CSE4334/5334 Data Mining TF-IDF and Similarity (Put together from many sources)

Sharma Chakravarthy

Department of Computer Science and Engineering University of Texas at Arlington

Query-Based Search of Documents, Similarity

- We are familiar with queries on Databases
 - Queries are evaluated against the database contents and you get exact answers! (Boolean queries in Information Retrieval (or IR) vocabulary)
- Can we query documents?
 - Can we get exact answers/matches (or binary answers) for the above?
 - What is an exact match when we search? And how useful is it?
- What is a query on a document?
- Further, can we say whether two documents are similar or dissimilar?
 - Based on what they contain, NOT semantics!
- Text or document retrieval pre-dates database query processing!
- It also pre-dates what we know as Google search!

Query-Based Search of Documents, Similarity

- We routinely search for documents (web content) on web
- We can also do it on any document repository!
 - Archived answers from Q/A network
 - Review collection for movies
 - Checking for plagiarism (paper, analysis, articles, programs, ...)
 - Emails (Enron emails have been used extensively for research)
 - Reuter articles (we have used both of these in our research)
- What do we input as query to web search (or Google)?
- What is the reason for Google's search success?
 - PageRank algorithm!
 - cse 6331 covers more on this
 - 2. Matching relevant documents and score/rank them with respect to a query
 - We will focus on this in this course!

Document Search/Classification

Consider 3 documents:

Doc 1: The game of life is an everlasting learning experience

Doc 2: The unexamined life is not worth living

Doc 3: never stop learning through experience

- Query: life learning experience
 - 1. If you look for exact matches, only doc 1 matches it
 - 2. But if you want relevant answer, doc 3 could be a potential answer
- However, doc 2 is certainly not a match or answer or relevant
- The question is: how can we accomplish 2 above in a principled manner?

Queries and large number of answers

- (Boolean) queries are good for expert users with precise understanding of their needs and the collection.
 - Also ok for applications (using APIs): can easily consume 1000s of results.
- Not good for majority of users
 - Most users are incapable of writing Boolean queries (or if they can, they think it's too much work).
 - Most users certainly don't want to wade through 1000s of results.
 - ◆This is particularly true of any large collection (web search is one of them)
- We modify queries, to some extent, during web search when we do not get answers we are looking for! (refining the search)
 - Query relaxation is a technique that does this for database queries!
- Trade off between simplicity and expressiveness!

Problem with Boolean search

•Feast or Famine!

- Boolean queries often result in either too few (= 0) or too many (1000s or even Millions of) results.
- Query 1: "standard user dlink 650" → 200,000 hits
- Query 2: "standard user dlink 650 no card found": 0 hits
 - Thought experiment: come up with queries for google that give 0 or a specific number of total answers
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

How to specify a query?

- Natural Language
 - Ideal mechanism
 - But inherently hard given ambiguities of language
 - e.g. school educational institution; group of fish
 - e.g., java island or coffee flavor
 - Mechanisms such as Question-Answering frameworks focus on sophisticated language models built for specific domains independently.
 - Effectiveness of a language depends upon the type of users, context, domain, ...
 Are programming languages context-free or context sensitive?
- Aside: regular, context-free, and context-sensitive grammars

Ranked retrieval models

- Of a large set of documents satisfying a query expression, in ranked retrieval, the system returns an ordering over the (top-k) documents in the collection for a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language (1st Q/A network was in Korean!)
- In principle, these are two separate choices, but in practice, ranked retrieval has normally been associated with free text queries and vice versa
 - DBMSs also now provide ranked retrieval in a limited manner!

Feast or Famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - The size of the result set is not an issue as it can be configured!
 - We just show the top k (\approx 10) results
 - We don't overwhelm the user
 - What is critical for this to succeed?
 - Premise: The ranking algorithm works!
- Perhaps, this is exactly what differentiates Google from other search engines

Scoring as the basis of ranked retrieval

- We wish to return a small number of documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

Query-document matching scores

- We need a way of assigning a score to a query/document pair
 Why?
- Let's start with a one-term query
- If the query term does not occur in the document score should be 0
- The more frequently the query term occurs in the document, the higher the score (should be)
- We will look at a number of alternatives for this.

Take 1: Jaccard coefficient

- Recall a commonly used measure of overlap of two sets A and B
- jaccard(A,B) = $|A \cap B| / |A \cup B|$
- jaccard(A, A) = 1
- jaccard(A, B) = 0 if $A \cap B = 0$
- A and B don't have to be the same size. (Why is this important in search?)
 - The elements of corpus you are searching are not the same size!
- Always assigns a number between 0 and 1.

Issues with Jaccard for scoring

- It doesn't consider term frequency (how many times a term occurs in a document) (why?)
- Rare terms in a collection are more informative than frequent terms. Jaccard doesn't consider this information
- We need a more sophisticated way of normalizing for length
- Later in this lecture, we'll use magnitude
- ... instead of $|A \cap B|/|A \cup B|$ (Jaccard) for length normalization.

Take 2: Binary term-document incidence matrix Antony and Cleopatra Julius Caesar The Tempest Hamlet Othelio Macbeth Antony 1 1 1 0 0 0 0 0 1 1 Brutus 1 1 1 0 0 1 0 0 0 Caesar 1 1 0 0 0 0 0 0 Caesar 1 0 0 0 0 0 0 0 Cleopatra 1 0 0 0 0 0 0 0 Cleopatra 1 0 0 0 0 0 0 0 mercy 1 0 1 1 1 1 1 Brutus 1 1 1 0 0 0 0 0 0 Cleopatra 1 0 0 0 0 0 0 0 Each document is represented by a binary vector $\in \{0,1\}^{|\mathcal{V}|}$ Occurrence/non-occurrence is captured! Matrix is very large! Matrix is also sparse! Is binary representation good? Does this discriminate based on the number of occurrences?

	Each document is a	Count vecti	Jijiii 19' '. a	Column	i peiow	
	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Take 3: Term-document count matrix

Term frequency tf

- Should we use every word in the document as a term?
- If not, what should we do?
- How should we handle words in different tenses, adjectives, plural etc.?
- Should the positions of words be considered?

Definitions

- Word A delimited string of characters as it appears in the document
- Term A "normalized" word (case, morphology, spelling etc.)
 an equivalence of words
- Token an instance of a word or token occurring in a document
- Type The same as a term in most cases: an equivalence class of tokens

Common words

- Stop Words = extremely common words which would appear to be of little value in helping select (or differentiate) documents matching a user need
 - Examples: a, an, and, are, as, at, be, by, for, from, has, he, in, is, it, its, of, on, that, the, to, was, were, will, with
- Stop word elimination used to be standard in older IR systems
- But you may need stop words for phrase queries, e.g. "King of Denmark"
- What is the problem with stop words?

Lemmatization

- Reduce inflectional/variant forms to base form
 - Example: am, are, is \rightarrow be
 - Example: car, cars, car's, cars' → car
 - Example: the boy's cars are different colors \rightarrow the boy car be different color
- Lemmatization implies doing "proper" reduction to dictionary headword form (the lemma).
- Inflectional morphology (cutting → cut) vs. derivational morphology (destruction → destroy)

Stemming

- Definition of stemming: Crude heuristic process that chops off the ends of words in the hope of achieving what "principled" lemmatization attempts to do with a lot of linguistic knowledge.
- Language dependent
- · Often inflectional and derivational
- Example for derivational: automate, automatic, automation all reduce to automat
- · Why don't we do lemmatization?
- · Why should we do stemming?

Porter Stemmer: a few rules

Rule Example
 -SSES → SS caresss → caress
 -IES → I ponies → poni
 -SS → SS caress → caress
 -S → S cats → cat

- · Need to be careful
 - Reducing care → car is incorrect!
- There are several implementations of stemming and eliminating stop words

Bag of words model (why is it a bag and not a set?)

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Mary is quicker than John have the same vectors
- This is called the bag of words model.
- In a sense, this is a simplification: The positional index is able to distinguish these two documents.
- For now: bag of words model + stemming + stop word elimination
 - Remember, bag is a multi-set with no order!

Term frequency tf

- The term frequency tf_{t,d} of term t in document d is defined as the number of times t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency. Frequency = count in IR

Normalizing counts (or weights)

Instead of raw counts, normalized values/weights are easier to understand

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
Antony	0.35	0.16	0	0	0	0	
Brutus	0.009	0.34	0	0.11	0	0	
Caesar	0.51	0.49	0	0.22	0.14	0.5	
Calpurnia	0	0.02	0	0	0	0	
Cleopatra	0.13	0	0	0	0	0	
mercy	0.004	0	0.75	0.56	0.71	0.5	
worser	0.004	0	0.25	0.11	0.14	0	

• Divide each element by the sum of the column in which it appears

Log-frequency weighting

• The log frequency weight of term t in d is $w_{_{Ld}} = \begin{cases} 1 + \log_{_{10}} \text{ tf}_{_{Ld}} \,, & \text{if tf}_{_{Ld}} > 0 \\ 0, & \text{otherwise} \end{cases}$

- $0 \rightarrow 0$, $1 \rightarrow 1$, $2 \rightarrow 1.3$, $10 \rightarrow 2$, $1000 \rightarrow 4$, etc
- Score for a document-query pair: sum over terms t in both q and d:
- score $= \sum_{t \in q \cap d} (1 + \log tf_{t,d})$

Why is 1 added?

• The score is 0 if none of the query terms is present in the document. Else non-zero. Increases slowly from 1

Term frequency score

- Note
 - the columns (vectors) are very large
 - Tens and hundreds of thousands (based on the size of the documents)
 - Further they are sparse!
- Can we just use this as the score of a document-query pair?
 Why will this not work well?
- If the document has some rare words, they will never come up as the score does not reflect them in any way!
- How do we include the contribution of rare words to the matching process?

Document Frequency

- Rare terms are more informative than frequent terms
 Recall stop words
- Consider a term in the query that is rare in the collection (e.g., lackadaisical)
- A document containing this term is very likely to be relevant to the query *lackadaisical* (in the presence of multiple terms)
- We want a high weight for rare terms like *lackadaisical*
 - So those documents will come up even with multiple words!

Document Frequency

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
- · But it's not a sure indicator of relevance.
- → For frequent terms, we want high positive weights for words like high, increase, and line
- · But lower weights than for rare terms.
- We will use document frequency (df) to capture this.

Document Frequency (contd.)

- The document frequency is the number of documents in the collection that the term occurs in
 - Note that this refers to the collection and a term t, not individual
- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - $-df_t$ is an inverse measure of the informativeness of t
 - $df_t \le N$ (total number of documents)
- This can be a large number for frequent terms!
- For 100,000 documents, if a rare word t occurs in 10 of them, $df_t = 10$
- Df, usually has a low value for rare terms!

Idf weight

• We define the idf (inverse document frequency) of t by

$$idf_t = log_{10} (N/df_t)$$

= log 10 (100,000/10) = 4

- We use log (N/df_t) instead of N/df_t to "dampen" the effect of idf.
- · Without log, it would have been 10,000

- As t occurrence increases $tf_{t,d}$ increases and idf_t decreases!
- It turns out that the base of the log is immaterial!

Term	Df _t	N/df _t	idf_t	$idf_t = log_{10} (N/df_t)$
Calpurnia	1	1,000,000	6	101, 10510 (11, 41,)
Animal	100	10000	5	
Sunday	1000	1000	4	HW: suppose term t1 occurs 10 Times and a rare term t2 occurs
Fly	10,000	100	3	10 times. For 1 Million document
Under	100,000	10	2	Check their tf and idf weights.
The	1,000,000	1	1	Does it satisfy the hypothesis we Indicated earlier?

There is one idf value for each term t in a collection.

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries?
 - only if it is a rare term!
- idf effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

Collection vs. Document frequency

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences.
- Example:

Word	Collection frequency	Document frequency		
insurance	10440	3997		
ry	10422	8760		

- Which word is a better search term (and should get a higher weight)?
 - It depends on collection size! But in general lower document frequency should get a higher weight!

Tf-idf weighting

• The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$\label{eq:Wtotal_total_total_total} \text{W}_{\text{t,d}} = (1 + \log_{10} tf_{t_{r},d}) * \log_{10} (\frac{\textit{N}}{\textit{d}f_{r}}) \quad \text{Both terms 0.} \\ \text{No fractions}$$

- N: total number of documents
- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Score of a document for a given query

$$Score(q,d) = \sum_{t \in q \cap d} tf.idf_{t,d} \quad \text{which is W}_{t,d}$$

- Score is for a pair query-document here!
- There are many variants
- how tf is computed (with/without logs)
- whether the terms in the query are also weighted!
- Now we have score for each term in a q-d pair, what do we do?
 - We need to map it to similarity of q and d! how do we that?

	Binary → count → weight matrix						
	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth	
Antony	5.25	3.18	0	0	0	0.35	
Brutus	1.21	6.1	0	1	0	0	
Caesar	8.59	2.54	0	1.51	0.25	0	
Calpurnia	0	1.54	0	0	0	0	
Cleopatra	2.85	0	0	0	0	0	
mercy	1.51	0	1.9	0.12	5.25	0.88	
worser	1.37	0	0.11	4.15	0.25	1.95	

Each document is now represented by a real-valued vector of tf-idf weights $\in R^{|V|}$

Documents as vectors

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the document search space
- <u>Key idea 2:</u> Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance? Is it a good idea?
- Euclidean distance is a not a good idea
- because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

 The Euclidean distance between q and d₂ is large even though the distribution of terms in the query q and the distribution of terms in the document d₂ are very similar!

Use angle instead of distance

- Thought experiment: take a document *d* and append it to itself. Call this document *d'*.
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.
- Key idea: Rank documents according to angle with query (not magnitude)
 - What angle would you use?

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query and document
 - Rank documents in <u>increasing</u> order of cosine(query, document)
- * Cosine is a monotonically decreasing function for the interval $[0^{\circ},\,180^{\circ}]$ as $[1,\,-1]$

Cosine(query, document)

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \bullet \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \bullet \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|r|} q_i d_i}{\sqrt{\sum_{i=1}^{|r|} q_i^2} \sqrt{\sum_{i=1}^{|r|} d_i^2}}$$

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

 $\cos(q,d)$ is the cosine similarity of q and $d\dots$ or, equivalently, the cosine of the angle between q and d.

Cosine for length normalized vectors

• For length-normalized vectors, cosine similarity is simply the dot product (or scalar product)

$$\cos(\vec{q}, \vec{d}) = \vec{q} \bullet \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

- For q, d length normalized
- How why do you length-normalize a vector?
- A vector can be (length-) normalized by dividing each of its components by its length for this we use the $\rm L_2$ norm
- When you length-normalize, the vector length becomes unit or 1.

$$\left\| \vec{x} \right\|_2 = \sqrt{\sum_i x_i^2}$$

Summary – vector space ranking

- Represent the query as a weighted tf-idf vector
- · Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user
- Efficient computation is a different ball game!
- Note similarity ranking involves computing millions of values for each query! How to speed it up?
 - Pre-computation is a key component!

Resources http://www.miislita.com/information-retrieval-tutorial/cosinesimilarity-tutorial.html

