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What problem are we solving?
Consider a machine learning (ML) course offered at a

university. The course instructors have observed that students 
get the most out of  it if  they are good at Math or Stats. Over 
time, they have recorded the scores of  the enrolled students in 
these subjects. Also, for each of  these students, they have a 
label depicting their performance in the ML course: “Good” 
or “Bad.”

Using this, can you specify a pre-requisite for enrolling in ML
Let us represent the data that has been collected.

2

What problem are we solving?
Green indicates students did well in ML course
Red indicates students did not do well in ML course
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Support Vector Machines

 Find a linear hyperplane (decision boundary) that will separate the data
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Support Vector Machines

 One Possible Solution
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Support Vector Machines

 Another possible solution
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Support Vector Machines

 Other possible solutions
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Support Vector Machines

 What is the difference between B1 and B2? Which one is better?

 How do you define better?
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Support Vector Machines

 Find the hyperplane that maximizes (why?) the margin 

 So, B1 is better than B2!  (why?)

Think of margins
For conceptual
Understanding!

How do you draw 
These margins?

SVMs should:
1. Find lines that correctly classify the training data 

2. Among all such lines, pick the one that has the greatest 
distance to the points closest to it (largest margin)

The closest points that identify this line are known as support 
vectors. And the region they define around the line is known as 
the margin.

Support Vector Machines give you a way to pick between many 
possible classifiers in a way that guarantees a higher chance of  
correctly labeling your test data. 

Pretty neat, right?
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SVMs 
Find 
A line in two dimensions

A Plane in 3 dimensions.

A Hyperplane in higher dimensions

The equation of a line is typically written as y = mx + b 
where m is the slope and b is the y-intercept. b is 0 if  it passes 
through origin (0, 0)
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Support Vector Machines
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w is a weight vector
And b is  a scalar (bias)

These are parameters 
Determined from the 
Training data
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Linear SVM

 Linear model: 

 Learning the model is equivalent to determining 
the values of 

– How to find             from training data?
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Learning Linear SVM

 Objective is to maximize:

– Which is equivalent to minimizing:

– Subject to the following constraints:

or

 This is a constrained optimization problem

– Solve it using Lagrange multiplier method
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Example of Linear SVM

x1 x2 y 
0.3858 0.4687 1 65.5261
0.4871 0.611 -1 65.5261
0.9218 0.4103 -1 0
0.7382 0.8936 -1 0
0.1763 0.0579 1 0
0.4057 0.3529 1 0
0.9355 0.8132 -1 0
0.2146 0.0099 1 0

Support vectors
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Learning Linear SVM

 Decision boundary depends only on support 
vectors

– If you have data set with same support 
vectors, decision boundary will not change

– How to classify using SVM once w and b are 
found? Given a test record, xi
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Support Vector Machines

 What if the problem is not linearly separable?
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Support Vector Machines

 What if the problem is not linearly separable?
– Introduce slack variables

 Need to minimize:

 Subject to: 

 If k is 1 or 2, this leads to same objective function 
as linear SVM but with different constraints (see 
textbook)
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Support Vector Machines

 Find the hyperplane that optimizes both factors



02/14/2018 Introduction to Data Mining, 2nd Edition 21

SVM classifier 
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Nonlinear Support Vector Machines

 What if decision boundary is not linear?
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Nonlinear Support Vector Machines

 Trick: Transform data into higher dimensional 
space

0)(  bxw
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Decision boundary:
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Learning Nonlinear SVM

 Optimization problem:

 Which leads to the same set of equations (but 
involve (x) instead of x)
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Learning NonLinear SVM

 Issues:

– What type of mapping function  should be 
used?

– How to do the computation in high 
dimensional space?
 Most computations involve dot product (xi) (xj) 

 Curse of dimensionality?
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Learning Nonlinear SVM

 Kernel Trick:

– (xi) (xj) = K(xi, xj) 

– K(xi, xj) is a kernel function (expressed in 
terms of the coordinates in the original space)

 Examples:
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Example of Nonlinear SVM

SVM with polynomial 
degree 2 kernel
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Linear and not linearly separable (XOR)
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Non-linearly separable data (variant of XOR data set)
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SVM for Not linearly separable data

 SVM’s are really good at finding hyperplanes!

 Here is data that is not linearly separable

 Solution: If we can project data into a space 
where it is linearly separable, we can find a 
hyperplane in that space and map it back.

 When mapped back to original space, the 
separating boundary is not a line anymore
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Projection

 Project the data into a space where it is linearly 
separable and find a hyperplane in this space!

 Project the data set into a three-dimensional 
space using the above mapping

 Click-on-this

https://miro.medium.com/max/725/0*Ojchw_Exefs4qiok.
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SVM for Not linearly separable data

 SVM’s to do the projection for you. 

 SVMs use something called kernels to do these 
projections, and these are fast (as it involves the 
computation of a few dot products)

 A kernel, short for kernel function, takes as input two 
points in the original space, and directly gives the dot 
product in the projected space.

 For point i:               the projected point is

 The dot product in the 3 dimension needs  3 products

 SVM libraries come with pre-packaged popular kernels, 
such as polynomial, radical basis function (RBF), and 
sigmoid.
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After mapping back

The shape of the  
boundary
In the original 
space 
depends on the 
projection.

In the projected 
space, it
Is always a 
hyperplane (4 
support vectors)

The goal of 
projection was to 
use SVM’s 
capability to find a 
hyperplane!
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Another example 

RBFLinear kernel

input
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Learning Nonlinear SVM

 Advantages of using kernel:

– Don’t have to know the mapping function 
– Computing dot product (xi) (xj) in the 

original space avoids curse of dimensionality

 Not all functions can be kernels

– Must make sure there is a corresponding  in 
some high-dimensional space

– Mercer’s theorem (see textbook)
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Advantages of SVMs

 High-Dimensionality - The SVM is an effective tool in 
high-dimensional spaces, which is particularly applicable 
to document classification and sentiment analysis where 
the dimensionality can be extremely large (≥106).

 Memory Efficiency - Since only a subset of the training 
points are used in the actual decision process of 
assigning new members, only these points need to be 
stored in memory (and calculated upon) when making 
decisions.

 Versatility - Class separation is often highly non-linear. 
The ability to apply new kernels allows substantial 
flexibility for the decision boundaries, leading to greater 
classification performance.
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Disadvantages of SVMs

 P > n  - In situations where the number of features for 
each object (p) exceeds the number of training data 
samples (n), SVMs can perform poorly. This can be seen 
intuitively, as if the high-dimensional feature space is 
much larger than the samples, then there are less 
effective support vectors on which to support the optimal 
linear hyperplanes, leading to poorer classification 
performance as new unseen samples are added.

 Non-Probabilistic - Since the classifier works by placing 
objects above and below a classifying hyperplane, there 
is no direct probabilistic interpretation for group 
membership. However, one potential metric to determine 
"effectiveness" of the classification is how far from the 
decision boundary the new point is.


