

Basics

- ➤ We assume experiments are repeatable!
- > We assume that experiments are performed a large number of times (in the large is important)
- ➤ An *event* A has a Boolean outcome (yes/no) of the experiment. Examples:
 - X+Y = 6
 - X =1
 - Y = 3
 - X Y = 4
- A random variable (X or Y) is a numerical outcome of the experiment: X+Y, 2*X*Y,

Definition of P(A ^ B) Boolean AND

- For any event of interest A, imagine a column on A in the notebook. The k^{th} line (or row) in the notebook, k = 1, 2, 3, ..., will say Yes or No, depending on whether A occurred or not during the k^{th} repetition of the experiment. For instance, we can have such a column in our table above, for the event $\{blue + yellow = 6\}$.
- For any event of interest A, we define P(A) to be the long-run fraction of lines with Yes entries.
- For any events A ^ B (Boolean AND), imagine a new column in our notebook, labeled "A ^ B." In each line, this column will say Yes if and only if there are Yes entries in columns A and B.
- P(A ^ B) is then defined to be the long-run fraction of lines with Yes entries in the new column labeled "A ^ B."

Definition of P(A v B)

- ➤ For any events *A*, *B* imagine a new column in our notebook, labeled "A ∨ B." In each line, this column will say Yes if and only if at least one of the entries for *A* or *B* says Yes.
- P(A Y B) is then defined to be the long-run fraction of lines with Yes entries in the new column labeled "A Y B."

Definition

- For any events A, B imagine a new column in our notebook, labeled "A | B" and pronounced "A given B." In each line:
 - This new column will say "NA" ("not applicable") if the B entry is No.
 - If it is a line in which the B column says Yes, then this new column will say Yes or No, depending on whether the A column says Yes or No.
- Then P(A|B) means the long-run fraction of lines in the notebook in which the A | B column says Yes—among the lines which do NOT say NA.
 - Conditional probability

Bayes theorem

 \triangleright We can express P(A ^ B) = P(A) * P(B|A) as

$$P(B | A) = \frac{P(A \land B)}{P(A)}$$
 Bayes theorem provides a way of Going from P(X|Y) to P(Y|X) or from A sample labeled population to a

unseen data outcome prediction!
This is what classification is

 $P(A \mid B) = \frac{P(A \land B)}{P(B)}$

Significance: if I know individual giving rise to Bayes theorem probabilities of A and B, and P(B|A), I can compute the Probability of P(A|B)!

© Sharma Chakravarthy

$$P(A|B) = \frac{P(B|A)*P(A)}{P(B)}$$

■ A doctor knows that meningitis causes stiff neck 50% of the time P(S|M) is 0.5 conditional probability

Example of Bayes Theorem

- Prior probability of any patient having meningitis is 1/50,000 P(M) sample or population probability
- Prior probability of any patient having stiff neck is 1/20 P(S)
- > If a patient has stiff neck, what's the probability he/she has meningitis? Posterior probability P(M|S)

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

> Given:

Bayesian Classifiers

- > How can we apply this to classification using a training
- Consider each attribute and class label as random variables
- ➤ Given a record with attributes (A₁, A₂,...,A_n)
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes P(C)
- Can we estimate P(C| A₁, A₂,...,A_n) directly from data?

Bayesian Classifiers

- > Approach:
 - Compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C \mid A_1 A_2 \dots A_n) = \frac{P(A_1 A_2 \dots A_n \mid C) P(C)}{P(A_1 A_2 \dots A_n)}$$

■ Choose value of C that maximizes

$$P(C \mid A_1, A_2, ..., A_n)$$
 posterior probability!

- Equivalent to choosing value of C that maximizes numerator) P(A₁, A₂, ..., A_n | C) P(C)
- ► How to estimate $P(A_1, A_2, ..., A_n \mid C)$? How do we know P(C)?

Naïve Bayes Classifier

$$P(C \mid A_1 A_2 ... A_n) = \frac{P(A_1 A_2 ... A_n \mid C) P(C)}{P(A_1 A_2 ... A_n)}$$

- In the above expression, we do not know how to compute probability P(A₁, A₂, ..., A_n | C) because of multiple A's!
- This is where the assumption of independence of A_i events comes into use!
 - Also why it is called Naïve!
- Assuming independence among attributes A_i when class is given:
 - P(A₁, A₂, ..., A_n) = P(A₁)*p(A₂)* ... * P(A_n)
 - P(A₁, A₂, ..., A_n | C) can be written as P(A₁ | C_j) * P(A₂ | C_j) *... * P(A_n | C_j)

Can estimate P(A_i | C_i) for all A_i and C_i.

■ New point is classified to C_i if P(C_i) Π P(A_i | C_i) is maximal.

111/2

Simple one attribute example

Weather Play Sunny No

P(Ai|no) P(Ai|yes)

Compute P(Yes|Sunny) = P(Sunny|yes) * P(Yes)/P(Sunny) = 3/9*0.64/0.36 = 0.6

P(NolSunnv) = 0.4

Likelihood table]	
Weather	No	Yes	Ī	P(A)
Overcast		4	=4/14	0.29
Rainy	3	2	=5/14	0.36
Sunny	2	3	=5/14	0.36
All	5	9		
	=5/14	=9/14		
	0.36	0.64	P(C)	

Compute P(yes|overcast)
P(overcast|yes) * P(yes)/P(overcast)
= 4/9*0.64/0.29 = 0.98

Compute P(Nolovercast)

Step 1: convert data into frequency table (can be done for each attribute) Step 2: create probabilities (likelihood) table for the sample data Step 3: use Naïve Bayes equation to compute the posterior probability for each class

- > Can be easily extended to multi-attribute and multi-class!
- For numerical attributes, normal distribution is assumed!

Simple one attribute example

Weather	Play	
Sunny	No	
Overcast	Yes	
Rainy	Yes	
Sunny	Yes	
Sunny	Yes	
Overcast	Yes	
Rainy	No	
Rainy	No	
Sunny	Yes	
Rainy	Yes	
Sunny	No	
Overcast	Yes	
Overcast	Yes	
Rainy	No	

Compute P(YeslSunny) = P(Sunnylyes) * P(Yes)/P(Sunny) = 3/9*0.64/0.36 = 0.6

Compute P(yes|overcast)
P(overcast|yes) * P(yes)/P(overcast|yes) = 4/9*0.64/0.29 = 0.98

- To compute P(No|overcast), we need to compute P(overcast|No) what is the value!
- In this sample, there were no no-play days when it was overcast!
- Due to this, the probability of the computation P(No|overcast)
- This is corrected by adding a small value (usually 1) as correction called 'Laplace Correction' (may be a parameter)

Naïve Bayes Classifier

- If one of the conditional probability is zero, then the entire expression becomes
- Most algorithms use one of the following or take a parameter for this correction

Original: $P(A_i \mid C) = \frac{N_{ic}}{N_{-}}$

Laplace: $P(A_i | C) = \frac{N_{ic} + 1}{N_c + c}$

c: number of classes p: prior probability m: parameter

m - estimate : $P(A_i \mid C) = \frac{N_{ic} + mp}{N_c + m}$

HW: What is P(No|overcast) With Laplace Correction!

M is a constant; p is a weight relative to observed data

- So far we have seen computations when the A's are categorical. But how to compute the probabilities when A is a continuous variable?
- ➤ If we assume that A follows a particular distribution, then you can plug in the probability density function of that distribution to compute the probability of likelihoods.
- If you assume the A's follow a Normal (aka Gaussian) Distribution, which is fairly common, we substitute the corresponding probability density of a Normal distribution and call it the Gaussian Naive Bayes. You need the mean and variance of the A to compute this formula.

