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Probability and Statistics

» We need a little bit of probability and statistics before
going into Bayes approach to classification
. . » So, what is the difference between probability and
Bayesian Classifiers o
(Put together from many SOUI‘CGS) = Probability is starting with an animal, and figuring out what
footprints it will make.
= Statistics is seeing a footprint, and guessing the animal.
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Basics Intuitively
» Consider rolllng two dice (a blue and yeIIow one) » Sample space may be difficult to comprehend for some
and noting down the numbers on each roll problems
. . » If you are doing an experiment recording the outcome in a
(alternatively, drawing from a deck of cards) note book, it may look like e T
» Let Xand Y denote the number of dots we get on > After many, many repetitions, E—
. ) P oez,yelows [N
the blue and yellow dice, respectively, and mﬁrﬁ:\zgts:j@?u‘;f]the lines : e e b
consider the meaning of P(X+Y:6) in the Iarge! » If you did the experiment 1008 times, : Zl?i??“f o
» Sample space is the list of 11 ]12]13 1] [16] approximately X+Y =6 will occur > P
Possible outcomes as shown 2 |27 |28 | 3 25 | 30 5/36*1008 =140 times : s et
) 1 31 32 33 34 35 36 -
> We place a weight Ofg on each 41 42 43 44 45 46 » This is what probability really is: In what fraction of the lines

Outcome reflecting they are 51 52 53 54 55 56
equally likely (important!) 164 |G |G 1G9 |6
> Outcomes (1,5), (2,4)...., (5,1) have a total weight of%
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Sample Space for
the Dice Example

e 21112021

does the event of interest happen? It sounds simple, but if
you think about this “as counting the outcome of an
experiment”, probability problems are a lot easier to
understand. And it is the fundamental basis of computer
simulation.
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Basics
» We assume experiments are repeatable!
» We assume that experiments are performed a
large number of times (in the large is important)
» An event A has a Boolean outcome (yes/no) of
the experiment. Examples:
= X+Y=6
= X=1
=Y=3
"X-Y=4
» A random variable (X or Y) is a numerical
outcome of the experiment: X+Y, 2*X*Y,
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Definition of P(A ~ B) Boolean AND

> For any event of interest A, imagine a column on A in
the notebook. The k" line (or row) in the
notebook, k=1, 2, 3, ..., will say Yes or No,
depending on whether A occurred or not during
the k repetition of the experiment. For instance, we
can have such a column in our table above, for the
event {blue + yellow = 6}.

> For any event of interest A, we define P(A) to be the
long-run fraction of lines with Yes entries.

» For any events A /* B (Boolean AND), imagine a new
column in our notebook, labeled “A A B.” In each line,
this column will say Yes if and only if there are Yes
entries in columns A and B.

» P(A ~ B)is then defined to be the long-run fraction of
lines with Yes entries in the new column labeled “A

B”
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Definition of P(A v B)

» For any events A, Bimagine a new column in our
notebook, labeled “A vV B.” In each line, this
column will say Yes if and only if at least one of
the entries for A or B says Yes.

» P(A V B)isthen defined to be the long-run
fraction of lines with Yes entries in the new
column labeled “A vV B.”
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Definition
» For any events A, B imagine a new column in our
notebook, labeled “A | B” and pronounced “A
given B.” In each line:
= This new column will say “NA” (“not applicable”) if
the B entry is No.

= |fitis a line in which the B column says Yes, then
this new column will say Yes or No, depending on
whether the A column says Yes or No.

» Then P(A|B) means the long-run fraction of lines
in the notebook in which the A | B column says
Yes—among the lines which do NOT say NA.
= Conditional probability
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Common mistake

More Definitions

» A common mistake is to confuse P(A » B) » Suppose A, B are events such that it is impossible for
and P(A|B). This is important to understand. them to occur at the same time. They are said to
—1AG= s . . .
Compare the values of P(X=1"S5=6) be disjoint or “mutually exclusive” events. “being
and P(X=1|5=6), where S = X+Y freshman” and “being sophomore” are disjoint events
» P(X=17S=6)is 1/36 and comes from (1,5) out of L. are x=2 and x+y = 2
possible 36 outcomes (35 no and 1 yes) mmmm-m > IfAandBare dISJOInt events, then Disjoint events?
> P(X=1]5=6)is 1/5 comes from (1,5) 20 22 125 |24 |25 |26 P(AV B) = p(A) + P(B). Can be generalized to Yes 6136+ 1/36
out of possible 5 relevant outcomes. S e e Sl k X T2 T i3Td 5
outcome S=6 X=1? 3132 33 34 35 36 P(A1 v Az; ey v Ak) = Lij=1 P(Al) 2:1 2:2 2:3 2:4 z:u
41 42 43 44 45 46 . L 31[32[33[34 3.6
(1,5) ves  yes » if Aand B are not disjoint, then ST LRt 6
(2,4) yes no 51 52 53 54 55 56 5'1 5'2 5.3 5'4 5.6
(3,3) yes no 61 62 63 64 65 66 P(AV B) =P(A) + P(B) — P(A * B) 61]62]63 ][04 6.0
(4,2) yes no - derstand this clearlv! > To compute P(X=3 or Y=4), first check whether they are disjoint!
(5,1) yes no ease understand this clearly: 1/6 + 1/6 — 1/36 (we have counted (3, 4) twice! Hence the subtraction)
All other ca}ses NA hence, not u‘sed! > No compact generalization for V! What about “female” or “freshman™?
HW: What is P(X=2 v S =6) where S = X _ Y? What is P(X=2 v Y=4)?
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More Definitions More Definitions
» Events A and B are independent (or unrelated) if > f Events A and B are not independent, the previous expression
P(A~B)=P(A) *P(B) = P(B"A) What about P(x=3 * X=7)? generalizes to . )
Kk Events can be independent and ; P(A 7 B)=P(A) * P(B|A) instead of P(A) * P(B). Suppose we use this
- P(Ai disjoint if one of them is null or never or
P(A;and A,, ..., and A) 1:1[ (Ai) Happens! P(X=4 A Y=5) = P(X=4)*P(Y=5| X=4)
“promoted” " “audited”? =6/36 * 1/6 = 1/36 (same as earlier, why?)
. o Check P(X=115=6)
» How do we know whether two events are disjoint, independent? »  Suppose 20% of all UTA students are in the COE, and 15% of
* Must be inferred from the problem, domain, context! engineering majors are female. (there are non-COE females! At UTA)
= 2 cards are drawn from a deck without replacement! Independent or »  P(COE student A female) =
dependent? (HW) d * p(f I d
= What about with replacement? (HW) P(CgE student) P(nema e | COE student) “ . ”
»  For example, when two dices are rolled, outcome on each dice is 0.27015=030r 3% ‘_)f UTA students are  “female engineers
independent of each other! TTTITIE T » When A and B are actually independent
P(X=4 7Y =5) = 6/36 * 6/36 = 1/36 512223724 P(B|A) is the same as P(B) and reverts to P(A A B) = P(A) * P(B)
where as events “good grade” * 311323334
“completing the project” are 41424344 > P(B|A)is also know as conditional probability!
not independent ive”tsl (related) (21 Eg 22 (5;_41 > Probability of B conditionally occurring on A
Contrast with P(X=1"5=6)! e > P(B|A) = P(B) if A and B are independent!
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Bayes theorem
» We can express P(A ~ B) = P(A) * P(B|A) as

P(B|A) = P(A"B)  Bayes theorem provides a way of
P(A) Going from P(X|Y) to P(Y|X) or from
Similarly, A sample labeled population to a
unseen data outcome prediction!
P(A|B) = PArB) This is what classification is
P(B)

Significance: if | know individual
probabilities of A and B, and P(B|A),

giving rise to Bayes theorem | ° " e the Probability of P(AJB)!

Example of Bayes Theorem
> Given:

= A doctor knows that meningitis causes stiff neck 50% of the
time P(S|M) is 0.5 conditional probability

= Prior probability of any patient having meningitis is 1/50,000
P(M) sample or population probability
= Prior probability of any patient having stiff neck is 1/20 P(S)
» If a patient has stiff neck, what’s the probability
he/she has meningitis? Posterior probability
P(M|S)

P(S|M)P(M) _0.5x1/50000

— PBIAP(A) P(M|S)= =0.0002
PAB) = =% (M]5) P(S) 1/20
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Bayesian Classifiers Bayesian Classifiers
» How can we apply this to classification using a training > Approach:

Y

data set

Consider each attribute and class label as random
variables

Given a record with attributes (A, A,,...,A,)
= Goal is to predict class C

= Specifically, we want to find the value of C that maximizes P(C|
Ay AyA)

Can we estimate P(C| A,, A,,...,A,) directly from data?

= Compute the posterior probability P(C | A;, A,, ..., A,) for all
values of C using the Bayes theorem

_P44,...4,1C)P(C)

P(C|AA,... 4
(ClA4,...4,) YRR

= Choose value of C that maximizes
P(C| A, A,, ..., A)) posterior probability!

= Equivalent to choosing value of C that maximizes numerator)
P(A, A, ..., A,|C) P(C)
» How to estimate P(A;, A,, ..., A, | C)? How do we know P(C)?
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Naive Bayes Classifier

_ P(4d, ... 4, [C)P(C)
P(AA4,... 4,)

P(C|AA,... 4)

\4

In the above expression, we do not know how to compute
probability P(A,, A,, ..., A, | C) because of multiple A’s!

» Thisis where the assumption of independence of A, events comes into use!
= Also why it is called Naive!

> Assuming independence among attributes A; when class is given:

" P(Ay Ay - AY) = P(A)*P(A)* .. * P(A,)
= P(A, A, .., A, |C)can be written as P(A,]| Ci) *P(A, | CJ) *LEPAL Cj)
Can estimate P(A;| C) for all A;and C;.

= New point is classified to C;if P(C) ITP(A| C)) is maximal.
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Simple one attribute example

A [
[weather [Play P(Ailno) P(Ailyes)
Sunny |No Frequency Table Likelihood table
Overcast [Yes Weather No Yes Weather No Yes P(A)
Rainy _|Yes Overcast a Overcast a =4/14 | o029
Sunny _|ves Rainy 3 2 Rainy 3 2 =5/14_| 036
sunny _|ves Sunny 2 3 Sunny 2 3 =5/14 | 0.36
Overcast [Ves Grand Total 5 E Al 5 ]
Rainy _|No =5/14_| =51
Rainy  |No 0.36 0.64_|P(C)

sunny _[ves
Rainy _[Yes

Compute P(Yes|Sunny) =
P(Sunny|yes) * P(Yes)/P(Sunny) Compute P(yes|overcast)

sunny o = 3/9*0.64/0.36 = 0.6 Plovercastlyes) * P(yes)/P(overcast)
overcast Jres = 4/9°0.64/0.29 = 0.98

overcest [ves P(No|Sunny) = 0.4

Rainy  [No Compute P(No|overcast)

Step 1: convert data into frequency table (can be done for each attribute)
Step 2: create probabilities (likelihood) table for the sample data

Step 3: use Naive Bayes equation to compute the posterior probability
for each class

» Can be easily extended to multi-attribute and multi-class!
» _For numerical attributes, normal distribution is assumed!

P H

Simple one attribute example

[Weather [Play.
sunny__|No Frequency Table Likelihood table

Overcast |Yes \Weather No Yes Weather No Yes

Rainy _|Yes overcast 4 overcast 4 =414 | 029 |

sunny _|ves Rainy 3 2 Rainy 3 2 =5/14 | 036 |
SunnyJves Sunny T Sunny 2 s e [ s ]

Overcast |Yes Grand Total 5 9 Al 5 9

Rainy _|No /14| _=9/14

Rainy __[No 035 | o

Sunny _|Yes Compute P(Yes|Sunny) =

Rainy |

oy T P(Sunny|yes) * P(Yes)/P(Sunny) Compute P(yes|overcast)

Overcast [ves =3/970.64/0.36 = 0.6 P(overcast|yes) * P(yes)/P(overcag
Overcast [yes = 4/9*0.64/0.29 = 0.98

Rainy _|No P(No|Sunny) = 0.4

» To compute P(No|overcast), we need to compute P(overcast|No)
what is the value!

» In this sample, there were no no-play days when it was overcast!

» Due to this, the probability of the computation P(No|overcast)
becomes 0.

» This is corrected by adding a small value (usually 1) as correction

called ‘Laplace Correction’ (may be a parameter)

P H

Naive Bayes Classifier
»  If one of the conditional probability is zero, then the entire expression becomes
zero

»  Most algorithms use one of the following or take a parameter for this correction

»  Probability estimation:

Original : P(4,|C) = %

+1 c: number of classes

Laplace: P(4,|C) = Ne+l
N +c

c

p: prior probability

N 4 m: parameter
. . +mp
m-estimate: P(4, |C) = —“——
N, +m
HW: Whatis P(Nolovercast)
With Laplace Correction!

>

» Mis aconstant; p is a weight relative to observed data
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Tid Refund Marital
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Multiple attribute example
» Class: P(C) =N/N
= e.g.,, P(No) =7/10, P(Yes) = 3/10

Taxable . ) )
[ISOTR T TAAZEEY > For discrete attributes:
P(A. | Ck) = |A.k|/ N,

Yes  [SUCEE 125K |8 = where |A,| is number of instances
No Married | 100K No having attribute A, and belongs to
No Single  |70K No class
. .

Yes  |Married [120K  |No Examples:

) P(Status=Married |No) = 4/7
No Divorced (95K Yes P(Refund:Yelees):O
No Married |60K No P(Refund=Yes|No)= 3/7
Yes Divorced |220K No P(Refund=No|No) = 4/7
No Single 85K Yes
No Married | 75K No
No Single 90K Yes

21
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What is Gaussian Naive Bayes?

» So far we have seen computations when the A’s
are categorical. But how to compute the
probabilities when A is a continuous variable?

» If we assume that A follows a particular
distribution, then you can plug in the probability
density function of that distribution to compute
the probability of likelihoods.

» If you assume the A’s follow a Normal (aka
Gaussian) Distribution, which is fairly common,
we substitute the corresponding probability
density of a Normal distribution and call it the
Gaussian Naive Bayes. You need the mean and
variance of the A to compute this formula.
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How to Estimate Probabilities from Data?

» For continuous attributes:

= Discretize the range into bins and thus transform the attribute into an
ordinal attribute.

= Probability density estimation:
- Assume attribute follows a normal distribution

- Use data to estimate parameters of distribution
(e.g., mean and standard deviation)

- Once probability distribution is known, can use it to estimate the
conditional probability P(A;|c)

23

How to Estimate Probabilities from Data?

» Normal distribution:

Tid Refund Marital Taxable

© ® N o o & @ o =

Status  Income Evade 5
A—p;)°
Yes Single |125K  [No 1 4 /Zu
No Married 100K |No P(A |C ): e 20}
L)
No Single | 70K No 2
To;;
Yes Married [120K No i
No Divorced |95K Yes

= One for each (A,c) pair

No Married |60K No > Forll d N
Yes Divorced |220K No 7 or (Income, Class=No):

No Single  |85K Yes = |f Class=No

A Lkl R - sample mean = 770K/7 = 110K
No Single  [90K  |Yes

- sample variance = 2975
- Sample std =sqrt(2975) = 54.54
_(120-110)°

1
P(Income =120| No) = —————¢ **™ =0.0072
X No) = o sasa)
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Example of Naive Bayes Classifier

Given a Test Record:
P(X|Class=No) = P(Refund=No|Class=No)
x P(Married| Class=No)
x P(Income=120K| Class=No)
=4/7 x 4/7 x 0.0072 = 0.0024
P(X|Class=Yes) = P(Refund=No| Class=Yes)
x P(Married| Class=Yes)
x P(Income=120K| Class=Yes)
=1x0x1.2x10°=0
Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)

X = (Refund=No, Married, Income = 120K)

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1

P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/3
P(Marital Status=Divorced|Yes)=1/3
P(Marital Status=Married|Yes) = 0

Example of Naive Bayes Classifier

=>Class = No

For taxable income:

Ifclass=No: ~ sample mean=110
sample variance=2975

If class=Yes: sample mean=90

25 sample variance=25
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Name Give Birth CanFly |Live in Water| Have Legs Class .
human ves no no mammals A: attributes
python no no no no non-mammals .
saimon no no yes no non-mammals M: mammals
:vhale ves no ves no mammals__ N: non-mammals
rog no no ves
komodo no no no ves non-mammals
bat ves yes no yes mammals 66 2 2
pigeon no yes no yes non-mammals I’(A\M):;X;X7X7:0-06
cat ves no no yes mammals
. 110 3 4
\tenpard shark |yes no ves no non-mammals PNy = Lx 0 3 4 o 00a
urtle no no yes [EEENE)
penguin no no yes I 7
porcupine |yes no no ves mammals P(A| M)P(M) =0.06%—=0.021
eel no no yes no non-mammals 20
salamander  |no no yes I 13
glla monster _|no no o ves non-mammals P(A| N)P(N) =0.004 x = = 0.0027
platypus no no no ves mammals 20
owl no yes no yes non-mammals
dolphin ves no ves no mammals
eagle no es no es non-mammals P(A|M)P(M) > P(A|N)P(N)
CanFly |Livein Water| Have Legs Class => Mammals

es

‘ Give Birth

™ T
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Naive Bayes (Summary)
Robust to isolated noise points

Handle missing values by ignoring the instance
during probability estimate calculations

Robust to irrelevant attributes

Independence assumption may not hold for some
attributes

= Use other techniques such as Bayesian Belief
Networks (BBN)
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Thank You !!!

For more information visit:
http://itiab.uta.edu
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