

Data Mining Process Collect, Assess, and transform (DW) Select: reduces cost, increases speed Explore: summarize, Segment, visualize Modify: data filtering, variable selection Model: regression, neural nets, decision trees, associations, sequences Interpret results (BI or business intelligence)

- > Can be tolerant of some noise
- But may lead to poor or even erroneous results
- > Some common problems
 - Missing fields
 - Outliers or incorrect data
 - Statistical significance
- Data warehouse integration and cleaning as a prerequisite for data mining
 - Recall the integration process with its cleansing steps...

Data Mining Tasks Prediction Methods Use some variables to predict unknown or future values of other variables. - Weather forecast Description Methods Find human-interpretable patterns that describe the data. - Understanding what items are bought together - Rules (in classification)

111/2

From [Fayyad, et.al.] Advances in Knowledge Discovery and Data Mining, 1996

Types of data analysis Supervised Driven by known information about data (Labeled) Optimize existing solutions/markets Unsupervised Driven by no known information about data Exploration Relevance Find new markets Are these two interchangeable?

Why do Cross-Validation?

- > Does it improve accuracy of the model?
- ➤ No!
- > Then why is it done?
 - It measures the predictive performance of the model
 - Averaged to give an estimate of the model's predictive performance
 - If the accuracy varies, you may want to generate a different model with varying training and test cases!
- > It is a model validation technique

18

Classification: Application 1

- Direct Marketing
 - Goal: Reduce cost of mailing by targeting a set of consumers likely to buy a new cell-phone product.
 - Approach
 - Use the data for a similar product introduced before.
 - We know which customers decided to buy and which decided otherwise. This {buy, don't buy} decision forms the class attribute.
 - Collect various demographic, lifestyle, and company-interaction related information about all such customers.
 - Type of business, where they stay, how much they earn, etc.
 - Use this information as input attributes to learn a classifier model.

Classification: Application 2

- > Fraud Detection
 - Goal: Predict fraudulent cases in credit card transactions.
 - Approach:
 - Use credit card transactions and the information on its accountholder as attributes.
 - When does a customer buy, what does he buy, how often he pays on time, etc
 - Label past transactions as fraud or fair transactions. This forms the class attribute.
 - Learn a model for the class of the transactions.
 - Use this model to detect fraud by observing credit card transactions on an account.

Classification: Application 3

- > Customer Attrition/Churn:
 - Goal: To predict whether a customer is likely to be lost to a competitor.
 - Approach:
 - Use detailed record of transactions with each of the past and present customers, to find attributes.
 - How often the customer calls, where he calls, what timeof-the day he calls most, his financial status, marital status, etc.
 - Label the customers as loyal or disloyal.
 - Find a model for loyalty.

om [Berry & Linoff] Data Mining Techniques, 199

Classification: Application 4

- ➤ Sky Survey Cataloging
 - Goal: To predict class (star or galaxy) of sky objects, especially visually faint ones, based on the telescopic survey images (from Palomar Observatory).
 - 3000 images with 23,040 x 23,040 pixels per image.
 - Approach:
 - Segment the image.
 - Measure image attributes (features) 40 of them per object.
 - Model the class based on these features.
 - Success Story: Could find 16 new high red-shift quasars, some of the farthest objects that are difficult to find!

rom [Fayyad, et.al.] Advances in Knowledge Discovery and Data Mining, 1990

