G ) ��
 merge levels, including the final merge, are affected by early aggregation because in

earlier levels, more than G runs exist and items from each group are distributed over all those runs, giving a negli-

gible chance of early aggregation.

In the first merge levels, all input items participate, and the cost for these levels can be determined without

explicitly calculating the size and number of run files on these levels. In the affected levels, the size of the output

runs is constant, equal to the size of the final output O = R / G , while the number of run files decreases by a factor

equal to the fan-in F in each level. The number of affected levels that create run files is L 2 = �
 logF (G ) ��
 − 1; the

subtraction of 1 is necessary because the final merge does not create a run file but the output stream. The number

of unaffected levels is L 1 = L − L 2. The number of input runs is W / F l on level l (recall the number of initial

runs W = R / M from the discussion of sorting). The total cost, including a factor 2 for writing and reading, is8

2 × R × L 1 + 2 × O ×
l = L 1

Σ
L − 1

W /F l
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= 2 × R × L 1 + 2 × O × W ×
�

1 / F L 1 − 1 / F L

��
/

�
1 − 1 / F

��
.

For example, consider aggregating R = 100 MB input into O = 1 MB output (i.e., reduction factor G = 100)

using a system with M = 100 KB memory and fan-in F = 10. Since the input is W = 1,000 times the size of

memory, L = 3 merge levels will be needed. The last L 2 = logF (G ) − 1 = 1 merge level into temporary run files

will permit early aggregation. Thus, the total I/O will be

2 × 100 × 2 + 2 × 1 × 1000 ×
�

1 / 102 − 1 / 103

��
/

�
1 − 1 / 10

��

= 400 + 2 × 1000 × 0.009 / 0.9 = 420 MB

which has to be divided by the cluster size used and multiplied by the time to read or write a cluster to estimate the

I/O time for aggregation based on sorting. Naive separation of sorting and subsequent aggregation would have

required reading and writing the entire input file three times, for a total of 600 MB I/O. Thus, early aggregation

realizes a 30% savings in this case.

Aggregate queries may require that duplicates be removed from the input set to the aggregate functions, e.g.,

using the SQL distinct keyword. If such an aggregate function is to be executed using sorting, early aggregation

can be used only for the duplicate removal part. However, the sort order used for duplicate removal can be suit-

able to permit the subsequent aggregation as a simple filter operation on the duplicate removal’s output stream.

4.2. Aggregation Algorithms Based on Hashing

Hashing can also be used for aggregation by hashing on the grouping attributes. Items of the same group (or

duplicate items in duplicate removal) can be found and aggregated when inserting them into the hash table. Since

only output items, not input items, are kept in memory, hash table overflow occurs only if the output does not fit

into memory. However, if overflow does occur, the partition files (all partitioning files in any one recursion level)

will basically be as large as the entire input because once a partition is being written to disk, no further aggregation

can occur until the partition files are read back into memory.

The amount of I/O for hash-based aggregation depends on the number of partitioning (recursion) levels

required before the output (not the input) of one partition fits into memory. This will be the case when partition

files have been reduced to the size G × M . Since the partitioning files shrink by a factor of F at each level

(presuming hash value skew is absent or effectively counter-acted), the number of partitioning (recursion) levels is�
 logF (R / G / M ) ��
 = �
 logF (O / M ) ��
 for input size R , output size O , reduction factor G , and fan-out F . The

costs at each level are equal to the input file size R . The total I/O cost for hashing with overflow avoidance,

including a factor of 2 for writing and reading, is

2 × R × �
 logF (O / M ) ��
 .

The last partitioning level may use hybrid hashing, i.e., it may not involve I/O for the entire input file. In that

case, L =


� logF (O / M )



	 complete recursion levels involving all inputs records are required, partitioning the

input into files of size R ′ = R / F L . In each remaining hybrid hash aggregation, the size limit for overflow files is���������������������������������������������������������
8 Using
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M × G because such an overflow file can be aggregated in memory. The number of partition files K must satisfy

K × M × G + (M − K × C ) × G ≥ R ′, meaning K = � (R ′ / G − M ) / (M − C ) � partition files will be created.

The total I/O cost for hybrid hash aggregation is

2 × R × L + 2 × F L ×
�

R ′ − (M − K × C ) × G

��

= 2 ×
�

R × (L + 1) − F L × (M − K × C ) × G

��

= 2 ×
�

R × (L + 1) − F L ×
�

M − � (R ′ / G − M ) / (M − C ) � × C

��
× G

��
.

As for sorting, if an aggregate query requires that duplicates be removed from the input set to the aggregate

function, the group size or reduction factor of the duplicate removal step determines the performance of hybrid

hash duplicate removal. The subsequent aggregation can be performed as a simple filter operation on the duplicate

removal output stream.

4.3. A Rough Performance Comparison

It is interesting to note that the performance of both sort- and hash-based aggregation is logarithmic and

improves with increasing reduction factors. Figure 12 compares the performance of sort- and hash-based aggrega-

tion using the formulas developed above for 100 MB input data, 100 KB memory, clusters of 8 KB, fan-in or fan-

out of 10, and varying group sizes or reduction factors. The output size is the input size divided by the group size.

It is immediately obvious in Figure 12 that sorting without early aggregation is not competitive because it

does not limit the sizes of run files, confirming the results of Bitton and DeWitt [29]. The other algorithms all

exhibit similar, though far from equal, performance improvements for larger reduction factors. Sorting with early

aggregation improves once the reduction factor is large enough to affect not only the final but also previous merge
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Figure 12. Performance of Sort- and Hash-Based Aggregation.
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steps.

Hashing without hybrid hashing improves in steps as the number of partitioning levels can be reduced, with

"step" points where G = R / M / F i for some i . Hybrid hashing exploits all available memory to improve perfor-

mance, and generally outperforms overflow avoidance hashing. At points where overflow avoidance hashing

shows a step, hybrid hashing has no effect and the two hashing schemes have the same performance.

While hash-based aggregation and duplicate removal seem superior in this rough analytical performance

comparison, recall that the cost formula for sort-based aggregation does not include the effects of replacement

selection or the merge optimizations discussed earlier in the section on sorting; therefore, Figure 12 shows an

upper bound for the I/O cost of sort-based aggregation and duplicate removal. Furthermore, since the cost formula

for hashing presumes optimal assignments of hash buckets to output partitions, the real costs of sort- and hash-

based aggregation will be much more similar than they appear in Figure 12. The important point is that both their

costs are logarithmic with the input size, improve with the group size or reduction factor, and are quite similar

overall.

4.4. Additional Remarks on Aggregation

Some applications require multi-level aggregation. For example, a report generation language might permit

a request like "sum (employee.salary by employee.id by employee.department by employee.division)" to create a

report with an entry for each employee and a sum for each department and each division. In fact, specifying such

reports conveniently was the driving design goal for the report generation language RPG. In SQL, this requires

multiple cursors within an application program, one for each level of detail. This is very undesirable for two rea-

sons. First, the application program performs essentially a three-way join, which should be provided by the data-

base system. Second, the database system more likely than not executes the operations for these cursors indepen-

dently from one another, resulting in three sort operations on the employee file instead of one.

If complex reporting applications are to be supported, the query language should support direct requests

(perhaps similar to the syntax suggested above), and the sort operator should be implemented such that it can per-

form the entire operation in a single sort and final pass over the sorted data. An analogous algorithm based on

hashing can be defined; however, if the aggregated data are required in sort order, sort-based aggregation will be

the algorithm of choice.

For some applications, exact aggregate functions are not required; reasonably close approximations will do.

For example, exploratory (rather than final precise) data analysis is frequently very useful in "approaching" a new

set of data [280]. In real-time systems, precision and response time may be reasonable tradeoffs. For database

query optimization, approximate statistics are a sufficient basis for selectivity estimation, cost calculation, and

comparison of alternative plans. For these applications, faster algorithms can be designed that rely either on a sin-

gle sequential scan of the data (no run files, no overflow files) or on sampling [5, 135-137].
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5. Binary Matching Operations

While aggregation is essential for condensing information, there are a number of database operations that

combine information from two inputs, files, or sets and therefore are essential for database systems’ ability to pro-

vide more than reliable shared storage and to perform inferences, albeit limited. A group of operators that all do

basically the same task are called the one-to-one match operations here because an input item contributes to the

output depending on the its match with one other item. The most prominent among these operations is the rela-

tional join. Mishra and Eich have recently written a survey of join algorithms [191], which includes an interesting

analysis and comparison of algorithms based on the data items from the two inputs that are compared with one

another. The other one-to-one match operations are left and right semi-joins, left, right, and symmetric outer-joins,

anti-join, left and right anti-semi-join, intersection, union, left and right differences, and anti-difference. Figure 13

shows the basic principle underlying all these operations, namely separation of the matching and non-matching

components of two sets, called R and S in the figure, and production of appropriate subsets9, possibly after some

transformation and combination of records as in the case of a join. Since all these operations require basically the

same steps and can be implemented with the same algorithms, it is logical to implement them in one general and

efficient module. For simplicity, only join algorithms are discussed here. Moreover, we discuss algorithms for

only one join attribute since the algorithms for multi-attribute joins (and their performance) are not different from

those for single-attribute joins.

Since set operations such as intersection and difference will be used and must be implemented efficiently for

any data model, this discussion is relevant to relational, extensible, and object-oriented database systems alike.

R S

A B C

Output Match on all Match on some
Attributes Attributes���������������������������������������������������������������������������������������������

A Difference Anti-semi-join
B Intersection Join, semi-join
C Difference Anti-semi-join
A, B Left outer join
A, C Symmetric difference Anti-join
B, C Right outer join
A, B, C Union Symmetric outer join

Figure 13. Binary One-to-One Matching.

���������������������������������������������������������
9 If the sets R and S have different schemas as in relational joins, it might make sense to think of the set B as

two sets BR and BS , i.e., the matching elements from R and S . This distinction permits a clearer definition of left
semi-join and right semi-join, etc.
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Furthermore, binary matching problems occur in some surprising places. Consider an object-oriented database

system that uses a table to map logical object identifiers (OID’s) to physical locations (record identifiers or RID’s).

Resolving a set of OID’s to RID’s can be regarded (as well as optimized and executed) as a semi-join of the map-

ping table and the set of OID’s, and all conventional join strategies can be employed. Another example that can

occur in a database management system for any data model is the use of multiple indices in a query: the pointer

(OID or RID) lists obtained from the indices must be intersected (for a conjunction) or unioned (for a disjunction)

to obtain the list of pointers to items that satisfy the whole query. Moreover, the actual lookup of the items using

the pointer list can be regarded as a semi-join of the underlying data set and the list, as in Kooi’s thesis and the

Ingres product [169, 170] and a recent study by Shekita and Carey [248]. Finally, path expressions in object-

oriented database systems such as "employee.department.manager.office.location" can frequently be interpreted,

optimized, and executed as a sequence of one-to-one match operations using existing join and semi-join algo-

rithms. Thus, even if relational systems were completely abolished and replaced by object-oriented database sys-

tems, set matching and join techniques developed in the relational context would continue to be important for the

performance of database systems.

Most of today’s database systems use only nested loops join and merge-join because an analysis performed

in connection with the System R project determined that of all the join methods considered, one of these two

always provided either the best or very close to the best performance [35, 36]. However, the System R study did

not consider hash join algorithms, which are now regarded as more efficient in many cases.

For the I/O cost formulas given here, we assume that the left and right inputs have R and S pages, respec-

tively, and that the memory size is M pages. We assume that the algorithms are implemented as iterators, and omit

the cost of reading stored inputs and writing an operation’s output from the cost formulas because both inputs and

output may be iterators, i.e., these intermediate results are never written to disk, and because these costs are equal

for all algorithms.

5.1. Nested Loops Join Algorithms

The simplest and, in some sense, most direct algorithm for binary matching is the nested loops join: for each

item in one input (called the outer input), scan the entire other input (called the inner input) and find matches. The

main advantage of this algorithm is its simplicity. Another advantage is that it can also compute a Cartesian pro-

duct and any Θ-join of two relations, i.e., a join with an arbitrary two-relation comparison predicate. However,

Cartesian products are avoided by query optimizers because their outputs tend to contain many data items that will

eventually not satisfy a query predicate verified later in the query evaluation plan.

Since the inner input is scanned repeatedly, it must be stored in a file, i.e., a temporary file if the inner input

is produced by a complex subplan. This situation does not change the cost of nested loops, it just replaces the first

read of the inner input with a write.

Except for very small inputs, the performance of nested loops join is disastrous because the inner input is

scanned very often, once for each item in the outer input. There are a number of improvements that can be made

to this naive nested loops join. First, for one-to-one match operations in which a single match carries all necessary

information, e.g., semi-join and intersection, a scan of the inner input can be terminated after the first match for an

item of the outer input. Second, instead of scanning the inner input once for each item from the outer input, the

inner input can be scanned once for each page of the outer input, an algorithm called block nested loops join [161].

Third, the performance can be improved further by filling all of memory except K pages with pages of the outer
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input, and using the remaining K pages to scan the inner input and to save pages of the inner input in memory.

Finally, scans of the inner input can be made a little faster by scanning the inner input alternatingly forwards and

backwards, thus reusing the last page of the previous scan and therefore saving one I/O per scan. The I/O cost for

this version of nested loop join is the product of the number of scans (determined by the size of the outer input) and

the cost per scan of the inner input, plus K I/O’s because the first inner scan has to scan or save the entire inner

input. Thus, the total cost for temporary files or for scanning the inner input repeatedly is

� R / (M − K ) � × (S − K ) + K . This expression is minimized if K = 1 and R ≥ S , i.e., the larger input should be

the outer.

If the critical performance measure is not the amount of data read in the repeated inner scans but the number

of I/O operations, more than one page should be moved in each I/O, even if more memory has to be dedicated to

the inner input and less to to the outer input, thus increasing the number of passes over the inner input. If C pages

are moved in each I/O on the inner input, and M − C pages for the outer input, the number of I/O’s is

� R / (M − C ) � × (S / C ) + 1, which is minimized if C = M / 2. In other words, in order to minimize the number

of large-chunk I/O operations, the cluster size should be chosen as half the available memory size [128].

Finally, there is the index nested loops join, which uses an index on the inner input’s join attribute to replace

file scans by index lookups. In principle, each scan of the inner input in naive nested loops join is used to find

matches, i.e., to provide associativity. Not surprisingly, since all index structures are desigend and used for the

same general purpose, any index structure supporting the join predicate (such as eq , ≤ , etc.) can be used for index

nested loops join. The fastest indices for exact match queries are hash indices, but any index structure can be used,

ordered or unordered (hash), single- or multi-attribute, single- or multi-dimensional. Therefore, indices on fre-

quently used join attributes (keys and foreign keys in relational systems) may be useful. Index nested loops join is

also used sometimes with indices built on-the-fly, i.e., indices built on intermediate query processing results. For

complex queries, multi-way joins are sometimes written as a single module, i.e., a module that performs index

look-ups into indices of multiple relations and joins all relations simultaneously. However, it is not clear how such

a multi-way join implementation is superior to multiple index nested loops joins.

5.2. Merge-Join Algorithms

The second commonly used join method is the merge-join. It requires that both inputs are sorted on the join

attribute. Merging the two inputs is similar to the merge process used in sorting. An important difference, how-

ever, is that one of the two merging scans (the one which is advanced on equality, usually called the inner input)

must be backed up when both inputs contain duplicates of a join attribute value and the specific one-to-one match

operation requires that all matches be found, not just one match. Thus, the control logic for merge-join variants for

join and semi-join are slightly different. Some systems include the notion of "value packet," meaning all items

with equal (join attribute) values [169, 170]. An iterator’s next call returns a value packet, not an individual item,

which makes the control logic for merge-join much easier. If (or after) both inputs have been sorted, the merge-

join algorithm typically does not require any I/O, except when "value packets" are larger than memory10.

An input may be sorted because a stored database file was sorted, an ordered index was used, an input was

sorted explicitly, or the input came from an operation that produced sorted output, e.g., another merge-join. The���������������������������������������������������������
10 See an earlier footnote on multiple granule sizes in the section on the architecture of query execution en-

gines.
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last point makes merge-join an efficient algorithm if items from multiple sources are matched on the same join

attribute(s) in multiple binary steps because sorting intermediate results is not required for later merge-joins, which

led to the concept of interesting orderings in the System R query optimizer [239]. Since set operations such as

intersection and union can be evaluated using any sort order, as long as the same sort order is present in both

inputs, the effect of interesting orderings for one-to-one match operators based on merge-join can always be

exploited for set operations.

A combination of nested loops join and merge-join is the heap-filter merge-join [107]. It first sorts the

smaller, inner input by the join attribute, and saves it in a temporary file. Next, it uses all available memory to

create sorted runs from the larger, outer input using replacement selection. As discussed in the section on sorting,

there will be about W = R / (2 × M ) + 1 such runs for outer input size R . These runs are not written to disk;

instead, they are joined immediately with the sorted inner input using merge-join. Thus, the number of scans of the

inner input is reduced to about one half when compared to block nested loops. On the other hand, when compared

to merge-join, it saves writing and reading temporary files for the larger outer input.

Another derivation of merge-join is the hybrid join used in IBM’s DB2 product [55], combining elements

from index nested loops join, merge-join, and techniques joining sorted lists of index leaf entries. After sorting the

outer input on its join attribute, hybrid join uses a merge algorithm to "join" the outer input with the leaf entries of

a pre-existing B-tree index on the join attribute of the inner input. The result file contains entire tuples from the

outer input and record identifiers (RID’s, physical addresses) for tuples of the inner input. This file is then sorted

on the physical locations and the tuples of the inner relation can then be retrieved from disk very efficiently. This

algorithm is not entirely new as it is a special combination of techniques explored by Blasgen and Eswaran [35, 36]

and Kooi [169]. Blasgen and Eswaran considered the manipulation of RID lists but concluded that either merge-

join or nested loops join is the optimal choice in almost all cases; based on this study, only these two algorithms

were implemented in System R [4] and subsequent relational database systems. Kooi’s optimizer treated an index

similarly to a base relation and the lookup of data records from index entries as a join; this naturally permitted join-

ing two indices or an index with a base relation as in hybrid join.

5.3. Hash Join Algorithms

Hash join algorithms are based on the idea of building an in-memory hash table on one input (the smaller

one, frequently called the build input) and then probing this hash table using items from the other input (frequently

called the probe input). These algorithms have only recently found greater interest [41, 70-72, 90, 162, 164, 194,

203, 232, 244, 298]. One reason is that they work very fast, i.e., without any temporary files, if the build input

does indeed fit into memory, independently of the size of the probe input. However, they require overflow

avoidance or resolution methods for larger build inputs, and suitable methods were developed and experimentally

verified only in the mid-1980’s, most notably in connection with the Grace and Gamma database machine projects

[72, 74, 90, 162]

In hash-based join methods, build and probe inputs are partitioned using the same partitioning function, e.g.,

the join key value modulo the number of partitions. The final join result can be formed by concatenating the join

results of pairs of partitioning files. Figure 14 shows the effect of partitioning the two inputs of a binary operation
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Figure 14. Effect of Partitioning for Join Operations.

such as join into hash buckets and partitions11. Without partitioning, each item in the first input must be compared

with each item in the second input; this would be represented by complete shading of the entire diagram. With

partitioning, items are grouped into partition files, and only pairs in the series of small rectangles (representing the

partitions) must be compared.

If a build partition file is still larger than memory, recursive partitioning is required. Recursive partitioning

is used for both build and probe partitioning files using the same hash and partitioning functions. Figure 15 shows

how both input files are partitioned together. The partial results obtained from pairs of partition files are con-

catenated to form the result of the entire match operation. Recursive partitioning stops when the build partition fits

into memory. Thus, the recursion depth of partitioning for binary match operators depends only on the size of the

build input (which therefore should be chosen to be the smaller input) and is independent of the size of the probe

Figure 15. Recursive Partitioning in Binary Operations.

���������������������������������������������������������
This figure was adapted from a similar diagram by Kitsuregawa et al. [162]. Mishra and Eich recently adapt-

ed and generalized it in their survey and comparison of relational join algorithms [191].
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input. Compared to sort-based binary matching operators, i.e., variants of merge-join in which the number of

merge levels is determined for each input file individually, hash-based binary matching operators are particularly

effective when the input sizes are very different [41, 112].

The I/O cost for binary hybrid hash operations can be determined by the number of complete levels (i.e., lev-

els without hash table) and the fraction of the input remaining in memory in the deepest recursion level. For

memory size M , cluster size C , partitioning fan-out F = � M / C − 1 	 , build input size R , and probe input size S ,

the number of complete levels is L =


� logF (R / M )



	 , after which the build input partitions should be of size

R ′ = R / F L . The I/O cost for the binary operation is the cost of partitioning the build input divided by the size of

the build input and multiplied by the sum of the input sizes. Adapting the cost formula for unary hashing discussed

earlier, the total amount of I/O for a recursive binary hash operations is

2 ×
�

R × (L + 1) − F L ×
�

M − � (R ′ − M + C ) / (M − C ) � × C

�� ��
/ R × (R + S )

which can be approximated with 2 × logF (R / M ) × (R + S ). In other words, the cost of binary hash operations on

large inputs is logarithmic; the main difference to the cost of merge-join is that the recursion depth (the logarithm)

depends only on one file, the build input, and is not taken for each file individually.

As for all operations based on partitioning, partitioning (hash) value skew is the main danger to effective-

ness. When using statistics on hash value distributions to determine which buckets should stay in memory in

hybrid hash algorithms, the goal is to avoid as much I/O as possible with the least memory "investment." Thus, it

is most effective to retain those buckets in memory with few build items but many probe items or, more formally,

the buckets with the smallest value for ri / (ri + si ) where ri and si indicate the total size of a bucket’s build and

probe items.

5.4. Pointer-Based Joins

Recently, links between data items have found renewed interest, be it in object-oriented systems in the form

of object identifiers (OID’s) or as access paths for faster execution of relational joins. In a sense, links represent a

limited form of precomputed results, similar to indices and join indices in particular, and have the usual cost vs.

benefit tradeoff between query performance enhancement and maintenance effort. Shekita and Carey analyzed

three pointer-based join methods based on nested loops join, merge-join, and hybrid hash join [248]. Presuming

relations R and S, with a pointer to an S tuple embedded in each R tuple, the nested loops join algorithm simply

scans through R and retrieves the appropriate S tuple for each R tuple. This algorithm is very reminiscent of

unclustered index scans and performs similarly poorly for larger set sizes. Their conclusion on naive pointer-based

join algorithms is that "it is unwise for object-oriented database systems to support only pointer-based join algo-

rithms."

The merge-join variant starts with sorting R on the pointers (i.e., according to the disk address they point to)

and then retrieves all S items in one elevator pass over the disk, reading each S page at most once. Again, this idea

was suggested before for unclustered index scans, and variants similar to heap-filter merge-join [107] and complex

object assembly using a window and priority heap of open references [154] can be designed.

The hybrid hash join variant partitions only relation R on pointer values, ensuring that R tuples with S

pointers to the same page are brought together, and then retrieves S pages and tuples. Notice that the two rela-

tions’ roles are fixed by the direction of the pointers, whereas for standard hybrid hash join the smaller relation

should be the build input. Differently than standard hybrid hash join, relation S is not partitioned. This algorithm
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performs somewhat faster than pointer-based merge-join if it keeps some partitions of R in memory and sorting

writes all R tuples into runs before merging them.

Pointer-based join algorithms tend to outperform their standard, value-based counterparts in many situations,

in particular if only a small fraction of S actually participates in the join and can be selected effectively using the

pointers in R. Historically, due to the difficulty of correctly maintaining pointers (non-essential links), they were

rejected as a relational access method in System R [48], and subsequently in basically all other system, perhaps

with the exception of Kooi’s modified Ingres [169, 170]. However, they were reevaluated and implemented in the

Starburst project, both as a test of Starburst’s extensibility and as a means of supporting "more object-oriented"

modes of operation [126].

5.5. A Rough Performance Comparison

Figure 16 shows an approximate performance comparison using the cost formulas developed above for

block nested loops join; merge-join with sorting both inputs, without optimized merging; hash join without hybrid

hashing, bucket tuning, or dynamic destaging; and pointer joins with pointers from R to S and from S to R without

grouping pointers to the same target page together. This comparison is not precise; its sole purpose is to give a

rough idea of the relative performance of the algorithm groups, deliberately ignoring the many tricks used to

improve and fine-tune the basic algorithms. The relation sizes vary; S is always ten times larger than R. The

memory size is 100 KB, the cluster size is 8 KB, merge fan-in and partitioning fan-out are 10, and the number of

R-records per cluster is 20.

It is immediately obvious in Figure 16 that nested loops join is unsuitable for medium-size and large rela-

tions, because the cost of nested loops join is proportional to the size of the Cartesian product of the two inputs.

Both merge-join (sorting) and hash join have logarithmic cost functions; the sudden rise in merge-join and hash

join cost around R = 1000 is due to the fact that additional partitioning or merging levels become necessary at that
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Figure 16. Performance of Alternative Join Methods.
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point. The sort-based merge-join is not quite as fast as hash join because the merge levels are determined individu-

ally for each file, including the bigger S file, while only the smaller build relation R determines the partitioning

depth of hash join. Pointer joins are competitive with their linear cost function, but only when the pointers are

embedded in the smaller relation R. When S-records point to R-records, the cost of the pointer join is even higher

than for nested loops join.

The important point of Figure 16 is to illustrate that pointer joins can be very efficient or very inefficient, that

one-to-one match algorithms based on nested loops join are not competitive for medium-size and large inputs, and

that sort- and hash-based algorithms for one-to-one match operations both have logarithmic cost growth. Of

course, this comparison is quite naive since it uses only the simplest form of each algorithm. Thus, a comparison

among alternative algorithms in a query optimizer must use the precise cost function for the available algorithm

variant.

6. Universal Quantification

Universal quantification permits queries such as "find the students who have taken all database courses;" the

difference to one-to-one match operations is that a student qualifies because his or her transcript matches an entire

set of courses, not only one item as in an existentially quantified query (e.g., "find students who have taken a (at

least one) database course") that can be executed using a semi-join. In the past, universal quantification has been

largely ignored for four reasons. First, typical database applications, e.g., record-keeping and accounting applica-

tions, rarely require universal quantification. Second, it can be circumvented using a complex expression involving

a Cartesian product. Third, it can be circumvented using complex aggregation expressions. Fourth, there seemed

to be a lack of efficient algorithms.

The first reason will not remain true for database systems supporting logic programming, rules, and

quantifiers, and algorithms for universal quantification will become more important. The second reason is valid;

however, the substitute expressions are very slow to execute because of the Cartesian product. The third reason is

also valid, but replacing a universal quantifier may require very complex aggregation clauses that are easy to "get

wrong" for the database user. Furthermore, they might be too complex for the optimizer to recognize as universal

quantification and to execute with a direct algorithm. The fourth reason is not valid; universal quantification algo-

rithms can be very efficient (in fact, as fast as semi-join, the operator for existential quantification), useful for very

large inputs, and easy to parallelize [102, 113]. In the remainder of this section, we discuss sort- and hash-based

direct and indirect (aggregation-based) algorithms for universal quantification.

In the relational world, universal quantification is expressed with the universal quantifier in relational cal-

culus and with the division operator in relational algebra. We will explain algorithms for universal quantification

using relational terminology. The running example in this section uses the relations Student (student-id, name,

major), Course (course-no, title), Transcript (student-id, course-no, grade) and Requirement (major, course-no)

with the obvious key attributes. The query to find the students who have taken all courses can be expressed in rela-

tional algebra as

πstudent −id ,course −no Transcript ÷ πcourse −no Course.

The projection of the Transcript relation is called the dividend, the projection of the Course relation the divisor,

and the result relation the quotient. The quotient attributes are those attributes of the dividend that do not appear in

the divisor. The dividend relation semi-joined with the divisor relation and projected on the quotient attributes, in

the example the set of student-id’s of Students who have taken at least one course, is called the set of quotient
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candidates here.

Some universal quantification queries seem to require relational division but actually do not. Consider the

query for the students who have taken all courses required for their major. This query can be answered with a

sequence of one-to-one match operations. A join of Student and Requirement projected on the student-id and

course-no attributes minus the Transcript relation can be projected on student-id’s to obtain a set of students who

have not taken all their requirements. An anti-semi-join of the Student relation with this set finds the students who

have satisfied all their requirements. This sequence will have acceptable performance because its required set

matching algorithms (join, difference, anti-semi-join) all belong to the family of one-to-one match operations, for

which efficient algorithms are available as discussed in the previous section.

Division algorithms differ not only in their performance but also in how they fit into complex queries. Prior

to the division, selections on the dividend, e.g., only Transcript entries with "A" grades, or on the divisor, e.g., only

the database courses, may be required. Restrictions on the dividend can easily be enforced without much effect on

the division operation, while restrictions on the divisor can imply a significant difference for the query evaluation

plan. Subsequent to the division operation, the resulting quotient relation (e.g., a set of student-id’s) may be joined

with the Student relation to obtain student names. Thus, obtaining the quotient in a form suitable for further pro-

cessing (e.g., join or semi-join with a third relation) can be advantageous.

All universal quantification can be replaced by aggregations. For example, the example query about data-

base courses can be re-stated as "find the students who have taken as many database courses as there are database

courses." When specifying the aggregate function, it is important to count only database courses both in the divi-

dend (the Transcript relation) and in the divisor (the Course relation). Counting only database courses might be

easy for the divisor relation, but requires a semi-join of the dividend with the divisor relation to propagate the res-

triction on the divisor to the dividend if it is not known a priori whether or not referential integrity holds between

the dividend’s divisor attributes and the divisor, i.e., whether or not there are divisor attribute values in the divi-

dend that cannot be found in the divisor. For example, course-no’s in the Transcript relation that do not pertain to

database courses (and are therefore not in the divisor) must be removed from the dividend by a semi-join with the

divisor. In general, if the divisor is the result of a prior selection, any referential integrity constraints known for

stored relations will not hold, and must be explicitly enforced using a semi-join. Furthermore, in order to ensure

correct counting, duplicates have to be removed from either input if the inputs are projections on non-key attri-

butes.

There are four methods to compute the quotient of two relations, a sort-based and a hash-based direct

method, and sort- and hash-based aggregation. Table 3 shows this classification of relational division algorithms.

Methods for sort- and hash-based aggregation and the possible sort- or hash-based semi-join have already been dis-

cussed, including their variants for inputs larger than memory and their cost functions. Therefore, we focus here

on the direct division algorithms.

Sorting Hashing� �����������������������������������������������������������������������������������������������������������������������������������
Direct Naive division Hash-division� �����������������������������������������������������������������������������������������������������������������������������������
Indirect by semi-join
and aggregation

Sorting with duplicate re-
moval, merge-join, sorting
with aggregation

Hash-based duplicate re-
moval, hybrid hash join,
hash-based aggregation

��
��
��

��
��
��

Table 3. Classification of Relational Division Algorithms.
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The sort-based direct method, proposed by Smith and Chang [254] and called naive division here, sorts the

divisor input on all its attributes and the dividend relation with the quotient attributes as major and the divisor attri-

butes as minor sort keys. It then proceeds with a merging scan of the two sorted inputs to determine which items

belong in the quotient. Notice that the scan can be programmed such that it ignores duplicates in either input (in

case those had not been removed yet in the sort) as well as dividend items that do not refer to items in the divisor.

Thus, neither a preceding semi-join nor explicit duplicate removal step are necessary for naive division. The I/O

cost of naive division is the cost of sorting the two inputs plus the cost of repeated scans of the divisor input.

Figure 17 shows two tables, a dividend and a divisor, already sorted for naive division (with the student id’s

and course no’s replace by student name and course title for the sake of readability). Concurrent scans of the

"Jane" tuples in the dividend and the entire divisor determines that "Jane" is not part of the quotient because she

has not taken the "DB Readings" course. A continuing scan through the "Joe" tuples in the dividend and a new

scan of the entire divisor includes "Joe" in the output of the naive division. The fact that "Joe" took some courses

in addition to the ones in the divisor is ignored by the naive division algorithm.

The hash-based direct method, called hash-division, uses two hash tables, one for the divisor and one for the

quotient candidates. While building a the divisor table, a unique sequence number is assigned to each divisor item.

After the divisor table has been built, the dividend is consumed. For each quotient candidate, a bit map is kept

with one bit for each divisor item. The bit map is indexed with the sequence numbers assigned to the divisor items.

If a dividend item does not match with an item in the divisor table, it can be ignored immediately. Otherwise, a

quotient candidate is either found or created and the bit corresponding to the matching divisor item is set. When

the entire dividend has been consumed, the quotient consists of those quotient candidates for which all bits are set.

Figure 18 shows the two hash tables used in hash-division. The divisor table on the left contains all divisor

tuples and associates a unique sequence number with each item. The quotient table on the right contains quotient

candidates, obtained by projecting dividend tuples on their quotient attributes, and a bit map for each item indicat-

ing for which divisor tuples there has been a dividend tuple. The fact that "Jane" took only one DB course is indi-

cated by the incompletely filled bit map. The AI course does not appear in either hash table because it was

immediately determined that there was no AI course in the divisor table.

This algorithm can ignore duplicates in the divisor (using hash-based duplicate removal during insertion into

the divisor table) and automatically ignores duplicates in the dividend as well as dividend items that do not refer to

items in the divisor (e.g., the AI course in the example). Thus, neither prior semi-join nor duplicate removal are

required. However, if both inputs are known to be duplicate-free, the bit maps can be replaced by counters.

�������������������������������������������
Student Course�������������������������������������������
Jane Intro AI
Jane Intro DB
Joe DB Readings
Joe Intro AI
Joe Intro DB���������������������������������������������

��
��
�

��
��
��
�

�������������������������
Course�������������������������
DB Readings
Intro DB���������������������������

��
��
��

Figure 17. Sorted Inputs into Naive Division.
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Intro DB 0

DB Readings 1

Joe 1 1

Jane 1 0

Figure 18. Divisor Table and Quotient Table in Hash-Division.

Furthermore, if referential integrity is known to hold, the divisor table can be omitted and be replaced by a single

counter. Hash-division, including these variants, has been implemented in the Volcano query execution engine and

has shown better performance than the other three algorithms [102, 113]. In fact, the performance of hash-division

is almost equal to a hash-based join or semi-join of dividend and divisor relations (a semi-join corresponds to

existential quantification), making universal quantification and relational division realistic operations and algo-

rithms to use in database applications.

The aspect of hash-division that makes it an efficient algorithm is that the set of matches between a quotient

candidate and the divisor is represented efficiently using a bit map. Bit maps are one of the standard data struc-

tures to represent sets, and just as bit maps can be used for a number of set operations, the bit maps associated with

each quotient candidate can also be used for a number of operations similar to relational division. For example,

Carlis proposed a generalized division operator called "HAS" that includes relational division as a special case

[45]. The hash-division algorithm can easily be extended to compute quotient candidates in the dividend that

match a majority or given fraction of divisor items as well as (with one more bit in each bit map) quotient candi-

dates that do or do not match exactly the divisor items.

For real queries containing a division, consider the operation that frequently follows a division. In the exam-

ple, a user is typically not really interested in student-id’s only but in information about the students. Thus, in

many cases, relational division results will be used to select items from another relation using a semi-join. The

sort-based algorithms produce their output sorted, which will facilitate a subsequent (semi-) merge-join. The

hash-based algorithms produce their output in hash order; if overflow occurred, in no predictable order at all.

However, both aggregation-based and direct hash-based algorithms use a hash table on the quotient attributes,

which may be used immediately for a subsequent (semi-) join. It seems quite straightforward to use the same hash

table for the aggregation and a subsequent join as well as to modify hash-division such that it removes quotient

candidates from the quotient table that do not belong to the final quotient and then performs a semi-join with a

third input relation.

If the two hash tables do not fit into memory, the divisor table or the quotient table or both can be partitioned

and individual partitions held on disk for processing in multiple steps. In divisor partitioning, the final result con-

sists of those items that are found in all partial results; the final result is the intersection of all partial results. For

example, if the Courses relation in the example above are partitioned into undergraduate and graduate courses, the

final result consists of the students who have taken all undergraduate courses and all graduate courses, i.e., those

that can be found in the division result of each partition. In quotient partitioning, the entire divisor must be kept in

memory for all partitions. The final result is the concatenation (union) of all partial results. For example, if
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Transcript items are partitioned by odd and even student-id’s, the final results is the union (concatenation) of all

students with odd student-id who have taken all courses and those with even student-id who have taken all courses.

If warranted by the input data, divisor partitioning and quotient partitioning can be combined.

Hash-division can be modified into an algorithm for duplicate removal. Consider the problem of removing

duplicates from a relation R(X,Y) where X and Y are suitably chosen attribute groups. This relation can be stored

using two hash tables, one storing all values of X (similar to the divisor table) and assigning each of them a unique

sequence number, the other storing all values of Y and bit maps that indicate which X values have occurred with

each Y value. Consider a brief example for this algorithm: Say relation R(X,Y) contains 1,000,000 tuples, but only

100,000 tuples if duplicates were removed. Let X and Y be each 100 B long (total record size 200 B), and assume

there are 4,000 unique values of each X and Y. For the standard hash-based duplicate removal algorithm,

100,000 × 200 B of memory are needed for duplicate removal without use of temporary files. For the redesigned

hash-division algorithm, 2 × 4,000 × 100 B are needed for data values, 4,000 × 4 B for unique sequence numbers,

and 4,000 × 4,000 bits for bit maps. Thus, the new algorithm works efficiently with less than 3 MB of memory

while conventional duplicate removal requires slightly more than 19 MB of memory, or seven times more than the

duplicate removal algorithm adapted from hash-division. Clearly, choosing attribute groups X and Y to find attri-

bute groups with relatively few unique values is crucial for the performance and memory-efficiency of this new

algorithm. Since such knowledge is not available in most systems and queries (even though some efficient and

helpful algorithms exist, e.g. [5]), optimizer heuristics for choosing this algorithm might be difficult to design and

verify.

To summarize the discussion on universal quantification algorithms, aggregation can be used in systems that

lack direct division algorithms, and hash-division performs universal quantification and relational division gen-

erally, i.e., it covers cases with duplicates in the inputs and with referential integrity violations, and efficiently, i.e.,

it permits partitioning and using hybrid hashing techniques similar to hybrid hash join, making universal

quantification (division) as fast as existential quantification (semi-join). As will be discussed later, it can also be

effectively parallelized.

7. Duality of Sorting and Hashing

In this section,12 we conclude the discussion of individual query processing by outlining the many existing

similarities and dualities of sort- and hash-based query processing algorithms as well as the points where the two

types of algorithms differ. The purpose is to contribute to a better understanding of the two approaches and their

tradeoffs. We try to discuss the approaches in general terms, ignoring whether the algorithms are used for rela-

tional join, union, intersection, aggregation, duplicate removal, or other operations. Where appropriate, however,

we indicate specific operations.

Table 4 gives an overview of the features that correspond to one another. Both approaches permit in-

memory versions for small data sets and disk-based versions for larger data sets. If a data set fits into memory,

quicksort is the sort-based method to manage data sets while classic (in-memory) hashing can be used as hashing

technique. It is interesting to note that both quicksort and classic hashing are also used in memory to operate on

subsets after "cutting" an entire large data set into pieces. The cutting process is part of the divide-and-conquer���������������������������������������������������������
12 Parts of this section have been derived from [112], which also provides experimental evidence for the rela-

tive performance of sort- and hash-based query processing algorithms.
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�����������������������������������������������������������������������������������������������������������������������������������������������������������
Aspect Sorting Hashing�����������������������������������������������������������������������������������������������������������������������������������������������������������
In-memory algorithm Quicksort Classic Hash
Divide-and-conquer para-
digm

Physical division, logical
combination

Logical division, physical
combination

Large inputs Single-level merge Partitioning into overflow files
I/O Pattern Sequential write, random read Random write, sequential read

Fan-in Fan-out
I/O Optimization Read-ahead, forecasting Write-behind

Double-buffering and striping
for merge output

Double-buffering and striping
for partitioning input

Very large inputs Multi-level merge Recursive overflow resolution
Number of merge levels Recursion depth
Non-optimal final fan-in Non-optimal hash table size

Optimizations Merge optimizations Bucket tuning
Better use of memory Reverse runs & LRU Hybrid hashing

Replacement selection ?
? Single input in memory

Aggregation Aggregation in hash tableAggregation in replacement
selection

Resource sharing Eager merging Depth-first partitioning
Lazy merging Breadth-first partitioning
For inputsBit vector filtering For inputs and partitions in

each recursion level
Interesting orderings Merge-Join without sorting N-way joins, hash-merging��������������������������������������������������������������������������������������������������������������������������������������������������������������
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Table 4. Duality of Sort- and Hash-Based Algorithms.

paradigm employed for both sorting and hashing. This important similarity of sorting and hashing has been

observed before, e.g., by Bratbergsengen [41] and Salzberg [227]. There exists, however, an important difference.

In the sort-based algorithms, a large data set is divided into subsets using a physical rule, namely into chunks as

large as memory. These chunks are later combined using a logical step, merging. In the hash-based algorithms,

the large data set is cut into subsets using a logical rule, by hash values. The resulting partitions are later combined

using a physical step, i.e., by simply concatenating the subsets or result subsets. In other words, a single-level

merge in a sort algorithm is a dual to partitioning in hash algorithms. Figure 19 illustrates this duality and the

opposite directions.

Subfiles
Entire
File

Merging

Partitioning

Figure 19. Duality of Partitioning and Merging.
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This duality can also be observed in the behavior of a disk arm performing the I/O operations for merging or

partitioning. While writing initial runs after sorting them with quicksort, the I/O is sequential. During merging,

read operations access the many files being merged and require random I/O capabilities. During partitioning, the

I/O operations are random, but when reading a partition later on, they are sequential.

For both approaches, sorting and hashing, the amount of available memory limits not only the amount of

data in a basic unit processed using quicksort or classic hashing, but also the number of basic units that can be

accessed simultaneously. For sorting, it is well known that merging is limited to the quotient of memory size and

buffer space required for each run, called the merge fan-in. Similarly, partitioning is limited to the same fraction,

called the fan-out, since the limitation is encountered while writing partition files.

In order to keep the merge process active at all times, many merge implementations use read-ahead con-

trolled by forecasting, trading reduced I/O delays for a reduced fan-in. In the ideal case, I/O speed and processing

(merging) speed match, and I/O delays for both the merge input and output are hidden by read-ahead and double-

buffering, as mentioned earlier in the section on sorting. The dual to read-ahead during merging is write-behind

during partitioning, i.e., keeping a free output buffer that can be allocated to an output file while the previous page

for that file is being written to disk. Both read-ahead in merging and write-behind in partitioning are used to

ensure that the processor never has to wait for the completion of an I/O operation. Another dual are double-

buffering and striping over multiple disks for the output of sorting and the input of partitioning.

Considering the limitation on fan-in and fan-out, additional techniques must be used for very large data sets.

Merging can be performed in multiple levels, each combining multiple runs into larger ones. Similarly, partition-

ing can be repeated recursively, i.e., partition files are re-partitioned, the results re-partitioned, etc., until the parti-

tion files fit into main memory. During merging, the runs grow in each level by a factor equal to the fan-in. For

each recursion step, the partition files decrease in size by a factor equal to the fan-out. Thus, the number of levels

during merging is equal to the recursion depth during partitioning. There are two exceptions to be made regarding

hash value distribution and relative sizes of inputs in binary operations such as join; we ignore those for now and

will come back to them later.

If merging is done in the most naive way, i.e., merging all runs of a level as soon as their number reaches the

fan-in, the last merge on each level might not be optimal. Similarly, if the highest possible fan-out is used in each

partitioning step, the partition file in the deepest recursion level might be smaller than memory, and less than the

entire memory is used when processing these files. Thus, in both approaches the memory resources are not used

optimally in the most naive versions of the algorithms.

In order to make best use of the final merge (which, by definition, includes all output items and is therefore

the most expensive merge), it should proceed with the maximal possible fan-in. Making best use of the final merge

can be ensured by merging fewer runs than the maximal fan-in after the end of the input file has been reached (as

discussed in the earlier section on sorting). There is no direct dual in hash-based algorithms for this optimization.

With respect to memory utilization, the fact that a partition file and therefore a hash table might actually be smaller

than memory is the closest to a dual. Utilizing memory more effectively and using less than the maximal fan-out

in hashing has been addressed in research on bucket tuning [164].

The development of hybrid hash algorithms [70, 244] was a consequence of the advent of large main

memories that had led to the consideration of hash-based join algorithms in the first place. If the data set is only

slightly larger than the available memory, e.g., 10% larger or twice as large, much of the input can remain in

memory and is never written to a disk-resident partition file. To obtain the same effect for sort-based algorithms, if
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the database system’s buffer manager is sufficiently smart or receives and accepts appropriate hints, it is possible

to retain some or all of the pages of the last run written in memory and thus achieve the same effect of saving I/O

operations. This effect can be used particularly easily if the initial runs are written in reverse (descending) order

and scanned backward for merging. However, if one does not believe in buffer hints or prefers to absolutely

ensure these I/O savings, using a final memory-resident run explicitly in the sort algorithm and merging it with the

disk-resident runs can guarantee this effect.

A well-known technique to improve sort performance is to generate runs twice as large as main memory

using a priority heap for replacement selection [167], as discussed in the earlier section on sorting. If the runs’

sizes are doubled, their number is cut in half. Therefore, merging can be reduced by some amount, namely

logF (2) = 1 / log2(F ) merge levels. This optimization for sorting has no direct dual in the realm of hashing.

If two sort operations produce input data for a binary operator such as a merge-join and both sort operators’

final merges are interleaved with the join, each final merge can employ only half the memory. In hash-based one-

to-one match algorithms, only one of the two inputs resides in and consumes memory beyond a single input buffer,

not both as in two final merges interleaved with a merge-join. This difference in the use of the two inputs is a dis-

tinct advantage of hash-based one-to-one match algorithms that does not have a dual in sort-based algorithms.

Interestingly, these two differences of sort- and hash-based one-to-one match algorithms cancel each other

out. Cutting the number of runs in half (on each merge level, including the last one) by using replacement selec-

tion for run generation exactly offsets this disadvantage of sort-based one-to-one match operations.

Run generation using replacement selection has a second advantage over quicksort; this advantage has a

direct dual in hashing. If a hash table is used to compute an aggregate function using grouping, e.g., sum of

salaries by department, hash table overflow occurs only if the operation’s output does not fit in memory. Consider,

for example, the sum of salaries by department for 100,000 employees in 1,000 departments. If the 1,000 result

records fit in memory, classic hashing (without overflow) is sufficient. On the other hand, if sorting based on

quicksort is used to compute this aggregate function, the input must fit into memory to avoid temporary files.13 If

replacement selection is used for run generation, however, the same behavior as with classic hashing is easy to

achieve.

If an iterator interface is used for both its input and output, a sort operator can be divided into three distinct

phases. First, input items are consumed and sorted into initial runs. Second, intermediate merging reduces the

number of runs such that only one final merge step is left. Third, the final merge is performed on demand from the

consumer of the sorted data stream. During the first phase, the sort iterator has to share resources, most notable

memory and disk bandwidth, with its producer operators in a query evaluation plan. Similarly, the third phase

must share resources with the consumers.

In many sort implementations, namely those using eager merging, the first and second phase interleave as a

merge step is initiated whenever the number of runs on one level becomes equal to the fan-in. Thus, intermediate

merge steps must cannot use all resources. In lazy merging, which starts intermediate merges only after the input

has been consumed and all initial runs have been created, the intermediate merges do not share resources with

other operators and can use the entire memory allocated to a query evaluation plan; thus, these merges can be more���������������������������������������������������������
13 A scheme using quicksort and avoiding temporary I/O in this case can be devised but would be extremely

cumbersome; we do not know of any report or system with such a scheme.
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effective in lazy than in eager merging.

Hash-based query processing algorithms exhibit similar three phases. First, the first partitioning step exe-

cutes concurrently with the input operator or operators. Second, intermediate partitioning steps divide the partition

files to ensure that they can be processed with hybrid hashing. Third, hybrid and in-memory hash methods process

these partition files and produce output passed to the consumer operators. As in sorting, the first and third phases

must share resources with other concurrent operations in the same query evaluation plan.

The standard implementation of hash-based query processing algorithms for very large inputs uses recursion,

i.e., the original algorithm is invoked for each partition file (or pair of partition files). While conceptually simple,

this method has the disadvantage that output is produced before all intermediate partitioning steps are complete.

Thus, the operators that consume the output must allocate resources to receive this output, typically memory (e.g.,

a hash table). Further intermediate partitioning steps will have to share resources with the consumer operators,

making them less effective. We call this direct recursive implementation of hash-based partitioning depth-first par-

titioning, and consider the its behavior as well as its resource sharing and performance effects a dual to eager

merging in sorting. The alternative schedule is breadth-first partitioning, which completes each level of partition-

ing before starting the next one. Thus, hybrid and in-memory hashing are not initiated until all partition files have

become small enough to permit hybrid and in-memory hashing, and intermediate partitioning steps never have to

share resources with consumer operators. Breadth-first partitioning is a dual to lazy merging, and it is not surpris-

ing that they are both equally more effective than depth-first partitioning and eager merging, respectively.

Bit vector filtering, which will be discussed later in more detail, can be used for both sort- and hash-based

one-to-one match operations, although it has been used mainly for parallel hybrid hash join to-date. The basic idea

of bit vector filtering is a large array of bits initialized by hashing items in the first input of a one-to-one match

operator and used to detect items in the second input that cannot possibly have a match in the first input. In effect,

bit vector filtering reduces the second input to the items that truly participate in the binary operation plus some

"false passes" due to hash collisions in the bit vector. Bit vector filtering is equally effective in merge-join and

hybrid hash join for reducing the size of the second input, and bit vector creating and the actual filtering process

should be performed at the input side of the two sort operations. In recursive hybrid hash join, bit vector filtering

can be used in each recursion level. Moreover, it can be used in both directions, i.e., to reduce the second input

using a bit vector based on the first input and to reduce the first input using a bit vector based on the second input.

The effectiveness of bit vector filtering increases in deeper recursion levels because the number of distinct data

values in each partition decreases, thus reducing the number of hash collisions and false passes for the same size

bit vector used in each recursion level. The same effect could be achieved for sort-based binary operations requir-

ing multi-level sorting and merging, although to do so requires switching back and forth between the two sorts for

the two inputs after each merge level. Not surprisingly, switching back and forth after each merge level would be

the dual to the partitioning process of both inputs in recursive hybrid hash join.

The final entry in Table 4 concerns interesting orderings used in the System R query optimizer [239] and

presumably other query optimizers as well. A strong argument in favor of sorting and merge-join is the fact that

merge-join delivers its output in sorted order; thus, multiple merge-joins on the same attribute can be performed

without sorting intermediate join results. For joining three relations, as shown in Figure 20, pipelining data from

one merge-join to the next without sorting translates into a 3:4 advantage in the number of sorts compared to two

joins on different join keys because the intermediate result O 1 does not need to be sorted. For joining N relations

on the same key, only N sorts are required instead of 2 × N − 2 for joins on different attributes. Since set
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Figure 20. The Effect of Interesting Orderings.

operations such as the union or intersection of N sets can always be performed using a merge-join algorithm

without sorting intermediate results, the effect of interesting orderings is even more important for set operations

than for relational joins.

Hash-based algorithms tend to produce their outputs in a very unpredictable order, depending on the hash

function and on overflow management. In order to take advantage of multiple joins on the same attribute (as well

as intersections, etc.) similar to the advantage derived from interesting orderings in sort-based query processing,

the equality of attributes has to be exploited during the logical step of hashing, i.e., during partitioning. In other

words, such set operations and join queries can be executed effectively by a hash join algorithm that recursively

partitions N inputs concurrently. The recursion terminates when N − 1 inputs fit into memory and the N th input is

used to probe N − 1 hash tables. Thus, the basic operation of this N-way join (intersection, etc.) is an N-way join

of an N-tuple of partition files, not pairs as in binary hash join with one build and one probe file for each partition.

Figure 21 illustrates recursive partitioning for a 3-way join.

Figure 21. Partitioning in a Multi-Way Hash Join.
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However, N-way recursive partitioning is cumbersome to implement, in particular if some of the "join"

operations are actually semi-join, outer join, set intersection, union, or difference. Therefore, until a clean imple-

mentation method for hash-based N-way matching has been found, it might well be that this distinction, joins on

the same or on different attributes, determines the right choice between sort- and hash-based algorithms for com-

plex queries.

Another use of interesting orderings is the interaction of (sorted, B-tree) index scans and merge-join. While

it has not been reported explicitly in the literature, the leaves and entries of two hash indices can be merge-joined

just like those of two B-trees, provided the same hash function was used to create the indices. For example, it is

easy to imagine "merging" the leaves (data pages) of two extendible hash indices [84], even if the key cardinalities

and distributions are very different.

In summary, there exist many dualities between sorting using multi-level merging and recursive hash table

overflow management. Two special cases exist which favor one or the other, however. First, if two join inputs are

of different size (and the query optimizer can reliably predict this difference), hybrid hash join will outperform

merge-join because only the smaller of the two inputs will determine what fraction of the input files will have to be

written to temporary disk files during partitioning (or how often each record has to be written to disk during recur-

sive partitioning), while each file determines its own disk I/O in sorting. In other words, sorting the larger of two

join inputs is more expensive than writing a small fraction of that file to hash overflow files. This performance

advantage of hashing grows with the relative size difference, not the absolute sizes, of the two inputs.

Second, if the hash function is very poor, e.g., because of a prior selection on the join attribute or a corre-

lated attribute, hash partitioning can perform very poorly and create significantly higher costs than sorting and

merge-join. If the quality of the hash function cannot be predicted or improved (tuned) dynamically, sort-based

query processing algorithms are superior because they are less vulnerable to non-uniform data distributions. Since

both cases, join of differently-sized files and skewed hash value distributions, are realistic situations in database

query processing, we recommend that both sort- and hash-based algorithms be included in a query processing

engine and chosen by the query optimizer according to the two cases above. If both cases arise simultaneously,

i.e., a join of differently-sized inputs with unpredictable hash value distribution, the query optimizer has to estimate

which one poses the greater danger to system performance and predictability and choose accordingly.

The important conclusion from these dualities is that neither the input sizes nor the memory size determine

the choice between sort- and hash-based query processing algorithms. Instead, the choice should be governed by

the relative sizes of the two inputs into binary operators and by the danger of skewed data or hash value distribu-

tions. Furthermore, because neither algorithm type outperforms the other in all situations, both should be available

in a query execution engine for a choice to be made in each case by the query optimizer.
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8. Execution of Complex Query Plans

When multiple operators such as aggregations and joins execute concurrently in a pipelined execution

engine, physical resources such as memory and disk bandwidth must be shared by all operators. Thus, optimal

scheduling of multiple operators and the division and allocation of resources in a complex plan are important

issues.

In earlier relational execution engines, these issues were largely ignored for two reasons. First, only left-

deep trees were used for query execution, i.e., the right (inner) input of a binary operator had to be a scan. In other

words, concurrent execution of multiple subplans in a single query was not possible. Second, under the assump-

tion that sorting was needed at each step and considering that sorting for non-trivial file sizes requires that the

entire input be written to temporary files at least once, concurrency and the need for resource allocation were basi-

cally absent. Today’s query execution engines consider more join algorithms permit extensive pipelining, e.g.,

hybrid hash join, and more complex query plans, including bushy trees. Moreover, today’s systems support more

concurrent users and use parallel processing capabilities. Thus, resource allocation for complex queries is of

increasing importance for database query processing.

Some researchers have considered resource contention among multiple query processing operators with the

focus on buffer management. The goal in these efforts was to assign disk pages to buffer slots such that the benefit

of each buffer slot would be maximized, i.e., the number of I/O operations avoided in the future. Sacco and

Schkolnick analyzed several database algorithms and found that their cost functions exhibit steps when plotted

over available buffer space, and suggested that buffer space should be allocated at the low end of a step for the

least buffer use at a given cost [223, 224]. Chou and DeWitt took this idea further by combining it with separate

page replacement algorithms for each relation or scan, following observations by Stonebraker on operating system

support for database systems [263], and with load control, calling the resulting algorithm DBMIN [59, 60]. Falout-

sos et al. generalized this goal and used the classic economic concepts of decreasing marginal gain and balanced

marginal gains for maximal overall gain [85, 198]. Zeller and Gray designed a hash join algorithm that adapts to

the current memory and buffer contention each time a new hash table is built [298].

Schneider was the first to systematically examine execution schedules and costs for right-deep trees, i.e.,

query evaluation plans with multiple binary hash joins for which all build phases proceed concurrently or at least

could proceed concurrently (notice that in a left-deep plan, each build phase receives its data from the probe phase

of the previous join, limiting left-deep plans to two concurrent joins in different phases) [233, 234]. Among his

most interesting findings are that through effective use of bit vector filtering (discussed later in its own subsection),

memory requirements for right-deep plans might actually be comparable to those of left-deep plans [235]. This

work has recently been extended to bushy plans interpreted and executed as multiple right-deep subplans by Chen

et al. [54].

For binary matching iterators to be used in bushy plans, we have identified several concerns. First, some

query processing algorithms include a point when all data are in temporary files on disk and no intermediate result

data reside in memory. Such "stop" points can be used to switch efficiently between different subplans. For exam-

ple, if two subplans produce and sort two merge-join inputs, stopping work on the first subplan and switching to

the second one should be done when the first sort operator has all its data in sorted runs and only the final merge is

left, but no output has been produced yet. Figure 22 illustrates this point in time. Fortunately, this timing can be

realized naturally in the iterator implementation of sorting if opening runs for the final merge is done in the first

call of the next procedure, not at the end of the open phase. A similar stop point is available in hash join when
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Figure 22. The Stop Point During Sorting.

using overflow avoidance. However, this point does not occur in the same way in hybrid hashing because hybrid

hashing produces some output data before the memory contents (output buffers and hash table) can be discarded.

Second, implementations of hybrid hash join and other binary match operations should be parameterized to

permit overflow avoidance as a run-time option to be chosen by the query optimizer. This dynamic choice will

permit the query optimizer to force a stop point in some operators while using hybrid hash in most operations.

Third, binary operator implementations should include a switch that controls which subplan is initiated first.

In Table 1 with algorithm outlines for iterators’ open, next, and close procedures, the hash join open procedure

executes the entire build input plan first before opening the probe input. However, there might be situations in

which it would be better to open the probe input before executing the build input. If the probe input does not hold

any resources such as memory between open and next calls, initiating the probe input first is not a problem. How-

ever, there are situations in which it creates a big benefit, in particular in parallel systems to be discussed later.

Fourth, if multiple operators are active concurrently, memory has to be divided among them. If two sorts

produce input data for a merge-join which in turn passes its output into another sort using quicksort, memory

should be divided proportionally to the sizes of the three files involved. We believe that for multiples sorts produc-

ing data for multiple merge-joins on the same attribute, proportional memory division will also work best. A

comprehensive investigation of memory allocation for multiple unary and binary operators will need to consider

many special cases for hybrid hash join, its data flow and control logic, and its complex cost function.

Fifth, in recursive hybrid hash join, the recursion levels should be executed level by level. In the most

straightforward recursive algorithm, recursive invocation of the original algorithm for each output partition results

Hybrid Hash Join (ii)

Input I3

O1
Hybrid Hash Join (i)

Input I2Input I1

Figure 23. Plan for Three-Way Join.
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in depth-first partitioning. The algorithm produces output as soon as the first leaf in the recursion tree is reached.

However, if the operator that consumes the output requires memory as soon as it receives input, for example

hybrid hash join (ii) in Figure 23 as soon as hybrid hash join (i) produces output, the remaining partitioning opera-

tions in the producer operator (hybrid hash join (i)) must share memory with the consumer operator (hybrid hash

join (ii)), effectively cutting the partitioning fan-out in the producer in half. Thus, hash-based recursive matching

algorithms should proceed in three phases — consuming input and initial partitioning, partitioning into files suit-

able for hybrid hash join, and final hybrid hash join for all partitions — with phase two completed entirely before

phase three commences. We call this breadth-first partitioning as opposed to depth-first partitioning in the most

straightforward recursive algorithms. Of course, depth-first partitioning in for the top-most operator in a query

evaluation plan will provide faster response time, i.e., earlier delivery of the first data item.

Sixth, the allocation of resources other than memory, e.g., disk bandwidth and disk arms for seeking in parti-

tioning and merging, is an open issue that should be addressed soon because the different improvement rates in

CPU and disk speeds will increase the importance of disk performance for overall query processing performance.

One possible alleviation of this problem might come from disk arrays configured exclusively for performance, not

for reliability. On the other hand, disk arrays might not deliver the entire performance gain the large number of

disk drives could provide if it is not possible to access specific disks within an array, particularly during partition-

ing and merging.

Finally, scheduling bushy trees in multi-processor systems is not entirely understood yet. While all con-

siderations discussed above apply in principle, multi-processors permit truly concurrent execution of multiple sub-

plans in a bushy tree. However, it is a very hard problem to schedule two or more subplans such that their result

streams are available at the right times and at the right rates, in particular in light of the unavoidable errors in selec-

tivity and cost estimation during query optimization [61, 146].

The last point, estimation errors, leads us to suspect that plans with 30 (or even 100) joins or other operations

cannot be optimized completely before execution. Thus, we suspect that a technique reminiscent of Ingres Decom-

position [291, 294] will prove the most effective one. One of the principal ideas of Ingres Decomposition is a

repetitive cycle consisting of three steps. First, the next step is selected, e.g., a selection or join. Second, the

chosen step is executed into a temporary table. Third, the query the simplified by removing predicates evaluated in

the execution step and replacing one range variable (relation) in the query with the new temporary table. The

justification and advantage of this approach is that all earlier selectivities are known for each decision because the

intermediate results are materialized. The disadvantage is that data flow between operators cannot be exploited,

resulting in a significant cost for writing and reading intermediate files. For very complex queries, we suggest

modifying Decomposition to decide on and execute multiple steps in each cycle, e.g., 3-9 joins, instead of execut-

ing only one selection or join as in Ingres. Such a hybrid approach might very well combine the advantages of a

priori optimization, namely in-memory data flow between iterators, and optimization with exactly known inter-

mediate result sizes.

An optimization and execution environment even further tuned for very complex queries would anticipate

possible outcomes of executing subplans and provide multiple alternative subsequent plans. Figure 24 shows the

structure of such a dynamic plan for a complex query. First, subplan A is executed and statistics about its result

are gathered while it is saved on disk. Depending on these statistics, either B or C is executed next. If B is chosen,

one of D, E, and F is used to complete the query; or G or H if C had been chosen. Notice that each letter A−H can

be an arbitrarily complex subplan, although probably not more than 10 operations due to the limitations of current
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Figure 24. A Decision Tree of Partial Plans.

selectivity estimation methods. Unfortunately, realization of such sophisticated query optimizers will require

further research, e.g., into determination of when separate cases are warranted and limitation of the exponential

growth in the number of subplans.

Even for moderately complex subplans with about 10 operators, optimal resource allocation during execu-

tion time is an important issue as shown by Schneider for right-deep plans [233] and by Chen et al. for segmented

right-deep plans [54]. In order to allocate resources such as memory, processors, and disks to operator, processes,

and queries in any kind of query plan, a uniform and comparable measure of their value must be defined. We have

defined a productivity measure for this purpose that we introduce here in several steps.14 It is important that this

measure permits comparisons for sort- and hash-based query processing algorithms with their multiple phases (ini-

tial run generation and merging for sorting, partitioning and in-memory matching for hashing). Furthermore, the

measure uses bandwidth for I/O and CPU processing, which may be measured in records or bytes per unit time.

Algorithm bandwidth is a measure of the rate at which the algorithm can move records or bytes through the

slowest part of the architecture (processor, disk, or network); hence, bandwidth considers both the architectural

constraints and algorithm complexity and behavior. CPU performance measures based on MIPS numbers are

ignored.

Our model compares the effectiveness of sorting with a fictitious external sort using quicksort for a single

page of memory and binary merge levels only. The merge levels used in this sort are called the required binary

merge levels of any sort and can be calculated as RC = ld (R ) for an input of R pages. The effectiveness of a real

quicksort, replacement selection, or merge step is measured in how many of the required binary merge levels are

performed in that processing step. If a real quicksort may use more memory than one page, say M pages, it makes

several binary merge levels unnecessary. The size of the initial runs will be M pages, while the run size in the

fictitious sort would reach M pages only after ld (M ) merge levels. Therefore, we say that the replaced binary

merge levels of a quicksort with M pages is ld (M ). For initial-run generation based on replacement selection, in

which the runs are about twice the size of memory, the replaced binary merge levels are ld (M ) + 1. In a merge

step with fan-in F , the size of the output run is F times larger than the input. In order to achieve the same increase

in run size with binary merges, ld (F ) binary merge levels would be required. Therefore, we say that the replaced

binary merge levels of a merge step with fan-in F is ld (F ). For hash-based query processing algorithms, the

required and replaced binary merge levels are defined similarly as ld (R ) for a (build) input of size R , ld (M ) for a���������������������������������������������������������
14 This productivity measure has been defined in joined research with Diane Davison.
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hash table of size M , and ld (F ) for a partitioning step with fan-out F .

The required binary merge levels multiplied with the data volume, i.e., the input size, are called the required

contribution. The replaced binary merge levels multiplied with the data volume affected by a quicksort or a merge

step (not the total input size) are called performed contributions. The important aspects of required and performed

contributions are that the required contribution is independent of the sort algorithm used and that the performed

contributions add up to the required contribution, no matter how a sort is performed, even if the memory allocation

and merge fan-in are varied due to changing resource contention in a computer system. Thus, performed contribu-

tions are a direct measure of the value of a processing step to the completion of a sort, a database operator such as

a merge-join, a process participating in a parallel query evaluation plan, or an entire query evaluation plan.

The performed contribution of an operation divided over its required amount of time defines the productivity

of the operation. This productivity measure is equal to the replaced binary merge levels multiplied with the

bandwidth of the operation. Thus, productivity relates an operation’s value to the length of time it requires that

resources be allocated to the operation.

For resource allocation, marginal productivity is defined for each resource as the additional productivity

gained by one additional resource unit. It is assumed that marginal productivities are positive, i.e., that an addi-

tional unit of a resource increases the replaced binary merge levels or improves an operations bandwidth. This

might require that some resources be "bundled," e.g., each disk drive "comes with" some amount of memory for

read-ahead and write-behind buffer space. Otherwise, increasing the number of disk drives might decrease the

amount of memory available for run generation or hash tables, thus decreasing the number of replaced binary

merge levels. Moreover, it is assumed that marginal productivities are monotonically decreasing, i.e., that adding

two unit of a resource improves an operations productivity by at most twice as much as one unit. Considering the

logarithmic nature of replaced binary merge levels and the linear performance effect of CPU’s and disks, this

assumption seems justified.

Marginal gains can be used to perform resource allocations to operations, processes, and query plans.

Among two contenders for a resource such as a unit of memory, the resource is allocated to the requestor which

can derive the higher (marginal) gain from it. Thus, optimal resource allocation is achieved if the marginal gains

are balanced among all contenders for each resource. The open issues to be resolved for this resource allocation

scheme are (i) how interdependent allocation of different resources is, i.e., whether or not query processing algo-

rithms can benefit from an additional unit of one resource such as processing power without an additional unit of

another resource such as memory; (ii) how much resource allocation is affected by the logarithmic approximation

of algorithms’ costs; and (iii) whether or not resources can be "bundled" such that the two assumptions on marginal

gains are justified. We are currently working on experimental answers to these questions.
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9. Mechanisms for Parallel Query Execution

Considering that all high-performance computers today employ some form of parallelism in their processing

hardware, it seems obvious that software written to manage large data volumes ought to be able to exploit parallel

execution capabilities. In fact, we believe that five years from now it will be argued that a database management

system without parallel query execution will be as handicapped in the market place as one without indices.

The goal of parallel algorithms and systems is to obtain speedup and scaleup, and speedup results are fre-

quently used to demonstrate the accomplishments of a design and its implementation. Speedup considers addi-

tional hardware resources for a constant problem size; linear speedup is considered optimal. In other words, N

times as many resources should solve a constant-size problem in 1 / N of the time. Speedup can also be expressed

as parallel efficiency, i.e., a measure of how close a system comes to linear speedup. For example, if solving a

problem takes 1400 seconds on a single machine and 100 seconds on 16 machines, the speedup is slightly less than

linear. The parallel efficiency is (1 × 1400) / (16 × 100) = 87.5%.

A third measure for the success of a parallel algorithm based on Amdahl’s law is the fraction of the sequen-

tial program for which linear speedup was attained, defined by p = f × s / d + (1 − f ) × s for sequential execution

time s , parallel execution time p , and degree of parallelism d . For the example above, this fraction is

f = ((1400 − 100)/1400) / ((16 − 1)/16) = 99.05%. Notice that this measure is give much higher values than the

parallel efficiency calculated earlier.

An alternative measure for a parallel system’s design and implementation is scaleup in which the problem

size is altered with the resources. Linear scaleup is achieved when N times as many resources can solve a problem

with N times as much data in the same amount of time. Scaleup can also be expressed using parallel efficiency,

but since speedup and scaleup are different, it should always be clearly indicated which parallel efficiency measure

is being reported.

For query processing problems involving sorting or hashing in which multiple merge or partitioning levels

are expected, the speedup can frequently be more than linear, or super-linear. Consider a sorting problem that

requires two merge levels in a single machine. If multiple machines are used, the sort problem can be partitioned

such that each machine sorts a fraction of the entire data amount. Such partitioning will, in a good implementation,

result in linear speedup. If, in addition, each machine has its own memory such that the total memory in the sys-

tem grows with the size of the machine, fewer than two merge levels will suffice, making the speedup super-linear.

9.1. Parallel vs. Distributed Database Systems

It might be useful to start the discussion of parallel and distributed query processing with a distinction of the

two concepts. In the database literature, "distributed" usually implies "locally autonomous," i.e., each participating

system is a complete database management system in itself, with access control, meta-data (catalogs), query pro-

cessing, etc. In other words, each node in a distributed database management system can function entirely on its

own, whether or not the other nodes are present or accessible. Each node performs its own access control, and

cooperation of each node in a distributed transaction is voluntary. Examples of distributed (research) systems are

R* [124, 279], distributed Ingres [83, 264], and SDD-1 [21, 219]. There are now several commercial distributed

relational database management systems. Ozsu and Valduriez have discussed distributed database systems in

much more detail [206, 207]. If the cooperation among multiple database systems is only limited, the system can

be called a "federated" database system [250].
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In parallel systems, on the other hand, there is only one locus of control. In other words, there is only one

database management system that divides individual queries into fragments and executes the fragments in parallel.

Access control to data is independent of where data objects currently reside in the system. The query optimizer

and the query execution engine typically assume that all nodes in the system are available to participate in efficient

execution of complex queries, and participation of nodes in a given transaction is either presumed or controlled by

a global resource manager, but is not based on voluntary cooperation as in distributed systems. There are several

parallel research prototypes, e.g., Gamma [72, 74], Bubba [39, 40], Grace [90, 162], and Volcano [104, 111], and

products, e.g., Tandem’s NonStop SQL [81, 297] and Teradata’s TBC/1012 [196, 276].

Both distributed database systems and parallel systems have been designed in various kinds, which may

create some confusion. Distributed systems can be either homogeneous, meaning that all participating database

management systems are of the same type (the hardware and the operating system may even be of the same types),

or heterogeneous, meaning that multiple database management systems work together using standardized inter-

faces but are internally different.15 Furthermore, distributed systems may employ parallelism, e.g., by pipelining

datasets between nodes with the receiver already working on some items while the producer is still sending more.

Parallel systems can be based on shared-memory (also called shared-everything), shared-disk (multiple processors

sharing disks but not memory), distributed-memory (without sharing disks, also called shared-nothing), or

hierarchical computer architectures. Stonebraker compared the first three alternatives using several aspects of

database management, and came to the conclusion that distributed memory is the most promising database

management system platform [265]. Each of these approaches has advantages and disadvantages; our belief is that

the hierarchical architecture consisting of multiple clusters, each with multiple CPU’s and disks and a large shared

memory (see Figure 24), is the most general of these architectures and should be the target architecture for new

database software development [109].

9.2. Forms of Parallelism

There are several forms of parallelism that are interesting to designers and implementors of database query

processing systems. Inter-query parallelism is a direct result of the fact that most database management systems

can service multiple requests concurrently. In other words, multiple queries (transactions) can be executing con-

currently within a single database management system. In this form of parallelism, resource contention is of great

concern, in particular contention for memory and disk arms.

The other forms of parallelism are all based on the use of algebraic operations on sets for database query

processing, e.g., selection, join, and intersection. The theory and practice of exploiting other "bulk" types such as

lists for parallel database query execution is only now developing. Inter-operator parallelism is basically pipelin-

ing, or parallel execution of different operators in a single query. For example, the iterator concept discussed ear-

lier has also been called "synchronous pipelines" [210]; there is no reason not to consider asynchronous pipelines

in which operators work independently connected by a buffering mechanism to provide flow control.

Inter-operator parallelism can be used in two forms, either to execute producers and consumers in pipelines,

called vertical inter-operator parallelism here, or to execute independent subtrees in a complex, bushy query���������������������������������������������������������
15 In some organizations, two different database management systems may run on the same (fairly large)

computer. Their interactions could be called non-distributed heterogeneous. However, since the rules governing
such interactions are the same as for distributed heterogeneous systems, the case is usually ignored in research and
system design.
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evaluation plan concurrently, called horizontal inter-operator or bushy parallelism here. A simple example for

bushy parallelism is a merge-join receiving its input data from two sort processes. The main problem with bushy

parallelism is that it is hard or impossible to ensure that the two subplans start generating data at the right time and

generate them at the right rates. Note that the right time does not necessarily mean the same time, e.g., for the two

inputs of a hash join, and that the right rates are not necessarily equal, e.g., if two inputs of a merge-join have dif-

ferent sizes. Therefore, bushy parallelism presents too many open research issues and is hardly used in practice at

this time.

The final form of parallelism in database query processing is intra-operator parallelism in which a single

operator in a query plan is executed in multiple processes, typically on disjoint pieces of the problem and disjoint

subsets of the data. This form, also called parallelism based on fragmentation or partitioning, is enabled by the

fact that query processing focuses on sets. If the underlying data represented sequences, for example time series in

a scientific database management system, partitioning into subsets to be operated upon independently would not be

feasible or would require additional synchronization when putting the independently obtained results together.

Both vertical inter-operator parallelism and intra-operator parallelism are used in database query processing

to obtain higher performance. Beyond the obvious opportunities for speedup and scaleup that these two concepts

offer, they both have significant problems. Pipelining does not easily lend itself to load balancing because each

process or processor in the pipeline is loaded proportionally to the amount of data it has to process. This amount

cannot be chosen by the implementor or the query optimizer, and cannot be predicted very well. For intra-

operator, partitioning-based parallelism, load balance and performance are optimal if the partitions are all of equal

size; however, this can be hard to achieve as discussed earlier for partitioning as a hash table overflow manage-

ment method.

9.3. Implementation Strategies

The purpose of the query execution engine is to provide mechanisms for query execution from which the

query optimizer can choose — the same applies for the means and mechanisms for parallel execution. There are

two general approaches to parallelizing a query execution engine, which we call the bracket and operator models

and which are used, for example, in the Gamma and Volcano systems, respectively.

In the bracket model, there is a generic process template that can receive and send data and can execute

exactly one operator at any point of time. A schematic diagram of a template process is shown in Figure 25 with

two possible operators, join and aggregation. The code that makes up the generic template initiates the operator

which then controls execution; network I/O on the receiving and sending sides is performed as a service to the

operator on its request and initiation, and is implemented as procedures to be called by the operator. The number

of inputs that can be active at any point of time is limited to two since there are only unary and binary operators in

most database systems. The operator is surrounded by generic template code, which shields it from its environ-

ment, for example the operator(s) that produce its input and consume its output. For parallel query execution,

many templates are executed concurrently in the system, using one process per template. Because each operator is

written with the implicit assumption that this operator controls all activities in its process, it is not possible to exe-

cute two operators in one process without resorting to some thread or co-routine facility i.e., a second implementa-

tion level of the process concept.

In a query processing system using the bracket model, operators are coded in such a way that network I/O is

their only means of obtaining input and delivering output (with the exception of scan and store operators). The
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Figure 26. Operator Model of Parallelization.

reason is that each operator is its own locus of control and network flow control must be used to coordinate multi-

ple operators, e.g., to match two operators’ speed in a producer-consumer relationship. Unfortunately, this coordi-

nation requirement also implies that passing a data item from one operator to another always involves expensive

inter-process communication system calls, even in the cases when an entire query is evaluated on a single machine

(and could therefore be evaluated in a single process, without interprocess communication and operating system

involvement) or when data do not need to be repartitioned among nodes in a network. An example for the latter is

the three-way join query "joinCselAselB" in the Wisconsin Benchmark [76] which uses the same join attribute for

both two-way joins. Thus, in queries with multiple operators (meaning almost all queries), interprocess communi-

cation and its overhead are mandatory rather than optional.

An alternative to the bracket model is the operator model. Figure 26 shows a possible parallelization of a

three-way join plan using the operator model, i.e., by inserting "parallelism" operators into a sequential plan, called

exchange operator in the Volcano system [104]. The exchange operator is an iterator like all other operators in the

system with open, next, and close procedures; therefore, the other operators are entirely unaffected by the presence
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of exchange operators in a query evaluation plan. Since it does not contribute to data manipulation but provides

query processing control, we call it a meta-operator. Figure 27 shows the processes created by the exchange

operators in the previous figure, with each circle representing a process. Note that this set of processes is only one

possible parallelization, which makes sense if the joins are on the same join attributes. Furthermore, the degrees of

data parallelism, i.e., the number of processes in each process group, can be controlled using an argument to the

exchange operator.

There is no reason to assume that the two models differ significantly in their performance if implemented

with similar care. Both models can be implemented with a minimum of control overhead and can be combined

with any partitioning scheme for load balancing. The only difference with respect to performance is that the

operator model permits multiple data manipulation operators such as join in a single process, i.e., operator syn-

chronization and data transfer between operators with a single procedure call without operating system involve-

ment. The important advantages of the operator model are that it permits easy parallelization of an existing

sequential system as well as development and maintenance of operators and algorithms in a familiar and relatively

simple single-process environment [111].

The bracket and operator models both provide pipelining and partitioning as part of pipelined data transfer

between process groups. For most algebraic operators used in database query processing, these two forms of

parallelism are sufficient. However, not all operations can be easily supported by these two models. For example,

in a transitive closure operator, newly inferred data is equal to input data in its importance and role for creating

further data. Thus, to parallelize a single transitive closure operator, the newly created data must also be parti-

tioned like the input data. Neither bracket nor operator model immediately allow for this need. Hence, for transi-

tive closure operators, intra-operator parallelism based on partitioning requires that the processes exchange data

among themselves outside of the stream paradigm.

The transitive closure operator is not the only operation for which this restriction holds. Other examples

include the complex object assembly operator described by Keller et al. [154] and operators for numerical optimi-

zations as might be used in scientific databases. Both models, the bracket model and the operator model, could be

Print

Join

Scan

Join

Scan Scan

Figure 27. Processes Created by Exchange Operators.
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extended to provide a general and efficient solution to intra-operator data exchange for intra-operator parallelism.

9.4. Load Balancing and Skew

For optimal speedup and scaleup, pieces of the processing load must be assigned carefully to individual pro-

cessors and disks to ensure equal completion times for all pieces. In inter-operator parallelism, operators must be

grouped to ensure that no one processor becomes the bottleneck for an entire pipeline. Balanced processing loads

are very hard to achieve because intermediate set sizes cannot be anticipated with accuracy and certainty in data-

base query optimization. Thus, no existing or proposed query processing engine relies solely on inter-operator

parallelism. In intra-operator parallelism, data sets must be partitioned such that the processing load is nearly

equal for each processor. Notice that in particular for binary operations such as join, equal processing loads can be

different from equal-sized partitions.

There are several research efforts developing techniques to avoid skew or to limit the effects of skew in

parallel query processing, e.g., [10, 79, 141, 165, 174, 175, 203, 241, 284, 285, 288, 289]. However, all of these

methods have their drawbacks, for example additional requirements for local processing to determine quantiles.

Skew management methods can be divided into basically two groups. First, skew avoidance methods rely on

determining suitable partitioning rules before data is exchanged between processing nodes or processes. For

range-partitioning, quantiles can be determined or estimated from sampling the data set to be partitioned, from

catalog data, e.g., histograms, or from a preprocessing step. Histograms kept on permanent base data have only

limited use for intermediate query processing results, in particular if the partitioning attribute or a correlated attri-

bute has been used in a prior selection or matching operation. However, for stored data they may be very

beneficial. Sampling implies that the entire population is available for sampling because the first memory load of

an intermediate result may be a very poor sample for partitioning decisions. Thus, sampling might imply that the

data flow between operators be halted and an entire intermediate result be materialized on disk to ensure proper

sampling and subsequent partitioning. However, if such a halt is required anyway for processing a large set, it can

be used for both purposes. For example, while creating and writing initial run files without partitioning in a paral-

lel sort, quantiles can be determined or estimated and used in a combined partitioning and merging step.

Second, skew resolution repartitions some or all of the data if an initial partitioning has resulted in skewed

loads. Repartitioning is relatively easy in shared-memory machines, but can also be done in distributed-memory

architectures, albeit at the expense of more network activity. Skew resolution can be based on both re-hashing in

hash partitioning and quantile adjustment in range partitioning. Since hash partitioning tends to create fairly even

loads and network bandwidth will increase in the near future within distributed-memory machines as well as in

local- and wide-area networks, skew resolution is a reasonable method for cases in which a prior processing step

cannot be exploited to gather the information necessary for skew avoidance as in the sort example above.

In their recent research into sampling for load balancing, Naughton et al. have shown that stratified random

sampling can be used, i.e., samples are selected randomly not from the entire, distributed data set but from each

local data set at each site, and that even small sets of samples ensure reasonably balanced loads [79, 241]. Their

definition of skew is the quotient of sizes of the largest partition and the average partition, i.e., the sum of sizes of

all partitions divided by the degree of parallelism. In other words, a skew of 1.0 indicates a perfectly even distribu-

tion. Figure 28 shows the required sample sizes per partition for various skew limits, degrees of parallelism, and

confidence levels. For example, to ensure a maximal skew of 1.5 among 1,000 partitions with 95% confidence,

110 random samples must be taken at each site. Thus, relatively small samples suffice for reasonably safe skew
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Figure 28. Skew Limit, Confidence, and Sample Size per Partition.

avoidance and load balancing, making precise methods unnecessary. Typically, only tens of samples per partition

are needed, not several hundreds of samples at each site.

For allocation of active processing elements, i.e., CPUs and disks, the bandwidth considerations discussed

briefly in the section on sorting can be generalized for parallel processes. In principal, all stages of a pipeline

should be sized such that they all have bandwidths proportional to their respective data volumes in order to ensure

that no stage in the pipeline become a bottleneck and slows the other ones down. The latency almost unavoidable

in data transfer between pipeline stages should be hidden by the use of buffer memory equal in size to the product

of bandwidth and latency.

9.5. Tuning a Parallel System

Beyond skew, the major impediments to effective use of parallelism in database query processing are control

overhead, in particular initialization delays, interference on lower software and hardware levels, and synchroniza-

tion delays.

Control overhead was one of the major obstacles to obtaining linear speedups in early database machine

designs, for example DIRECT [37]. The main issue here is that the number of control messages should be linear to

the number of processes, not with the number of data pages or items. If distribution of initiation messages is a

problem and broadcasting is not available or not practical, a linear number of messages can be executed in a loga-

rithmic number of single node-to-node messages using a tree-shaped propagation scheme, as proposed for example

for a highly parallel implementation of the Gamma database machine [92, 93].

Another possible approach to reducing control overhead is to use not only primed processes (i.e., a pool of

processes waiting until work packets arrive), but primed processes with primed connections. Instead of allocating

processes and then establishing connections between them, a pool of process groups is used, each group already

connected in a pattern typically found in parallel query processing. This idea clearly has a lot of promise for mas-

sively parallel systems but it requires determining the size of process groups and suitable "typical" connections.
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Furthermore, the query optimizer must be designed to exploit such preconnected process groups.

Interference can occur both on a hardware level and in lower software levels. The prime example for

hardware interference is bus contention in shared-memory multi-processors, the reason for the limited scalability

of single-bus shared-memory architectures. Lower software levels can also introduce bottlenecks and contention,

for example a buffer manager with its residency lookup table or a bit map for disk page allocation. A study of

software interference in a more general sense has been discussed by Fontenot [88].

As an example, Figure 29, taken from [114], shows the effect of tuning and removing interference among

processes on a shared-memory machine executing a parallel sort of 100 MB (106 records of 100 B) with an equal

number of processors and disks in each measurement. The time measurements are shown using solid lines and

refer to the labels on the left. The speedups are shown with dashed lines and refer to the labels on the right. The

initial times and speedups are marked with
�

’s while the final ones are marked with ∆’s. The ideal, linear speedup

is shown by the dotted line. It is immediately obvious from the solid lines that the final times are significantly

lower than the initial ones, demonstrating the effect of the tuning measures. For two to eight processors and disks,

the observed performance improvements by a factor slightly more than two are largely due to increased cluster size

and reduced I/O cost. Beyond eight processors and disks, the dashed lines indicate that the modifications and

adjustments also improved the speedup which had been completely unsatisfactory with the initial software. For

sixteen processors and disks, the fully tuned software performed about 31⁄2 times better than the original version. A

comparison of the dashed and dotted lines shows very close to linear speedup with the fully tuned software. Thus,

tuning improved the parallel behavior as well as the absolute performance. The main reason why the speedup

could be improved was the removal of a latch contention bottleneck from the buffer manager, i.e., interference of

multiple processes using a shared resource.

Synchronization delays can also be induced by hardware and software. Software delays may occur if multi-

ple processes in a pipeline operate with different throughput and require the standard producer-consumer syn-

chronization. Synchronizing multiple caches can introduce significant delays, in particular since today’s cache

sizes can almost be thought of as making a shared-memory machine into a distributed-memory machine. Thus,
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Figure 29. Tuning Effectiveness for a Parallel Algorithm.
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effective load balancing through a single run-queue, usually considered one of the advantages of shared-memory

machines, might be counter-productive if processes (and their cache residency set) tend to migrate too much or too

often. Our recommendation is to make processes "sticky," i.e., to try but not to force process-to-processor affinity

[114].

9.6. Architectures and Architecture-Independence
16Many database research projects have investigated hardware architectures for parallelism in database sys-

tems. Stonebraker compared shared-nothing (distributed-memory), shared-disk (distributed-memory with multi-

ported disks), and shared-everything (shared-memory) architectures for database use based on a number of issues

including scalability, communication overhead, locking overhead, and load balancing [265]. His conclusion was

that shared-everything excels in none of the points considered, shared-disk introduces too many locking and buffer

coherency problems, and that shared-nothing has the significant benefit of scalability to very high degrees of paral-

lelism. Therefore, he concluded that overall shared-nothing is the preferable architecture for database system

implementation.

Bhide and Stonebraker compared architectural alternatives for transaction processing [27, 28] and concluded

that a shared-everything (shared-memory) design provides best performance. To achieve high performance, relia-

bility, and scalability, Bhide suggested considering shared-nothing (distributed-memory) machines with shared-

everything parallel nodes. The same idea is mentioned in equally general terms by Pirahesh et al. [210] and Boral

et al. [40], but none of these authors elaborate on the idea’s generality or potential. Kitsuregawa and Ogawa’s new

database machine SDC uses multiple shared-memory nodes (plus custom hardware such as the Omega network

and a hardware sorter) [165], although the effect of the hardware design on operators other than join is not

evaluated in [165].

Customized parallel hardware was investigated but largely abandoned after Boral and DeWitt’s influential

analysis [38] that compared CPU and I/O speeds and their trends and concluded that I/O, not processing, is the

most likely bottleneck in future high-performance query execution. Subsequently, both Boral and DeWitt

embarked on new database machine projects, Bubba and Gamma, that executed customized software on standard

processors with local disks [40, 74]. For scalability and availability, both projects used distributed-memory

hardware with single-CPU nodes, and investigated scaling questions for very large configurations.

The XPRS system, on the other hand, has been based on shared memory [134, 267, 268]. Its designers

believe that modern bus architectures can handle up to 2,000 transactions per second. Shared-memory architec-

tures provide automatic load balancing and faster communication than shared-nothing machines and are equally

reliable and available for most errors, i.e., media failures, software, and operator errors [115]. However, we

believe that attaching 250 disks to a single machine as necessary for 2,000 transactions per second [267] requires

significant special hardware, e.g., channels or I/O processors, and it is quite likely that the investment for such

hardware can have greater impact on overall system performance if spent on general-purpose CPU’s or disks.

Without such special hardware, the performance limit for shared-memory machines is probably much lower than

2,000 transactions per second. Furthermore, there already are applications that require larger storage and access

capacities.

���������������������������������������������������������
16 Much of this section has been derived from [109].
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Richardson et al. [213] performed an analytical study of parallel join algorithms on multiple shared-memory

"clusters" of CPU’s. They assumed a group of clusters connected by a global bus with multiple microprocessors

and shared memory in each cluster. Disk drives were attached to the busses within clusters. However, their

analysis suggested that the best performance is obtained by using only one cluster, i.e., a shared-memory architec-

ture. We contend that their results are due to their parameter settings, in particular small relations (typically 100

pages of 32 KB), slow CPU’s (e.g., 5 µsec for a comparison, about 2−5 MIPS), a slow global network (a bus with

typically 100 Mbit/sec), and a modest number of CPU’s in the entire system (128). It would be very interesting to

see the analysis with larger relations (e.g., 1−10 GB), more and faster CPU’s (e.g., 1,000 × 50 MIPS), and a faster

network e.g., a modern hypercube or mesh with hardware routing. In such machines, multiple clusters could be the

better choice. On the other hand, communication between clusters will remain a significant expense. Wong and

Katz developed the concept of "local sufficiency" [292] that might provide guidance in declustering and replication

to reduce data movement between nodes. Other work on declustering and limiting declustering includes [65, 86,

94, 138, 140].

Finally, there are several hardware designs that attempt to overcome the shared-memory scaling problem,

e.g., the DASH project [3], the Wisconsin Multicube [98], and the Paradigm project [57]. However, these designs

follow the traditional separation of operating system and application program. They rely on page or cache-line

faulting and do not provide typical database concepts such as read-ahead and dataflow. Lacking separation of

mechanism and policy in these designs almost makes it imperative to implement dataflow and flow control for

database query processing within the query execution engine. At this point, none of these hardware designs has

been experimentally tested for database query processing.

New software systems designed to exploit parallel hardware should be able to exploit both the advantages of

shared memory, namely efficient communication, synchronization, and load balancing, and of distributed memory,

namely scalability to very high degrees of parallelism and reliability and availability through independent failures.

Figure 30 shows a general hierarchical architecture, which we believe combines these advantages. The important
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point is the combination of local busses within shared-memory parallel machines and a global interconnection net-

work between machines. The diagram is only a very general outline of such an architecture; many details are deli-

berately left out and unspecified. The network could be implemented using a bus such as an ethernet, a ring, a

hypercube, a mesh, or a set of point-to-point connections. The local busses may or may not be split into code and

data or by address range to obtain less contention and higher bus bandwidth and hence higher scalability limits for

the use of shared memory. Design and placement of caches, disk controllers, terminal connections, and local- and

wide-area network connections are also left open. Tape drives or other backup devices would be connected to

local busses.

Modularity is a very important consideration for such an architecture, i.e., the ability to add, remove, and

replace individual units. For example, it should be possible to replace all CPU boards with upgraded models

without having to replace memories or disks. Considering that new components will change communication

demands, e.g., faster CPU’s might require more local bus bandwidth, it is also important that the allocation of

boards to local busses can be changed. For example, it should be easy to reconfigure a machine with 4×16 CPU’s

into one with 8×8 CPU’s.

Beyond the effect of faster communication and synchronization, this architecture can also have a significant

effect on control overhead, load balancing, and resulting response time problems. Investigations in the Bubba pro-

ject at MCC demonstrated that large degrees of parallelism may reduce performance unless load imbalance and

overhead for startup, synchronization, and communication can be kept low [65]. For example, when placing 100

CPU’s either in 100 nodes or in 10 nodes of 10 CPU’s each, it is much faster to distribute query plans to all CPU’s

and much easier to achieve reasonably balanced loads in the second case than in the first case. Within each

shared-memory parallel node, load imbalance can be dealt with either by compensating allocation of resources,

e.g., memory for sorting or hashing, or by relatively efficient reassignment of data to processors.

Many of today’s parallel machines are built as one of the two extreme cases of this hierarchical design: a

distributed-memory machine uses single-CPU nodes, while a shared-memory machine consists of a single node.

Software designed for this hierarchical architecture will run on either conventional design as well as a genuinely

hierarchical machine, and will allow exploring tradeoffs in the range of alternatives in between. The most recent

version of Volcano’s exchange operator is designed for hierarchical memory, demonstrating that the operator

model of parallelization also offers architecture- and topology-independent parallel query evaluation [109]. In

other words, the parallelism operator is the only operator that needs to "understand" the underlying architecture,

while all data manipulation operators can be implemented without concern for parallelism, data distribution, and

flow control.

10. Parallel Algorithms

In the previous section, mechanisms for parallelizing a database query execution engine were discussed. In

this section, individual algorithms and their special cases for parallel execution are considered in more detail.

Parallel database query processing algorithms are typically based on partitioning an input using range- or hash-

partitioning. Either form of partitioning can be combined with sort- and hash-based query processing algorithms;

in other words, the choices of partitioning scheme and local algorithm are almost always entirely orthogonal.

When building a parallel system, there is sometimes a question whether it is better to parallelize a slower

sequential algorithm with better speedup behavior or a fast sequential algorithm with inferior speedup behavior.

The answer to this question depends on the design goal and the planned degree of parallelism. In the few single-
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user database systems in use, the goal has been to minimize response time; for this goal, a slow algorithm with

linear speedup implemented on highly parallel hardware might be the right choice. In multi-user systems, the goal

typically is to minimize resource consumption in order to maximize throughput. For this goal, only the best

sequential algorithms should be parallelized. For example, Boral and DeWitt concluded that parallelism is no sub-

stitute for effective and efficient indices [38]. For a new parallel algorithm with impressive speedup behavior, the

question of whether or not the underlying sequential algorithm is the most efficient choice should always be con-

sidered.

10.1. Parallel Selections and Updates

Since disk I/O is a performance bottleneck in many systems, it is natural to parallelize it. Typically, either

asynchronous I/O or one process per participating I/O device is used, be it a disk or an array of disks under a single

controller. If a selection attribute is also the partitioning attribute, fewer than all disks will contain selection

results, and the number of processes and activated disks can be limited. Notice that parallel selection can be com-

bined very effectively with local indices, i.e., indices covering the data of a single disk or node. In general, it is

most efficient to maintain indices close to the stored data sets, i.e., on the same node in a parallel database system.

For updates of partitioning attributes in a partitioned data set, items may need to move between disks and

sites, just as items may move if a clustering attribute is updated. Thus, updates of partitioning attributes may

require setting up data exchange with producers and consumers in order to maintain the consistency of the parti-

tioning. The fact that updating partitioning attributes is more expensive is one reason why immutable (or nearly

immutable) identifiers or keys are usually used as partitioning attributes.

10.2. Parallel Sorting

Since sorting is the most expensive operation in many of today’s database management systems, much

research has been dedicated to parallel sorting [13, 15, 31, 105, 147, 163, 183, 190, 228]. There are two dimen-

sions along which parallel sorting methods can be classified: the number of their parallel inputs (e.g., scan or sub-

plans executed in parallel) and the number of parallel outputs (consumers) [105]. As sequential input or output

restrict the throughput of parallel sorts, we assume a multiple-input multiple-output parallel sort here, and further

assume that the input items are partitioned randomly with respect to the sort attribute and that the output items

should be range-partitioned and sorted.

Considering that data exchange is expensive, both in terms of communication and synchronization delays,

each data item should be exchanged only once between processes. Thus, most parallel sort algorithms consist of a

local sort and a data exchange step. If the data exchange step is done first, quantiles must be known to ensure load

balancing during the local sort step. Such quantiles can be obtained from histograms in the catalogs or by sam-

pling. It is not necessary that the quantiles be precise; a reasonable approximation will suffice.

If the local sort is done first, the final local merging should pass data directly into the data exchange step. On

each receiving site, multiple sorted streams must be merged during the data exchange step. One of the possible

problems is that all producers of sorted streams first produce low key values, limiting performance by the speed of

the first (single!) consumer, then all producers switch to the next consumer, etc.

If a different partitioning strategy than range-partitioning is used, sorting with subsequent partitioning is not

guaranteed to be deadlock-free in all situations. Deadlock will occur if (i) multiple consumers feed multiple pro-

ducers, and (ii) each producer produces a sorted stream and each consumer merges multiple sorted streams, and
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Figure 31. Scenario with Possible Deadlock.

(iii) some key-based partitioning rule is used other than range partitioning, i.e., hash partitioning, and (iv) flow con-

trol is enabled, and (v) the data distribution is particularly unfortunate. Figure 31 shows the scenario with two pro-

ducers and two consumers. Presume that the left producer produces the stream 1, 3, 5, 7, ..., 999, 1002, 1004,

1006, 1008, ..., 2000 while the right producer produces 2, 4, 6, 8, ..., 1000, 1001, 1003, 1005, 1007, ..., 1999. The

merging consumers must receive the first item from each producer before they can create their first output item and

remove additional items from their input buffers. However, the producers will need to produce 500 items each

(and insert them into one consumer’s input buffer, all 500 for one consumer) before they will send their first item

to the other consumer. The data exchange buffer needs to hold 1000 items at one point of time, 500 on each side

of Figure 31, minus some items that are in output and input buffers currently being filled or emptied. If flow con-

trol is enabled and the exchange buffer (flow control slack) is less than 500 items, deadlock will occur.

The reason deadlock can occur in this situation is that the producers need to ship data in the order obtained

from their input subplan while the consumers need to receive data in sorted order as required by the merge. Thus,

there are two sides which both require absolute control over the order in which data pass over the process boun-

dary. If the two requirements are incompatible, an unbounded buffer is required to ensure freedom from deadlock.

In order to avoid deadlock, it must be ensured that one of the conditions outlined earlier is not satisfied. The

second condition is the easiest to avoid, and should be focussed on. If the receiving processes do not perform a

merge, i.e., the individual input streams are not sorted, deadlock cannot occur because the slack given in the flow

control must be somewhere, either at some producer or some consumer or several of them, and the process holding

the slack can continue to process data, thus preventing deadlock.

Our recommendation is to avoid the above situation, i.e., to ensure that such query plans are never generated

by the optimizer. Consider for which purposes such a query plan would be used. The typical scenario is that

Sort Sort

odd even odd even

Figure 32. Deadlock-Free Scenario.
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multiple processes perform a merge join of two inputs, and each (or at least one) input is sorted by several pro-

ducer processes. An alternative scenario that avoids the problem is shown in Figure 32. Result data are partitioned

and sorted as in the previous scenario. The important difference is that the consumer processes do not merge mul-

tiple sorted incoming streams.

An interesting parallel sorting method with balanced communication and without the possibility of deadlock

in spite of local sort followed by data exchange (if the data distribution is known a priori) is to sort locally only by

the position within the final partition and then exchange data guaranteeing a balanced data flow. This method

might be best seen in an example: Consider 10 partitions with key values from 0 to 999 in a uniform distribution.

The goal is to have all key values between 0 to 99 sorted on site 0, between 100 and 199 sorted on site 1, etc. First,

each partition is sorted locally at its original site, without data exchange, on the the last two digits only, ignoring

the first digit. Thus, each site has a sequence like 200, 301, 401, 902, 2, 603, 804, 605, 105, 705, ... 999, 399. Now

each site sends data to its correct final destination. Notice that each site sends data simultaneously to all other sites,

creating a balanced data flow among all producers and consumers. While this method seems elegant, its problem is

that it requires fairly detailed distribution information to ensure the desired balanced data flow.

In shared-memory machines, memory must be divided over all concurrent sort processes. Thus, the more

processes are active, the less memory each one can get. The importance of this memory division is the limitation it

puts on the size of initial runs and on the fan-in in each merge process. In other words, large degrees of parallelism

may impede performance because they increase the number of merge levels. Figure 33 shows how the number of

merge levels growths with increasing degrees of parallelism, i.e., decreasing memory per process and merge fan-

in. For input size R , total memory size M , and P parallel processes, the merge depth L is L =
logM / P − 1((R / P ) / (M / P )) = logM / P − 1(R / M ).
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Figure 33. Merge Depth as a Function of Parallelism.
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The optimal degree of parallelism must be determined considering the tradeoff between parallel processing and

large fan-ins, somewhat similar to the tradeoff between fan-in and cluster size. Extending this argument using the

duality of sorting and hashing, too much parallelism in hash-partitioning on shared-memory machines can also be

detrimental, both for aggregation and for binary matching.

10.3. Parallel Aggregation and Duplicate Removal

Parallel algorithms for aggregation and duplicate removal are best divided into a local step and a global step.

First, duplicates are eliminated locally and then data are partitioned to detect and remove duplicates from different

original sites. For aggregation, local and global aggregate functions may differ. For example, to perform a global

count, the local aggregation counts while the global aggregation sums local counts into a global count.

For local hash-based aggregation, a special technique might improve performance. Instead of creating

overflow files locally on hash table overflow, items are moved directly to their final site. Hopefully, this site can

aggregate them immediately into the local hash table because a similar item already exists. In many recent

distributed-memory machines, it is faster to ship an item to another site than to do a local disk I/O.17 The advan-

tage of this technique is that disk I/O is required only when the aggregation output size does not fit into the aggre-

gate memory available on all machines, while the standard local aggregation-exchange-global aggregation scheme

requires local disk I/O if any local output size does not fit into a local memory. The difference between the two is

determined by the degree to which the original input is already partitioned (usually not at all), making this tech-

nique very beneficial.

10.4. Parallel Joins and Other Binary Matching Operations

Binary matching operations such as join, semi-join, outer join, intersection, union, and difference are dif-

ferent than the previous operations exactly because they are binary. For bushy parallelism, i.e, a join for which

two subplans create the two inputs independently from one another in parallel, we might consider symmetric hash

join algorithms. Instead of differentiating build and probe inputs, the symmetric hash join uses two hash tables,

one for each input. When a data item (or packet of items) arrives, the join algorithm first determines which input it

came from, and then joins the new data items with the hash table built from the other input as well as inserting the

new data items into its hash table such that data items from the other input arriving later can be joined correctly.

Such a symmetric hash join algorithm has been used in XPRS, a shared-memory high-performance extensible-

relational database system [134, 267, 268]. The advantage of symmetric matching algorithms is that they are

independent of the data rates of the inputs; their disadvantage is that they require that both inputs fit in memory.

For parallelizing a single binary matching operation, there are basically two techniques, called here sym-

metric partitioning and fragment-and-replicate. In both cases, the global result is the union (concatenation) of all

local results. Some algorithms exploit the topology of certain architectures, e.g., ring- or cube-based communica-

tion networks [10, 201].

In the symmetric partitioning methods, both inputs are partitioned on the attributes relevant to the operation

(i.e., the join attribute for joins or all attributes for set operations), and then the operation is performed at each site.���������������������������������������������������������
17 In fact, some distributed-memory vendors attach disk drives not to the primary processing nodes but to spe-

cial "I/O nodes" because network delay is negligible compared to I/O time, e.g. in Intel’s iPSC/2 and its subsequent
parallel architectures.
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Both the Gamma and the Teradata database machines use this method. Notice that the partitioning method (usu-

ally hashed) and the local join method are independent of each other; Gamma and Grace use hash joins while Tera-

data uses merge-join.

In the fragment-and-replicate methods, one input is partitioned and the other one is broadcast to all sites.

Typically, the larger input is partitioned by not moving it at all, i.e., the existing partitions are processed at their

locations prior to the binary matching operation. Fragment-and-replicate methods were considered the join algo-

rithms of choice in early distributed database systems such as R*, SDD-1, and distributed Ingres because commun-

ication costs overshadowed local processing costs, and it was cheaper to send a small input to a small number of

sites than to partition both a small and a large input.

A technique for reducing network traffic during join processing in distributed database systems uses redun-

dant semi-joins [21, 58, 99], and the idea can also be used in distributed-memory parallel systems. for example,

consider the join on a common attribute A of relations R and S stored on two different nodes in a network, say r

and s . The semi-join method transfers a duplicate-free projection of R on A to s , performs a semi-join there to

determine the items in S that actually participate in the join result, and ships these items to r for the actual join. In

other words, based on the relational algebra law that

R JOIN S = R JOIN (S SEMIJOIN πA R ),

cost savings of not shipping all of S were realized at the expense of projecting and shipping the R.A -column and

executing the semi-join. Of course, this idea can be used symmetrically to reduce R or S or both, and all opera-

tions (projection, duplicate removal, semi-join, and final join) can be executed in parallel on both r and s or on

more than two nodes using the parallel join strategies discussed earlier in this subsection. Furthermore, there are

probabilistic variants of this idea that use bit vector filtering instead of semi-joins, discussed later in its own sub-

section.

Roussopoulos and Kang recently showed that symmetric semi-joins are particularly useful [221]. Using the

equalities (for a join of relations R and S on attribute A )

R JOIN S = R JOIN
�

S SEMIJOIN πA R
��

(a)=
�

R SEMIJOIN πA

�
S SEMIJOIN πA R

�����
JOIN

�
S SEMIJOIN πA R

��

(b)=
�

R SEMIJOIN����������������� πA

�
S SEMIJOIN����������������� πA R

�� ��
JOIN

�
S SEMIJOIN πA R

��
,

they designed a four-step procedure to compute the join of two relations stored at two sites. First, the first

relation’s join attribute column R.A is sent duplicate-free to the other relation’s site, s . Second, the first semi-join

is computed at s , and either the matching values (term (a) above) or the non-matching values (term (b) above) of

the join column S.A are sent back to the first site, r . The choice between (a) and (b) is made based on the number

of matching and non-matching18 values of S.A . Third, site r determines which items of R will participate in the

join R JOIN S , i.e., R SEMIJOIN S . Fourth, both input sites send exactly those items that will participate in the

join R JOIN S to the site that will compute the final result, which may or may not be one of the two input sites. Of���������������������������������������������������������
18 SEMIJOIN����������������� stands for the anti-semi-join, which determines those items in the first input that do not have a

match in the second input.
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course, this two-site algorithm can be used across any number of sites in a parallel query evaluation system.

Typically, each data item is exchanged only once across the interconnection network in a parallel algorithm.

However, for parallel systems with small communication overhead, in particular for shared-memory systems, and

in parallel processing systems with processors without local disk, it may be useful to spread each overflow file over

all available nodes and disks in the system. The disadvantage of the scheme may be communication overhead;

however, the advantages of load balancing and cumulative bandwidth while reading a partition file have led to the

use of this scheme both in the Gamma and SDC database machines, called bucket spreading in the SDC design

[74, 165].

For parallel non-equi-joins, a symmetric fragment-and-replicate method has been proposed by Stamos and

Young [261]. As shown in Figure 34, processors are organized into rows and columns. One input relation is parti-

tioned over rows and partitions are replicated within each row, while the other input is partitioned and replicated

over columns. Each item from one input "meets" each item from the other input at exactly one site, and the global

join result is the concatenation of all local joins.

Avoiding partitioning as well as broadcasting for many joins can be accomplished with a physical database

design that considers frequently performed joins and distributes and replicates data over the nodes of a parallel or

distributed system such that many joins already have their input data suitably partitioned. Katz and Wong formal-

ized this notion as local sufficiency [153, 292]; more recent research on the issue was performed in the Bubba pro-

ject [65].

For joins in distributed systems, a third class of algorithms, called fetch-as-needed, was explored. The idea

of these algorithms is that one site performs the join by explicitly requesting (fetching) only those items from the

other input needed to perform the join [67, 287]. If one input is very small, fetching only the necessary items of

the larger input might seem advantageous. However, this algorithm is a particularly poor implementation of a

semi-join technique discussed above. Instead of requesting items or values one by one, it seems better to first pro-

ject all join attribute values, ship (stream) them across the network, perform the semi-join using any local binary

matching algorithm, and then stream exactly those items that will be required for the join back to the first site. The

difference between the semi-join technique and fetch-as-needed is that the semi-join scans the first input twice,

once to extract the join values and once to perform the real join, while fetch-as-needed needs to work on each data

R

S

Figure 34. Symmetric Fragment-and-Replicate Join.
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item only once.

10.5. Parallel Universal Quantification

In our previous discussion on sequential universal quantification, we discussed four algorithms for universal

quantification or relational division, namely naive division (a direct, sort-based algorithm), hash-division (direct,

hash-based), and sort- and hash-based aggregation (indirect) algorithms, which might require semi-joins and dupli-

cate removal in the inputs.

For naive division, pipelining can be used between the two sort operators and the division operator. How-

ever, both quotient partitioning and divisor partitioning can be employed as described below for hash-division.

For algorithms based on aggregation, both pipelining and partitioning can be applied immediately using stan-

dard techniques for parallel query execution. While partitioning seems to be a promising approach, it has an

inherent problem due to the possible need for a semi-join. Recall that in the example for universal quantification

using transcript and course relations, the join attribute in the semi-join (course-no) is different than the grouping

attribute in the subsequent aggregation (student-id). Thus, the Transcript relation has to be partitioned twice, once

for the semi-join and once for the aggregation.

For hash-division, pipelining has only limited promise because the entire division is performed within a sin-

gle operator. However, both partitioning strategies discussed earlier for hash table overflow can be employed for

parallel execution, i.e., quotient partitioning and divisor partitioning [102, 113].

For hash-division with quotient partitioning, the divisor table must be replicated in the main memory of all

participating processors. After replication, all local hash-division operators work completely independently of

each other. Clearly, replication is trivial for shared-memory machines, in particular since a single copy of the divi-

sor table can be shared without synchronization among multiple processes once it is complete.

When using divisor partitioning, the resulting partitions are processed in parallel instead of in phases as dis-

cussed for hash table overflow. However, instead of tagging the quotient items with phase numbers, processor net-

work addresses are attached to the data items, and the collection site divides the set of all incoming data items over

the set of processor network addresses. In the case that the central collection site is a bottleneck, the collection

step can be decentralized using quotient partitioning.

11. Non-Standard Query Processing Algorithms

In this section, we briefly review the query processing needs of data models and database systems for non-

standard applications. In many cases, the logical operators defined for new data models can use existing algo-

rithms, e.g., for intersection. The reason is that for processing, bulk data types such as array, set, bag (multi-set),

or list are represented as sequences similar to the streams used in the query processing techniques discussed earlier,

and the algorithms to manipulate these bulk types are equal to the ones used for sets of tuples, i.e., relations. How-

ever, some algorithms are genuinely different from the algorithms we have surveyed so far. In this section, we

review operators for nested relations, temporal and scientific databases, object-oriented databases, and more meta-

operators for additional query processing control.

There are several reasons for integrating these operators into an algebraic query processing system. First, it

permits efficient data transfer from the database to the application embodied in these operators. The interface

between database operators is designed to be as efficient as possible; the same efficient interface should also be

used for applications. Second, operator implementors can take advantage of the control provided by the meta-
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operators. For example, an operator for a scientific application can be implemented in a single-process environ-

ment and later parallelized with the exchange operator. Third, query optimization based on algebraic transforma-

tion rules can cover all operators, including operations that are normally considered database application code. For

example, using algebraic optimization tools such as the EXODUS and Volcano optimizer generators [100, 108],

optimization rules that can move an unusual database operator in a query plan are easy to implement. For exam-

ple, for a sampling operator, a rule might permit transforming an algebra expression to query a sample instead of

sampling a query result.

11.1. Nested Relations

Nested relations, or Non-First-Normal-Form (NF2) relations, permit relation-valued attributes in addition to

atomic values such as integers and strings used in the normal or "flat" relational model. For example, in an order

processing application, the set of individual line items on each order could be represented as a nested relation, i.e.,

as part of an order tuple. Figure 35 shows a NF2 relation with two tuples with two and three nested tuples and the

equivalent normalized relations, which we call the master and detail relations. Nested relations can be used for all

one-to-many relationships but are particularly well-suited for the representation of "weak entities" in the Entity-

Relationship (ER) Model [51], i.e., entities whose existence and identification depends on another entity as for

order entries in Figure 35. In general, nested sub-tuples may include relation-valued attributes, with arbitrary nest-

ing depth. The advantages of the NF2 model are that component relationships can be represented more naturally

than in the fully normalized model, many frequent join operations can be avoided, and structural information can

be used for physical clustering. Its disadvantage is the added complexity, in particular in storage management and

query processing.

Several algebras for nested relations have been defined, e.g. [78, 231]. Our discussion here focuses not on

the conceptual design of NF2 algebras but on algorithms to manipulate nested relations, which are unfortunately

not very well documented to-date.

� �������������������������������������������������������������������������������������
Order Customer Date Items
-No -No Part-No Count� �������������������������������������������������������������������������������������
110 911 910902 4711 8

2345 7� �������������������������������������������������������������������������������������
112 912 910902 9876 3

2222 1
2357 9� ����������������������������������������������������������������������������������������
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110 2345 7
112 9876 3
112 2222 1
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Figure 35. Nested Relation and Equivalent Flat Relations.
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Two operations required in NF2 database systems are operations that transform a NF2 relation into a normal-

ized relation with atomic attributes only, and vice versa. The first operation is frequently called unnest or flatten;

the opposite direction is called the nest operation. The unnest operation can be performed in a single scan over the

NF2 relation that includes the nested subtuples; both normalized relations in Figure 35 and their join can be derived

readily enough from the NF2 relation. The nest operation requires grouping of tuples in the detail relation and a

join with the master relation. Grouping and join can be implemented using any of the algorithms for aggregate

functions and binary matching discussed earlier, i.e., sort- and hash-based sequential and parallel methods.

All operations defined for flat relations can also be defined for nested relations, in particular selection, join,

and set operations (union, intersection, difference). For selections, additional power is gained with selection condi-

tions on subtuples and sets of subtuples using set comparisons or existential or universal quantification. In princi-

ple, since the nested relation is a relation, any relational calculus and algebra expression should be permitted for it.

In the example of Figure 35, there may be a selection of orders in which the ordered quantity of all items is more

than 100, which is a universal quantification. The algorithms for selections with quantifier are similar to the ones

discussed earlier for flat relations, e.g., relational semi-join and division, but are easier to implement because the

grouping process built into the flat-relational algorithms is inherent in the nested tuple structure.

For joins, similar considerations apply. Matching algorithms discussed earlier can be used in principle.

They may be more complex if the join predicate involves subrelations, and algorithm combinations may be

required that are derived from a flat-relation query over flat relations equivalent to the NF2 query over the nested

relations. However, there should be some performance improvements possible if the grouping of values in the

nested relations can be exploited, as for example in the join algorithms described by Rosenthal et al.& [217].

11.2. Temporal and Scientific Database Management

For a variety of reasons, management and manipulation of statistical, temporal, and scientific data are gain-

ing interest in the database research community. Most work on temporal databases has focused on its semantics

and representation in data models and query languages [188, 256]; some work has considered special storage struc-

tures, e.g. [1, 180, 218, 242], algebraic operators, e.g., temporal joins [238], and optimization of temporal queries,

e.g. [120, 237]. While logical query algebras require extensions to accommodate time, only some storage struc-

tures and algorithms, e.g., multi-dimensional indices, differential files, and versioning, and the need for approxi-

mate selection and matching (join) predicates are new in the query execution algorithms for temporal databases.

A number of operators can be identified that both add functionality to database systems used to process

scientific data and fit into the database query processing paradigm. Schneider et al. considered algorithms for join

predicates that express proximity, i.e., join predicates of the form R.A − c 1 ≤ S.B ≤ R.A + c 2 [75]. Such join

predicates operations are very different from the usual use of relational join. They do not reestablish relationships

based on identifying keys but match data values that express a dimension in which distance can be defined, in par-

ticular time. Traditionally, such join predicates have been considered non-equi-joins and were evaluated by a vari-

ant of nested loops join. However, such "band joins" can be executed much more efficiently by a variant of

merge-join that keeps a "window" of inner-relation tuples in memory or by a variant of hash join that uses range-

partitioning and assigns some build tuples to multiple partition files. A similar partitioning model must be used for

parallel execution, requiring multi-cast for some tuples. Clearly, these variants of merge-join and hash join will

outperform nested loops for large inputs unless the band is so wide that the join result approaches the Cartesian

product.
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For storage and management of the massive amounts of data resulting from scientific experiments, database

techniques are very desirable. Operators for processing time series in scientific databases are based on an interpre-

tation of a stream between operators not as a set of items (as in most database applications) but as a sequence in

which the order of items in a stream has semantic meaning. For example, data reduction using interpolation as

well as extrapolation can be performed within the stream paradigm. Similarly, digital filtering [130] also fits the

stream processing protocol very easily. Interpolation, extrapolation, and digital filtering with a single algorithm

(physical operator) were implemented in the Volcano system to verify this fit, including their optimization and

parallelization [290]. Another promising candidate is visualization of single-dimensional arrays such as time

series.

Problems that do not fit the stream paradigm, e.g., many matrix operations such as transformations used in

linear algebra, Laplace or Fast Fourier Transform, and slab (multi-dimensional sub-array) extraction, are not as

easy to integrate into database query processing systems. Some of them seem to fit better into the storage manage-

ment sub-system rather than the algebraic query execution engine. For example, slab extraction has been

integrated into the NetCDF storage and access software [47, 212].

11.3. Object-Oriented Database Systems

Research into query processing for extensible and object-oriented systems has been growing rapidly in the

last few years. Most proposals or implementations use algebras for query processing, e.g. [2, 63, 101, 155, 192,

245-247, 273, 275, 283, 295]. These algebras resemble relational algebra in the sense that they focus on bulk data

types but are generalized to support operations on arrays, lists, etc., user-defined operations (methods) on

instances, heterogeneous bulk types, and inheritance. The use of algebras permits several important conclusions.

First, naive execution models that execute programs as if all data were in memory are not the only alternative.

Second, data manipulation operators can be designed and implemented that go beyond data retrieval and permit

some amount of data reduction, aggregation, and even inference. Third, algebraic execution techniques including

the stream paradigm and parallel execution can be used in object-oriented data models and database systems.

Fourth, algebraic optimization techniques will continue to be useful.

Associative operations are an important part in all object-oriented algebras because they permit reducing

large amounts of data to the interesting subset of the database suitable for further consideration and processing.

Thus, set processing and matching algorithms as discussed earlier in this survey will be found in object-oriented

systems, implemented in such a way that they can operate on heterogeneous sets. The challenge for query optimi-

zation is to map a complex query involving complex behavior and complex object structures to primitives available

in a query execution engine. Translating an initial request with abstract data types and encapsulated behavior

coded in a computationally complete language into an internal form that both captures the entire query’s semantics

and allows effective query optimization is still an open research issue [68, 101].

Beyond associative indices discussed earlier, object-oriented systems can also benefit from special relation-

ship indices, i.e., indices that contain condensed information about inter-object references. In principle, these

index structures are similar to join indices [282] but can be generalized to support multiple levels of referencing.

Examples for indices in object-oriented database systems include the work of Maier and Stein in the Gemstone

object-oriented database system product [186], Bertino et al. in the Orion project [24-26] and by Kemper et al. in

the GOM project [157-159]. At this point, it is to early to decide which index structures will be the most useful

because the entire field of query processing in object-oriented systems is still developing rapidly, from query
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languages to algebra design, algorithm repertoire, and optimization techniques. Other areas of intense current

research interest are buffer management and clustering of objects on disk.

One of the big performance penalties in object-oriented database systems is the expense of "pointer chasing"

(using OID references) which may involve object faults, also called "goto’s on disk." In order to reduce I/O cost,

some systems use what amounts to main memory databases or map the entire database into virtual memory. For

systems with an explicit database on disk and an in-memory buffer, there are various techniques to detect object

faults; some commercial object-oriented database systems use hardware mechanisms originally perceived and

implemented for virtual-memory systems. While such hardware support makes fault detection faster, it does not

address the problem of expensive I/O operations. In order to reduce actual I/O cost, read-ahead and planned

buffering must be used. Palmer and Zdonik recently proposed keeping access patterns or sequences and activating

read-ahead if accesses equal or similar to a stored pattern are detected [208]. Another recent proposal for efficient

assembly of complex objects uses a window (a small set) of open references and resolves, at any point of time, the

most convenient one by fetching this object or component from disk, which has shown dramatic improvements in

disk seek times and makes complex object retrieval more efficient and more independent of object clustering [154].

11.4. More Meta-Operators

The exchange operator used for parallel query processing is not a normal operator in the sense that it does

not manipulate, select, or transform data. Instead, the exchange operator provides control of query processing in a

way orthogonal to what a query does and what algorithms it uses. Therefore, we call it a meta-operator. There are

several other meta-operators that can be used in database query processing, and we survey them briefly in this sec-

tion.

In query processing systems, dataflow is usually paced or driven from the top, the consumer. The left-most

diagram of Figure 36 shows the control flow of normal iterators. The data flow of all diagrams in Figure 36 is

assumed to be upward. However, in real-time systems that capture data from experiments, this approach may not

be realistic because the data source, e.g., a satellite receiver, has to be able to unload data as they arrive. In such

systems, data-driven operators, shown in the second diagram of Figure 36, might be more appropriate. To com-

bine the algorithms implemented and used for query processing with such real-time data capture requirements, one

could design data flow translation meta-operators. The first such operator which we call the active scheduler can

be used between a demand-driven producer and a data-driven consumer. In this case, neither operator will

schedule the other; therefore, an active scheduler that demands items from the producer and forces them onto the

consumer will glue these two operators together. An active scheduler schematic is shown in the third diagram of

Standard
Iterator

Data-Driven
Operator

Active
Scheduler

Passive
Scheduler

Figure 36. Operators, Schedulers, and Control Flow.
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Figure 36. The opposite case, a data-driven producer and a demand-driven consumer, has two operators, each try-

ing to schedule the other one. A second flow control operator, called the passive scheduler, can be built that

accepts procedure calls from either neighbor and resumes the other neighbor in a co-routine fashion to ensure that

the resumed neighbor will eventually demand the item the scheduler just received. The final diagram of Figure 36

shows the control flow of a passive scheduler. (Notice that this case is similar to the bracket model of parallel

operator implementations discussed earlier in which an operating system or networking software layer had to be

placed between data manipulation operators and perform buffering and flow control.)

For very complex queries, it might be useful to break the data flow between operators at some point, for two

reasons. First, if too many operators run in parallel, contention for memory or temporary disks might be too

intense, and none of the operators will run as efficiently as possible. A long series of hybrid hash joins in a right-

deep query plan illustrates this situation. Second, due to the inherent error in selectivity estimation during query

optimization [146, 187], it might be worthwhile to execute only a subset of a plan, verify the correctness of the

estimation, and then resume query processing with another few steps. After a few processing steps have been per-

formed, their result size and other statistical properties such as minimum and maximum and approximate number

of duplicate values can be easily determined while saving the result on temporary disk.

In principle, this was done in Ingres’ original optimization method called Decomposition, except that Ingres

performed only one operation at a time before optimizing the remaining query [291, 294]. We propose alternating

more slowly between optimization and execution, i.e., to perform a "reasonable" number of steps between optimi-

zations, where reasonable may be three to ten selections and joins depending on errors and error propagation in

selectivity estimation. Stopping the data flow and resuming after additional optimization could very well turn out

to be the most reliable technique for very large, complex queries.

Implementation of this technique could be embodied in a new meta-operator, which we call the stop-and-go

operator, but further research is required to develop the techniques used for placing stop-and-go operators in com-

plex plans. An initial implementation of a stop-and-go operator that uses preoptimized alternative subplans is the

choose-plan operator implemented in Volcano and first described in 1989 [103]. In its current implementation, it

executes zero or more subplans and then invokes a decision function provided by the optimizer that decides which

of multiple equivalent plans to execute depending on intermediate result statistics, current system load, and run-

time values of query parameters unknown at optimization time. We plan on studying optimization and creation of

dynamic query evaluation plans for very complex queries using the Volcano optimizer generator.

The final function that can be encapsulated in a meta-operator is an operator that passes the result of a com-

mon subexpression to multiple consumers, as mentioned briefly in the section of the architecture of query execu-

tion engines. The problem is that multiple consumers, typically demand-driven and demand-driving their inputs,

will request items of the common subexpression result at different times or rates. The two standard solutions are

either to execute the common subexpression into a temporary file and let each consumer scan this file at will, or to

determine which consumer will require be the first to require the result of the common subexpression, to execute

the common subexpression as part of this consumer, and to create a file with the common subexpression result as a

by-product of the first consumer’s execution. Instead, we suggest a new meta-operator, which we call the split

operator, to be placed at the top of the common subexpression’s plan and which can serve multiple consumers at

their own paces. It automatically performs buffering to account for different paces, uses temporary disk space if

the discrepancies are too wide, and is suitably parameterized to permit both standard solutions described above.
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12. Additional Techniques for Performance Improvement

In this section, we consider some additional techniques that have been proposed in the literature or used in

real systems, and that have not been discussed in earlier sections of this survey. In particular, we consider precom-

putation, data compression, surrogate processing, bit vectors, and specialized hardware. Recently proposed tech-

niques that have not been fully developed are not discussed here, e.g., "racing" equivalent plans and terminating

the ones that seem not competitive after some small amount of time.

12.1. Precomputation and Derived Data

It is trivial to answer a query for which the answer is already known — therefore, precomputation of fre-

quently requested information is an obvious idea. The problem with keeping preprocessed information in addition

to base data is that it is redundant and must be invalidated or maintained upon updates to the base data.

Precomputation and of derived data such as relational views are duals. Thus, concepts and algorithms

designed for one will typically work well for the other. The main difference is the database user’s view: precom-

puted data are typically used after a query optimizer has determined that they can be used to answer a user query

against the base data, while derived data are known to the user and can be queried without regard to the fact that

they actually must be derived at run-time from stored based data. Not surprisingly, since derived data are likely to

be referenced and requested by users and application programs, precomputation of derived data has been investi-

gated, both for relational and object-oriented data models.

Indices are the simplest form of precomputed data since they are a redundant and, in a sense, precomputed

selection. They represent a compromise between a non-redundant database and one with complex precomputed

data because they can be maintained relatively efficiently.

The next more sophisticated form of precomputation are inversions as provided in System R’s "0th " proto-

type [48], view indices as analyzed by Roussopoulos [220], two-relation join indices as proposed by Valduriez

[282], or domain indices as used in the ANDA project (called VALTREE there) [77] in which all occurrences of

one domain (e.g., part number) are indexed together and each index entry contains a relation identification with

each record identifier. With join or domain indices, join queries can be answered very fast, typically faster than

using multiple single-relation indices. On the other hand, single-selection selections and updates may be slightly

slower if there are more entries for each indexed key.

For binary operators, there is a spectrum of possible levels of precomputations19, explored predominantly for

joins. The simplest form of precomputation in support of binary operations are individual indices, e.g., clustering

B-trees that ensure and maintain sorted relations. On the other extreme are completely materialized join results.

Intermediate levels are pointer-based joins [248] (discussed earlier in the section on matching) and join indices

[282]. For each form of precomputed result, the required redundant data structures must be maintained each time

the underlying base data are updated, and larger retrieval speedup might be paid for with larger maintenance over-

head.

Babb explored storing only results of outer join, but not the normalized base relations, in the content-

addressable file store (CAFS), and called this encoding join normal form [7]. Larson et al. investigated storing and

maintaining materialized views in relational database systems [33, 34, 177, 189, 277, 293]. Their hope was to���������������������������������������������������������
19 This paragraph was written using ideas and notes by José Blakeley.
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speed relational query processing by using derived data, possibly without storing all base data, and ensuring that

their maintenance overhead would be less than their benefits in faster query processing. For example, Blakeley

demonstrated that for a single join there exists a large range of retrieval and update mixes in which materialized

views outperform both join indices and hybrid hash join [34]. This investigation should be extended, however, for

more complex queries, e.g., three- and four-way joins, and for queries in object-oriented systems and emerging

database applications.

Hanson compared query modification (i.e., query evaluation from base relations) against the maintenance

costs of materialized views, and considered in particular the cost of immediate vs. deferred updates [131]. His

results indicate that for modest update rates, materialized views provide better system performance. Furthermore,

for modest selectivities of the view predicate, deferred view maintenance using differential files [242] outperforms

immediate maintenance of materialized views. However, Hanson also did not include multi-way joins in his study.

Sellis analyzed caching of results in a query language called Quel+ (which is a subset of Postquel [270])

over a relational database with procedural (QUEL) fields [240]. He also considered the case of limited space on

secondary storage used for caching query results, and replacement algorithms for query results in the cache when

the space becomes insufficient.

Links between records (pointers of some sort, e.g., record, tuple, or object identifiers) are another form of

precomputation. Links are particularly effective for system performance if they are combined with clustering

(assignment of records to pages). Database systems for the hierarchical and network models have used physical

links and clustering, but supported basically only queries and operations that were "precomputed" in this way.

Some researchers tried to overcome this restriction by building relational query engines on top of network systems,

e.g. [52, 216, 296]. However, with performance improvements in the relational world, these efforts seem to have

been abandoned. With the advent of extensible and object-oriented database management systems, combining

links and ad-hoc query processing might become a more interesting topic again. A recent effort for an extensible-

relational system are Starburst’s pointer-based joins discussed earlier [126, 248].

In order to ensure good performance for its extensive rule processing facilities, Postgres uses precomputation

and caching of the action parts of production rules [266, 270, 271]. For automatic maintenance of such derived

data, persistent "invalidation locks" are stored for detection of invalid data after updates to the base data. A perfor-

mance evaluation of this caching and invalidation scheme is still outstanding.

Finally, the Cactis project focused on maintenance of derived data in object-oriented environments [142].

The conclusions of this project include that incremental maintenance coupled with a fairly simple adaptive cluster-

ing algorithm is an efficient way to propagate updates to derived data.

12.2. Data Compression

A number of researchers have investigated the effect of compression on database systems and their perfor-

mance [106, 184, 222, 243]. There are two types of compression in database systems. First, the amount of redun-

dancy can be reduced by prefix- and suffix-truncation, in particular in indices, and by use of encoding tables (e.g.,

color combination "9" means "red car with black interior"). Second, compression schemes can be applied to attri-

bute values, e.g., adaptive Huffman coding or Ziv-Lempel methods [19, 178]. This type of compression can be

exploited most effectively in database query processing if all attributes of the same domain use the same encoding,

e.g., the "Part-No" attributes of datasets representing parts, orders, shipments, etc. because common encodings per-

mit comparisons without decompression.
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Most obviously, compression can reduce the amount of disk space required for a given data set. Disk space

savings has a number of ramifications on I/O performance. First, the reduced data space fits into a smaller physical

disk area; therefore, the seek distances and seek times are reduced. Second, more data fit into each disk page,

track, and cylinder, allowing more intelligent clustering of related objects into physically near locations. Third, the

unused disk space can be used for disk shadowing to increase reliability, availability, and I/O performance [30].

Fourth, compressed data can be transferred faster to and from disk. In other words, data compression is an effec-

tive means to increase disk bandwidth (not by increasing physical transfer rates but by increasing the information

density of transferred data) and to relieve the I/O bottleneck found in many high-performance database manage-

ment systems [38]. Fifth, in distributed database systems and in client-server situations, compressed data can be

transferred faster across the network than uncompressed data. Uncompressed data require either more network

time or a separate compression step. Finally, retaining data in compressed form in the I/O buffer allows more

records to remain in the buffer, thus increasing the buffer hit rate and reducing the number of I/O’s. The last three

points are actually more general. They apply to the entire storage hierarchy of tape, disk, controller caches, local

and remote main memories, and CPU caches.

For query processing, compression can be exploited far beyond improved I/O performance because

decompression can often be delayed until a relatively small data set is presented to the user or an application pro-

gram. First, exact-match comparisons can be performed on compressed data. Second, projection and duplicate

removal can be performed without decompressing data. The situation for aggregation is a little more complex

since the attribute on which arithmetic is performed typically must be decompressed. Third, neither the join attri-

butes nor other attributes need to be decompressed for most joins. Since keys and foreign keys are from the same

domain, and if compression schemes are fixed for each domain, a join on compressed key values will give the

same results as a join on normal, decompressed key values. It might seem unusual to perform a merge-join in the

order of compressed values, but it nonetheless is possible and will produce correct results.

There are a number of benefits from processing compressed data. First, materializing output records is faster

because records are shorter and less copying is required. Second, for inputs larger than memory, more records fit

into memory. In hybrid hash join, for instance, the fraction of the file that can be retained in the hash table and

thus be joined without any I/O is larger. During sorting, the number of records in memory and thus the number of

records per run is larger, leading to fewer runs and possibly fewer merge levels. Third, and very interestingly,

skew is less likely to be a problem. The goal of compression is to represent the information with as few bits as

possible. Therefore, each bit in the output of a good compression scheme has close to maximal information con-

tent, and bit columns seen over the entire file are unlikely to be skewed. Furthermore, bit columns will not be

correlated. Thus, the compressed key values can be used to create a hash value distribution that is almost

guaranteed to be uniform, i.e., optimal for hashing in memory and partitioning to overflow files as well as to multi-

ple processors in parallel join algorithms.

12.3. Surrogate Processing

Another very useful technique in query processing is the use of surrogates for intermediate results. A surro-

gate is a reference to a data item, be it a logical object identifier (OID) used in object-oriented systems or a physi-

cal record identifier (RID) or location. Instead of keeping a complete record in memory, only the fields that are

used immediately are kept and the remainder replaced by a surrogate, which has in principle the same effect as

compression.
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The simplest case in which surrogate processing can be exploited is in avoiding copying. Consider a rela-

tional join; when two items satisfy the join predicate, a new tuple is created from the two original ones. Instead of

copying the data fields, it is possible to create only a pair of RID’s or pointers to the original records if they are

kept in memory. If a record is 50 times larger than a RID, e.g., 8 B vs. 400 B, the effort spent on copying bytes is

reduced by that factor.

Copying is already a major part of the CPU time spent in many query processing systems, but it is becoming

more expensive for two reasons. First, many modern CPU designs and implementations are optimized for an

impressive number of instructions per second but do not provide the performance improvements in mundane tasks

such as moving bytes from one memory location to another [205]. Second, many modern computer architectures

employ multiple CPU’s accessing shared memory over one bus because this design permits fast and inexpensive

parallelism. Although alleviated by local caches, bus contention is the major bottleneck and limitation to scalabil-

ity in shared-memory parallel machines. Therefore, reductions in memory-to-memory copying in database query

execution engines permits higher useful degrees of parallelism in shared-memory machines.

A second example for surrogate processing was mentioned earlier in connection with indices. To evaluate a

conjunction with multiple clauses, each of which is supported by an index, it might be useful to perform an inter-

section of RID-lists to reduce the number of records needed before actual data are accessed.

A third case is the use of indices and RID’s to evaluate joins, for example in the query processing techniques

used in Ingres [169, 170] and IBM’s hybrid join [55] discussed earlier in the section on binary matching.

Surrogate processing has also been used in parallel systems, in particular distributed-memory implementa-

tions, to reduce network traffic. For example, Lorie and Young used RID’s to reduce the communication time in

parallel sorting by sending (sort key, RID) pairs to a central site, which determines each record’s global rank, and

then re-partitioning and merging records very quickly by their rank alone without further data comparisons [183].

Berra et al. considered indexing and retrieval organizations for very large (relational) knowledge bases and

databases [23, 62]. They employed three techniques, concatenated code words (CCW’s), superimposed code

words (SCW’s), and transformed inverted lists (TIL’s). TIL’s are normal index structures for all attributes of a

relation that permit answering conjunctive queries by bitwise anding. CCW’s and SCW’s use hash values of all

attributes of a tuple and either concatenate such hash values or bitwise or them together. The resulting code words

are then used as keys in indices. In their particular architecture, Berra et al. consider associative memory and opti-

cal computing techniques to search efficiently through such indices, although conventional software techniques

could be used as well.

Techniques based on hash values and bit patterns have also been used in other contexts; we discuss bit vector

filtering in the next subsection.

12.4. Bit Vector Filtering

In parallel systems, bit vectors have been used for what we call here "probabilistic semi-joins." Consider a

relational join to be executed on a distributed-memory machine with repartitioning of both input relations on the

join attribute. It is clear that communication effort could be reduced if only the tuples that actually contribute to

the join result, i.e., those with a match in the other relation, needed to be shipped across the network. To accom-

plish this, distributed database systems were designed to make extensive use of semi-joins, e.g., SDD-1 [21].
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A faster alternative to semi-joins, which, as discussed earlier, require basically the same computational effort

as natural joins, is the use of bit vectors [6]. A bit vector with N bits is initialized with zeroes, and all items in the

first (preferably the smaller) input are hashed on their join key to 0,...,N − 1. For each item, one bit in the bit vec-

tor filter is set to one; hashing collisions are ignored. After the first join input has been exhausted, the bit vector is

used to filter the second input. Data items of the second input are hashed on their join key value, and only items

for which the bit is set to one can possibly participate in the join. There is some chance for false passes in the case

of collisions, i.e., items of the second input pass the bit vector filter although they actually do not participate in the

join, but if the bit vector is sufficiently large, the number of false passes is very small. For one-to-one match

operations other than join, e.g., outer join and union, bit vectors can also be used but the algorithm must be

modified to ensure that items that do not pass the bit vector are properly included in the operation’s output stream.

In general, if the number of bits is about twice the number of items in the first input, bit vectors are very

effective. If many more bits are available, the bit vector can be split into multiple subvectors or multiple bits can

be set for each item using multiple hash functions, reducing the number of false passes. Babb analyzed the use of

multiple bit vectors in detail [6].

The Gamma relational database machine demonstrated the effectiveness of bit vector filtering in relational

join processing on distributed-memory hardware [72-74, 92]. While Gamma used bit vector filtering basically

only for joins, it is equally applicable to all other one-to-one match operators, including semi-join, outer join, inter-

section, union, and difference. For operators that include non-matching items in their output, e.g., outer joins and

unions, part of the result can be obtained before network transfer, based solely on the bit vector. For parallel rela-

tional division (universal quantification), bit vector filtering can be used on the divisor attributes to eliminate most

of the dividend items that do not pertain to any divisor item. Thus, our earlier assessment that universal

quantification can be performed as fast as existential quantification (a semi-join of dividend and divisor relations)

even extends to special techniques used to boost join performance.

Bit vector filtering can also be exploited in sequential systems. Consider a merge-join with sort operations

on both inputs. If the bit vector is built based on the input of the first sort, i.e., the bit vector is completed when all

data have reached the first sort operator. This bit vector can then be used to reduce the input into the second sort

operator on the (presumably larger) second input. Depending on how the sort operation is organized into phases, it

might even be possible to create a second bit vector from the second merge-join input and use it to reduce the first

join input while it is being merged.

For sequential hash joins, bit vectors can be used in two ways. First, they can be used to filter items of the

probe input using a bit vector created from items of the build input. This use of bit vectors is analogous to bit vec-

tor usage in parallel systems and for merge-join. Second, bit vectors can be used for each partition in each recur-

sion level. In the Volcano query processing system, the operator implementing hash join, intersection, etc. uses the

space used as anchor for each bucket’s linked list for a small bit vector filter after the bucket has been spilled to an

overflow file. Only those items from the probe input that pass the bit vector filter are written to the probe overflow

file. This technique is used in each recursion level of overflow resolution. Thus, during recursive partitioning,

relatively small and efficient bit vector filters can used repeatedly and at increasingly finer granularity to remove

items from the probe input that do not contribute to the join result. Bit vectors could also be used to remove items

from the build input using bit vectors created from the probe input; however, since the probe input is presumed the

larger input and hash collisions in the bit vector would make the filter less effective, it may or may not be an effec-

tive technique.
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In order to find and exploit a dual in the realm of sorting and merge-join to bit vector filtering in each recur-

sion level of recursive hash join, sorting of multiple inputs must be divided into individual merge levels. In other

words, for a merge-join of inputs R and S , the sort activity should switch back and forth between R and S , level

by level, creating and using a new bit vector filter in each merge level. Unfortunately, even with a sophisticated

sort implementation that supports this use of bit vector filters in each merge level, recursive hybrid hash join will

make more effective use of bit vector filters because the inputs are partitioned, thus reducing the number of distinct

values in each partition in each recursion level.

12.5. Specialized Hardware

Specialized hardware was considered by a number of researchers, e.g., hardware sorters and logic-per-track

selection. A relatively recent survey of database machine research is given by Su [274]. Most of this research was

abandoned after Boral and DeWitt’s influential analysis [38] that compared CPU and I/O speeds and their trends.

They concluded that I/O is most likely the bottleneck in future high-performance query execution, not processing.

Therefore, they recommended moving from research on custom processors to techniques for overcoming the I/O

bottleneck, e.g., by use of parallel readout disks, disk caching and read-ahead, and indexing to reduce the amount

of data to be read for a query. Other investigations also came to the conclusion that parallelism is no substitute for

effective storage structures and query execution algorithms [69, 195]. An additional very strong argument against

custom VLSI processors is that microprocessor speed is currently improving so rapidly that it is likely that, by the

time a small organization has designed, fabricated, and tested a special hardware component and integrated it into a

larger hardware and software system, the next generation of general-purpose CPU’s is available and can execute

database functions programmed in a high-level language at the same speed as the specialized hardware component.

Furthermore, it is not clear what specialized hardware would be most beneficial to design, in particular in light of

today’s directions towards extensible database systems and emerging database application domains. Therefore, we

do not favor specialized database hardware modules beyond general-purpose processing, storage, and communica-

tion hardware dedicated to executing database management software.

Summary and Outlook

Database management systems provide three essential groups of services. First, they maintain both data and

associated meta-data in order to make databases self-contained and self-explanatory, at least to some extent, and to

provide data independence. Second, they support facilities for data sharing among multiple users as well as

prevention and recovery of failures and data loss. Third, they raise the level of abstraction for data manipulation

above the primitive access commands provided by file systems with more or less sophisticated matching and infer-

ence mechanisms, commonly called the query language or query processing facility. We have surveyed execution

algorithms and software architectures used in providing this third essential service.

Query processing has been explored extensively in the last 20 years in the context of relational database

management systems, and is slowly gaining interest in the research community for extensible and object-oriented

systems. This is a very encouraging development, because if these new systems have increased modeling power

over previous data models and database management systems but cannot execute even simple requests efficiently,

they will never gain widespread use and acceptance. Databases will continue to manage massive amounts of data;

therefore, efficient query and request execution will continue to represent both an important research direction and

an important criterion in investment decisions in the "real world." In other words, new database management sys-

tems should provide greater modeling power (this is widely accepted and intensely pursued) but also competitive
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or better performance than previous systems. We hope that this survey will contribute to the use of efficient and

parallel algorithms for query processing tasks in new database management systems.

A large set of query processing algorithms has been developed for relational systems. Sort- and hash-based

techniques have been used for physical storage design, for associative index structures, for algorithms for unary

and binary matching operations such as aggregation, duplicate removal, join, intersection, and division, and for

parallel query processing using hash-partitioning or range-partitioning. Additional techniques such as precomputa-

tion and compression have been shown to provide substantial performance benefits when manipulating large

volumes of data. Many of the existing algorithms will continue to be useful for extensible and object-oriented sys-

tems, and many can easily be generalized from sets of tuples to more general pattern matching functions. Some

emerging database applications will require new operators, however, both for translation between alternative data

representations and for actual data manipulation.

The most promising aspect of current research into database query processing for new application domains is

that the concept of multiple operators, each performing a part of the required data manipulation and each passing

an intermediate result to the next operator, is versatile enough to meet the new challenges. This concept permits

specification of database queries and requests in a logical algebra as well as concise representation of database pro-

grams in a physical algebra. Furthermore, it allows algebraic optimizations of requests, i.e., optimizing translations

of logical into physical expressions. Finally, it permits pipelining between operators to exploit parallel computer

architectures, and partitioning of stored data and intermediate results for most operators, in particular for operators

on sets.

We can hope that much of the existing relational technology for query optimization and parallel execution

will remain relevant, and that research into extensible optimization and parallelization will make a significant

impact on future database applications. In fact, for database management systems to become acceptable for new

application domains, their performance must at least match those of file systems. Automatic optimization and

parallelization may be crucial contributions to achieving this goal, in addition to the query execution techniques

surveyed here.
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