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Similarity and Dissimilarity
 Similarity is an extremely important concept in mining

 Different from “exact” that is used in databases, search, etc.
Humans do it without thinking much about it!
Humans understand it qualitatively, computers cannot!
 So, how do we incorporate the notion of “similarity” into our

computation?
We need to map it quantitatively and map back the results!
 This means
 Need to have a way to express this quantitatively!
 The results depend upon how good this mapping is!
 This is further complicated by multiple representations of input
 Attribute types, binary and non-binary vectors, strings, matrix (sparse and otherwise),

etc.
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What is Similarity?
Similarity is hard to define, but… “We know it when we see it”
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Similarity and Dissimilarity
 So, how do we do it using computers?
 Using the notion of “distance” between two objects
 If they are “similar”, the distance should be around 0 or 1

 If they are “dissimilar”, the distance should be opposite (1 or 0 )

 Easily computable for a given data/attribute type

 Appropriate for a given data/attribute type

 So, we have several “distance” metrics
 “city block” or “taxi”, Euclidian, L-forms, edit distance, similarity matching, Jaccard,

Pearson correlation, Spearman, to name a few

 This also means you have to choose the correct one (burden on the
analyst)

6
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Similarity and Dissimilarity

Similarity
o Numerical measure of how alike two data objects are
o Is higher (close to 1) when objects are more alike
o Often falls in the range [0,1] or [-1 to 1]

Dissimilarity
o Numerical measure of how different are two data objects
o Lower when objects are more alike
o Minimum dissimilarity is often 0
o Upper limit varies

Proximity refers to similarity or dissimilarity
7 Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Similarity and Dissimilarity

Similarity and Dissimilarity of Simple Attributes

Dissimilarity between Objects
o Distance
o Set Difference
o …

Similarity between Objects
o Binary Vectors
o Vectors
o …

8
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Similarity/Dissimilarity for Simple Attributes
p and q are the attribute values for two data objects. d(p, q) and s(p, q) are
dissimilarity and similarity between p and q.

9 Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Euclidean Distance

Euclidean Distance

Where n is the number of  dimensions (attributes) and pk and qk are, 
respectively, the kth attributes (components) or data objects p and q.

Standardization is necessary, if  scales differ.
10
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point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

Distance Matrix

p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

L1 p1 p2 p3 p4
p1 0 4 4 6
p2 4 0 2 4
p3 4 2 0 2
p4 6 4 2 0
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Minkowski Distance
Minkowski Distance is a generalization of Euclidean Distance

Where r is a parameter, n is the number of  dimensions (attributes) 
and pk and qk are, respectively, the kth attributes (components) or 
data objects p and q.

As r gets bigger, the contributions of  smaller terms get less and less, until only the 
maximum term is left. For instance, ∥(3,4)∥1=7, ∥(3,4)∥2=5, ∥(3,4)∥3∼4.5, and 
|(3,4)∥∞= 4. So raising r "damps out" all the terms but the largest (also known as 
“chessboard distance”)
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Minkowski Distance: Examples
 r = 1.  City block (Manhattan, taxicab, L1 norm) distance. 

A common example of  this is the Hamming distance, which is just 
the number of  bits that are different between two binary vectors

 r = 2.  Euclidean distance (L2 norm)

 r.  “supremum” or “chessboard” (Lmaxnorm, Lnorm) 
distance. (movement of  the king)

This is the maximum difference between any component of  the 
vectors

 Do not confuse r with n, i.e., all these distances are defined for 
all numbers of  dimensions.13 Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Minkowski Distance

14

Distance Matrix

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

L1 p1 p2 p3 p4
p1 0 4 4 6
p2 4 0 2 4
p3 4 2 0 2
p4 6 4 2 0

L2 p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

L p1 p2 p3 p4

p1 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0
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Common Properties of  a Distance

 Distances, such as the Euclidean distance, have some well 
known properties.

1. d(p, q)  0 for all p and q and d(p, q) = 0 only if  p = q. (Positive definiteness)

2. d(p, q) = d(q, p) for all p and q. (Symmetry)

3. d(p, r)  d(p, q) + d(q, r) for all points p, q, and r.  We know it is true for scalars.
(Triangle Inequality) but it is also true for vectors!

where d(p, q) is the distance (similarity) between points (data objects), p and 
q.

 A distance that satisfies these properties is a metric

15

Intuitions behind desirable distance 
measure properties

D(A,B) = D(B,A)
Otherwise you could claim “Alex looks like Bob, but Bob looks nothing like 
Alex.”

D(A,A) = 0
Otherwise you could claim “Alex does not look like Alex.”

Slide based on one by Eamonn Keogh
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Intuitions behind desirable distance 
measure properties (continued)

D(A,B) = 0 Iff A=B 
Otherwise there are objects in your world that are different, but you cannot tell 
apart.

D(A,B)  D(A,C) + D(B,C)
Otherwise you could claim “Alex is very like Carl and Bob is very like Carl, 
but Alex is very unlike Bob.”

Slide based on one by Eamonn Keogh
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Common Properties of  a Similarity

 Similarities, also have some well known properties.

1. s(p, q) = 1 (or maximum similarity) only if  p = q. 

2. s(p, q) = s(q, p) for all p and q. (Symmetry)

where s(p, q) is the similarity between points (data objects), p and q.

18
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Similarity Between Binary Vectors
 Common situation is that objects, p and q, have only binary attributes

 Compute similarities using the following quantities

M01 = the number of attributes where p was 0 and q was 1
M10 = the number of attributes where p was 1 and q was 0
M00 = the number of attributes where p was 0 and q was 0
M11 = the number of attributes where p was 1 and q was 1

 Simple Matching and Jaccard Coefficients (SMC and JC)
SMC =  number of matches / number of attributes 

=  (M11 + M00) / (M01 + M10 + M11 + M00)

J = number of 11 matches / number of not-both-zero attributes values
= (M11) / (M01 + M10 + M11) 

can also be calculated for sets using intersection and union19 Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

SMC versus Jaccard: Example

p =  1 0 0 0 0 0 0 0 0 0    
q =  0 0 0 0 0 0 1 0 0 1

M01 = 2   (the number of attributes where p was 0 and q was 1)
M10 = 1   (the number of attributes where p was 1 and q was 0)
M00 = 7   (the number of attributes where p was 0 and q was 0)
M11 = 0   (the number of attributes where p was 1 and q was 1)

SMC = (M11 + M00)/(M01 + M10 + M11 + M00) = (0+7) / (2+1+0+7) = 0.7 

J = (M11) / (M01 + M10 + M11) = 0 / (2 + 1 + 0) = 0 

20



TechReady 14 2/11/2021

© 2012 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation.  Because Microsoft must respond to changing market conditions, 
it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.  
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION. 6

Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

SMC versus Jaccard: which one to use?
p =  1 0 0 0 0 0 0 0 0 0    SMC is 0.7 and J is 0
q =  0 0 0 0 0 0 1 0 0 1
 Suppose we are looking at Amazon customers who bought CDs
 If  each user’s purchase of CD is a vector and we want to know who is 

similar to who in purchases, 
• Should we use SMC or Jaccard? And why?

 Jaccard will look for the matches! 
 Whereas, SMC will include all CDs sold by Amazon! If  0-0 matches are 

counted, most of the customers will be similar to others!
 Which one will give a better value for similarity?
 Jaccard!
 This understanding and use the correct metric is is key to mining!

Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Cosine Similarity
• Why is it called Cosine similarity?

If d1 and d2 are two (e.g., document) vectors, then
cos( d1, d2 ) = (d1  d2) / ||d1|| ||d2|| ,
where  indicates vector dot product (or scalar product) and || d || is the
length (or magnitude)of vector d (Euclidean distance)

• Note that dot product is a scalar! But is computed on a vector!
• Also, note that dot product is different from the cross product (or vector

product) of vectors

• The dot product can be used to compute the length of a vector or the angle
between two vectors

• The cross product is used to find a vector which is perpendicular to the
plane spanned by two vectors (binary operation)

22
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Cosine Similarity
Example:

d1 =  3 2 0 5 0 0 0 2 0 0 
d2 =  1 0 0 0 0 0 0 1 0 2

d1  d2=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5
||d1|| = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481
||d2|| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2)0.5= (6) 0.5 = 2.245
cos( d1, d2 ) = .3150 (closer to 0, here means they are not similar)

• Is there a difference between dot product as a similarity measure and cosine as a similarity 
measure?

Yes. cosine only cares about angle difference where as dot product cares about angle 
and magnitude

If  you normalize your data to have the same magnitude, the two are indistinguishable

Technically, both are not “distance metric”
23 Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Cosine Similarity
Let us understand it in a bit more detail! Consider vectors a, b, c

a-b
θ 𝑏 [2, 4]

Is a similar to b ? Is b similar to c ? or is a similar to c ?

What if you ignore the magnitude and look at how close they are!

What is the length of vector a? note that length  is a scalar

We can compute ║ a║ 2 =  52 + 32 using Euclidian distance formula (Pythagoras theorem!)

We also know that cos(θ) is adjacent/hypotenuse
24

𝑎⃗ [5,3]

C [3, 6]
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Cosine Similarity
We also know that
cos(0) is 1 and cos(90) is 0,  and cos (180) is -1

The general formula for non-right-angled triangles is

║ a-b║ 2 = ║ a║ 2 +║ b║ 2 - 2 ║ a║ ║ b║ Cos(θ)

When this is simplified for Cos(θ), you get (a  b) / ||a|| ||b||  (try simplifying!)

If the vectors are orthogonal, the value is 0 showing they are perpendicular (more separation)

If the vectors overlap (have 0 degree between them) the value is 1, showing complete similarity!

If the value is -1, they are opposite vectors

 Easy to generalize to n-dimensions 

 Very widely used similarity metric!

25

𝑎⃗ [5,3]

C [3, 6]
θ 𝑏 [2, 4]

a-b

Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Cosine similarity value examples

26
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Cosine Similarity: why we ignore magnitude?
For example, vectors b and c below have 0 angle between them, but
different magnitudes
So, they are similar!

However, vectors a and b look similar in magnitude, but

have a large angle between them

They are considered dissimilar! Why?

Think of a, b, and c as document vectors

HW:  what if the vectors are of different length? How do you 
compute cos(theta)?

27

𝑎⃗ [5,3]

C [3, 6]

b [2, 4]
X Y

Doc a 5 3
Doc b 2 4
Doc c 3 6

Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Pearson Correlation Coefficient
 Correlation measures the linear relationship between objects
 Pearson correlation is used between two sets of numerical values!

28

dot product

covariance
sample correlation

population correlation
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Mean, median,  and Mode, Standard Deviation
 The sample mean is the average and is computed as the sum of  all the observed 

outcomes from the sample divided by the total number of  events. We use x as 
the symbol for the sample mean. In math terms,

 The mode of  a set of  data is the number with the highest frequency (voting, 
consensus)

 Mean is strongly affected by outliers. 

 The median is the middle score. If  we have an even number of  events we take the 
average of  the two middles. The median is better for describing the typical 
value. It is often used for income and home prices.

 The above indicate where the center  of  the data set is. 29 Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

When to use which one?

30
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Variance and standard deviation
 If  you want the data spread, variance and standard deviation can be used. Variance 

measures the average degree to which each point differs from the mean 
(variability) We define the variance to be         (why n-1 and not n?)

 The units of  variance is not the same as that of  data
 A variance of  0 means all data points are identical! 
 A high variance indicates that data points are very spread out from the mean and 

from one another.
 A distinction is made between sample mean and population mean represented as 

mu (μ)  (n-1) is used fro sample mean and n is used for population mean; 
 There is also the notion of  average deviation or Mean absolute deviation
 Uses absolute values instead of  squaring to circumvent negative differences
 Used less frequently because the use of  absolute values makes further calculations more 

complicated

31 Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Variance and standard deviation
 Standard deviation is the square root of  variance. (σ)

 Units of  standard deviation is the same as units of  data.
 Standard deviation is a “measure of  spread”. Indicates how spread is your data 

about the center. 

 Bounds: on how much of  the data must lie close to the 
mean. In particular for any k > 1, the proportion of  
the data that lies within k standard deviations of  the 
mean is at least  1 – 1/k2 (depends on the distribution)

 Chebyshev’s theorem

32
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Use of  standard deviation

 Use: One of  the most common methods of  determining the risk an investment 
poses is standard deviation.

 Standard deviation helps determine market volatility or the spread of  asset prices 
from their average price.

 When prices move wildly, standard deviation is high, meaning an investment will 
be risky. Low standard deviation means prices are calm, so investments come with 
low risk.

 Average spending in a restaurant can be better estimated by using standard deviation 
rather than the mean 

33 Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Use of  standard deviation, percentile
The most common definition of  a percentile is a number 

where a certain percentage of  scores fall below that 
number.

Percentile: Let p be any integer between 0 and 100. The pth

percentile of  data set is the data value at which p percent of  the 
value in the data set are less than or equal to this value
Remember GRE, SAT, LSAT
You might know that you scored 67 out of  90 on a test. But 

that figure may not be helpful unless you know what percentile 
you fall into. If  you know that your score is in the 90th 
percentile, that means you scored better than 90% of  people 
who took the test.34

Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Covariance 
 Covariance is a statistical tool that is used to determine the relationship between the 

movement of  two data sets or random variables (e.g., stock prices)
 Covariance measures the directional relationship between the two data sets. A 

positive covariance means that asset returns move together while a negative 
covariance means they move inversely.
 Used for diversifying portfolios in an investment!
 For choosing a portfolio where all stocks that do not behave the same way in 

prices/returns (not putting all eggs in one basket!)

 Cov(x,y) = SUM [(xi - xm) * (yi - ym)] / (n - 1)

 While the covariance does measure the directional relationship between two 
assets, it does not show the strength of  the relationship between the two assets; 
the coefficient of  correlation is a more appropriate indicator of  this strength.

 Has units. Does not measure the strength or the dependency between variables!
 Strength is measured using a coefficient; dependency by regression!

35 Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Covariance and correlation
 On the other hand, correlation measures the strength of  the relationship between 

variables. Correlation is the scaled measure of  covariance. It is dimensionless. In 
other words, the correlation coefficient is always a pure value and not measured in 
any units.

 The relationship between two concepts can be expressed using the formula 
 (Pearson Correlation coefficient)
 Where:
 r(X,Y) – the correlation between the variables X and Y
 Cov(X,Y) – the covariance between the variables X and Y
 σX – the standard deviation of  the X-variable
 σY – the standard deviation of  the Y-variable

36
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Example

37 Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Visually Evaluating Correlation

38

Scatter plots showing the 
similarity from –1 to 1.

Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Correlation coefficient
 It is a value between -1 and 1
 Both -1 or 1 indicate very strong (or perfect) positive or negative correlation
 Values between 0.3 and 0.7 (-0.3 and -0.7) indicate a moderate positive 

(negative) linear relationship
 The relationship between two variable is considered strong when their r value is 

large than 0.7 (-0.7)
 A r value of  0 (or near 0) indicates no linear relationship!
 When the r value is 0, non-linear relationships could still exist.
 The book has an example. Take a look at it.
 This is used when both variables being studied are normally distributed. This 

correlation is affected by extreme values
 Otherwise, use Spearman’s rank correlation coefficient which is better if  one or both are 

not normally distributed!
 Look up Spearman’s coefficient on your own

39 Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Correlation coefficient
 What is the difference between uniform and normal distribution?

40
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General Approach for Combining Similarities

 Sometimes attributes are of  many different types, but an 
overall similarity is needed.

41 Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Using Weights to Combine Similarities

 May not want to treat all attributes the same.
o Use weights wk which are between 0 and 1 and sum to 1. 

42
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Selecting the right proximity/similarity measure
 For many types of  dense and continuous data, metric distance measures (e.g., 

Euclidian distance) are used
 Scale issues need to be dealt with using normalization and weighting attributes
 For sparse data, which often consist of  asymmetric attributes similarity 

measures that ignore 0-0 matches are used. Cosine, Jaccard are appropriate for 
such data

 Invariance to scaling (multiplication), translation (addition) makes cosine, 
Euclidian, and correlation  useful for sparse data

 Correlation works better for time series where both scaling and translation are 
important

 In some cases, normalization and transformation of  data may be needed (for 
periodicity data)

 In summary, proper choice of  a proximity measure can be a time consuming 
task requiring both domain knowledge and the purpose for which the measure 
is being used!43 Copyright ©2007-2017 The University of Texas at Arlington. All Rights Reserved.

Understand a few functions and their behavior

44
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Thank You !!!

BDA 2018 (Warangal)45

For more information visit:
http://itlab.uta.edu
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