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Summary and Challenges

Why Database Mining?

» Proliferation of relational database and DW
necessitates mining without siphoning the data out

» Make mining to ‘co-exist’ with OLAP and other
decision-support applications

» DM need to be a sub-process in next generation

Business Intelligence (BI) Systems

» Leverage the RDBMS technology for mining

= More than 40 years of research into RDBMSs

» Provide an integrated decision-support environment

for analysts




Data Mining Vs. Database Mining

» Data mining refers to main memory algorithms for mining
+ Can use arbitrary data structures

+ Can optimize algorithms with proper representation (hash tree for
example)

Limited memory, need for buffer management (need to be
implemented separately for each approach !)

Data has to be siphoned out of its location (mostly from a DBMS
or a Data Warehouse)

Works well only for small data sizes (no scalability)

Every time data is added to the DB, the process has to be repeated

» Solution? Database Mining — Bringing algorithms to data
instead of taking data to algorithms

4
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Database (SQL-based) Mining: Implications

+ Leverage 4+ decades of DBMS R&D
+ Buffer management comes for free !
+ Portability due to standardization (SQL)
+ Fast development of mining algorithms

+ SMP parallelism for free with parallel
database engines

+ Data not replicated outside of DBMS

+5SQL may be extended to include ad hoc mining

queries

- However, No specialized data structures and
memory management (UDF’s are exception)

12/13/2020 = W © Sharma Chakravarthy H‘

Data Mining Evolution

» File-Based or Main Memory mining algorithms
= Data mining
» SQl-Based mining algorithms
= Database mining
» Parallel mining Algorithms
= Both main memory and SQL-based
» Other approaches
= Map/Reduce, ...
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Mining Spectrum

» Study architectural alternatives
» Performance evaluation
» Extend the capability of current query processors

Mining
" User-defined
Cache-Mine e extenders/blades
Integrated with
Loose Stored SQL-based SQL query
Coupling Procedure approach engine
Mining as Mining as .
application on application on Mining using Integrated
Client/app. server database server SQL+ Extensions approach
Loose ion with database Tight
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Long-Term Vision

» Unbundle bulky mining operations (e.g., mine)

» Identification of Common operators

» Integration of the above into the Query Optimizer
» No distinction between OLAP and mining

Etended SQL

o
Gul

sQL92

SQL-3SQL+

(Object) Relational
DEMS

Enbanced
Optimizec

— Lofommarion

f

0

Domain semantics
of mining
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SQL-Based

SQL: mining algorithm formulated as SQL-92/SQL-
OR queries

Several alternatives (query/subquery, Kway join)

Can exploit SQL parallelism (where available)

No specific extensions for mining

May facilitate identification of needed extensions

(Object)
ExtesndLed_, preprocessor | SQL-92 | Relational
Q + SQL-OR | DBMS
GUI — Optimizer
DB
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Architecture comparison

= Experiments on four real-life data sets

= Used IBM DB2 Universal Server version 5 on RS/6000:
200 MHz CPU, 256 MB main memory, 9GB disk

# records in# Transactions # items in| Avg

Datasets e . . .
millions | in millions | thousands # items
Dataset-A 25 0.57 85 44
Dataset-B 75 25 15.8 2.62
Dataset-C 6.6 0.21 15.8 31
Dataset-D| 14 1.44 480 9.62
2 0 % > Sharma Chakravarthy H‘ 1

Architecture comparisons (DB2)

Data set A Data set D
0 Pass 10 Pass 20 Pass 3| 0 Pass 1 B Pass 2 0Pass 30 Pass 4
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Summary Storage Comparison

> SQL performance good for smaller data sets » Additional storage for Cache-Mine and SQL to
cache/ transform data

> As the size of the data set increases, SQL is > Space for indexing / sorting

not doing as good as cache (better data Storage Requirement
. ;
representation, special data structures, ...)

» Stored procedure and UDF did not perform
well (no optimization, limited data structures)

» SQL seems comparable with its own
advantages!

Fg S
laset-A & Datasets

» Similar storage overhead for Cache-mine and SQL

atasel-D
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SQL-92 based approaches
to Association Rules

Input to Mining

TID Iteml Item2 Item3 Item4 Item5

100 1 1 1
200 1 1 1
300 1 1 1 1
400 1 1

ﬁ“ 12/13/2020 % © Sharma Chakravarthy




Table format for database mining

Frequent itemsets table format

TID ITEM
7”””1’(;;)’ ”Wﬁﬁlﬁi ITEM, ITEM, | ITEM; | ITEMy | ITEMs | ITEMs | ITEM; | ITEMg [ NULLM | COUNT
100 3 » DBMSs have an upper limit on the 1 0 0 0 0 0 0 0 2 2
100 4 ) ) 2 0 0 0 0 0 0 0 2 3
200 2 » Number of attributes in a table! 3 0 0 0 0 0 0 0 2 3
200 3 5 0 0 0 0 0 0 0 2 3
200 5 1 3 0 0 0 0 0 0 3 2
300 1 . 2 3 0 0 0 0 0 ] 3 2
300 2 > Cannot use a table for horizontal layout 5 3 0 0 0 0 0 0 3 5
300 3 3 5 0 0 0 0 0 0 3 2
300 5 2 3 5 0 0 0 0 0 4 2
400 2 :
400 5
Indicates itemset size
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Rule table format L .
SQL-based Association rule mining
XNULLMY
ITEM, | ITEM, | ITEM, | ITEM, | ITEM; | ITEM, | ITEM, | ITEMy | NULLM [ RULEM | CONF | SUP > > SQL-OR (uses table functions

1 3 0 ol ol oloTlo 3 2 100 | 50 SQL-92

3 i 0 0 0 0 0 0 3 5 5667150 ahd other featlfres ( blobs or

P 3 0 0 0 0 0 0 3 5 166671 50 = K-way joins binary large objects, clobs or

3 2 (1] 0 0 (1] 0 0 3 2 66.67 | 50 character large objects, etc.)

2 [ s TolTolololoTlo 3 2 100 | 75 . ’

s 2lolololoTloTlo 3 2 [ 100 75 Subquery = GatherJoin

31 s TololololoTl0 3 2 6667 50 -

5 3 TolTolololoTlo 3 2 16667150 " 3-way joins * GatherPrune

2 [ 3 s TolololoTlo 4 2 66,67 50

3125 Tololololo 4 2 66671 50 = 2-group by = GatherCount

s 23T ololol o]0 4 2 16667 50 ) .

2 315 TolololoTl0 4 3 1100 | 50 = Set-oriented apriori (an = Horizontal

2 s 3TolololoTlo 4 3 6667150 .

3 5 > TolT ol oToTl0 4 3 100 [ 50 improvement of K-way = vertical

> Sharma Chakravarthy

3

join)

= SQL-bodied functions




SQL-92 approaches

» Uses only the features of SQL-92 standard
= “yanilla SQL”
= No table functions
= No stored procedures
= No UDF’s

» Portable (can be used on any RDBMS)
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Performance of SQL-92 approaches

= Experiments on four real-life data sets

= Used IBM DB2 Universal Server version 5 on RS/6000:
200 MHz CPU, 256 MB main memory, 9GB disk

# records in# Transactiong # items in| Avg
Datasets . N L )
millions | in millions |th ds # items
Dataset-A| 25 0.57 85 44
Dataset-B 7.5 25 158 2.62
Dataset-C 6.6 0.21 158 31
Dataset-D| 14 1.44 480 9.62
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Data set A

BECgen MPass 1 OPass 2 OPass 3

10000 = e

9000 ==

8000 |

7000 -

6000 =

Comparison of
SQL-92 approaches
5000 e

Time in sec

4000 £ —

3000 1

2000 (]

1000 —

E=RSENS=RT

o
SEELY S8 S EF

Support > 050% 0.35% 0.20%

12/13/2020 A © Sharma Chakravarthy H‘ 23

SQL-92 approaches

= Set-oriented Apriori was the overall winner
= Subquery approach performed well

= The candidate generation time and the time for first pass
is much smaller than the total time

= K-way joining was also good for this data set

= As good or better than loose-coupling only for high
support

= For low support considerably worse than loose-coupling
= 2-GroupBy has the worst performance
= 3-WaylJoin is also not good
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Observations on apriori

Data Characteristics

» C1 (typically input relation) can be substituted by F1 » Number of items : in thousands

for subsequent passes . . s

4 P » Number of Transactions: in Millions

» Second pass is the most expensive one; no pruning > Data set sizes: High Gigabytes

at all; it is a Cartesian product = Discovering all rules rather than verifying if a rule

holds

» As the number of passes increases (i.e., longer = Completeness and soundness

frequent itemsets), the number of joins increases; = Performance

hence materialization may be effective .

= Scalability
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K-way Join
Input/Output Formats
» The process of support counting in Kwj is as
» Input transaction table in the normal form follows:
» Two attributes (tid, item) In any pass k:
» Example: 1: A, B, C Tid | Item = Frequent itemsets of length k-1 are used to
1 A . .

> Output s a collection of rules N generate candidate itemsets of length k (C,).
- = Prune some of the candidates generated
» Rule table schema: t]o¢© ) . .

) ) ) = For support counting of these candidate itemsets,

(itemy, ..., item,, len, rulem, confidence, support) k copies of input relation is joined with the C,
» Rule AB -> CD, conf. 90%, support 5%

(A, B, C, D, NULL, 4, 3,0.9, 0.05)

2020 = W © Sharma Chakravarthy H 27
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Candidate Set Ck Generation and pruning

Example: Fy {{1.2,3}. {1,2.4}, {1, 3,4}, {1,3,5}, .
(Skip itemy.,)
{2,3,4}} 1, tem, - I itom,
=>Cy. {1,2,3,4},and {1, 3, 4, 5}.

Ip.itemy ;= I.itemy

(Skip item;) L.itemy; = I.itemy
I,.item, = Ly.item, >
e Ik

Prune - it y
Jitemy = I tem
Litem,; = L.itemy >§ Complete Query Diagram
Faly

T, tein, = L teimy

Candidate T

Generation

I.itemy., = L.itemy.
Fal Ful I,.itemy < L.itemy |

Chakravarthy H 29
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Candidate Set Ck Generation

Insert into C,
Select I,.item,, I,.item,, ..., I,.item,_,, I,.item, ,
From F,, I, F, I,
Where I.item, = I.item; AND
I,.item, = I,.item, AND

1,.itemy, = I,.item; , AND
1,.itemy ; < L.item,

Example: Fy, {{1,2,3}, {1,2.4}, {1,3,4}, {1,3,5}, {2,3,4}}
(1,2,3.4},and {1, 3,4, 5}.

12/13/2020 = W © Sharma Chakravarthy H 30

Candidate Generation in SQL

> Join step: join 2 copies of F,;

(Skipiten k1)
lieal  =kienl

insert into C,
select I.itemy, ..., I.item,y, I,.item,
from  Feqly, Fegl (Stpitenl)
k1T el 2 Tiem2  =l3iteml
where |,.item, = l,.item; and .... and
I,.item,, = l,.item,, and

l.item,; < l,.itemy ; ienl  =Dileml S
Lo k2=0ikr k2
e k1<l k1 ,Dq

Lexicographic order of input is assumed Ekll Bl

12/13/2020 2 © Sharma Chakravarthy

Pruning explanation

» Consider Ck {1 3 4 5} generated from {1, 3, 4}, {1, 3, 5},
» The subsets are

= {1 3 4} generated by skipping item at position 4

= {135} generated by skipping item at position 3

= {3 4 5} generated by skipping item at position 1

= {14 5} generated by skipping item at position 2

» First 2 have been used in the generation of {1 3 4 5}

» Hence, skip positions 1 and 2 or 1 through k-2 (here k is
4) to check for subsets!

12/13/2020 = W © Sharma Chakravarthy H 32




Candidate Generation and Pruning

» Prune step: additional joins with
(k-2) more copies of F,
(Ski>-tem_k:2)
» Join predicates enumerated by tiesl  steenl
skipping an item at a time
» k-items have k (k-1)-item subsets

(Skiptar ]

Pruning

Prune step: in the k-itemset of Cy, if there is any (k-1)-subset of C,
that is not in F,_;, we need to delete that k-itemset from C,.

Tp.item, = Ty.item,

Ijitemy, = Iy.itemy, Skip Item,

Out of that 2 have been used for Uit e 7 e e ~ e
generating the K item. No need P dtem, = Tydtem,
to check them. Hence, the other SN Tuitemy = e, -
(k-2) subsets need to be checked :“ ;“:“‘m / EH D Litemys = Litemyy ip Itemy.z
by doing (k.z) joins Lien b1 <laiter k1 N
P
L e In the above example, one of the 4-itemset in C, is {1, 3, 4, 5}.
Example: Fy. {{1.2.3}, {1,2,4}, {1, 3,4}, . . .
(13,51, (2.3,41) This 4-itemset needs to be deleted because one of the 3-item
- C;. :’1_ s 3. 4’:,,and (1,3,4,5). subsets {3, 4, 5} is not in F;.
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. . SQL-92 support counting - Kwa
Candidate Set Ck Generation PP & 4
Example: Fy, {{1.2.3}. (1,24}, {1,3,4}, {1, 3,5}, - > Join k copies of input table (T) with C, and
3 (Skip itemy.o) .
{2,3,4}} 1,item, = I item, do a group by on the itemsets
=>C,, {1,2,3,4},and {1, 3,4 » insertinto F,
iteme = Iitemg select item,, ... , item,, count(*) requires K more joins
(Skip item;) Lpitemy; = Iitemy fromC,, Tty, .., Tt .
Iw-immzzls-m:“w / h where‘;l.itelm = Cy.item; and Of Ck Wlth Ti (nOt C or F)
Prune I, item,; = Lyitem, - it E Cy.it d for the kih pass
itemy, = Lyitem; . item = C,.item, an
Litemy = Lyitemy >§ Complete Query Diagram t,tid = t,.tid and t,.item < t,.item and
Fo I ;

I).item, = L.item,

Candidate T Ipitemy, = Litemy >

Generation Ful, Fuly L.itemy; < L.itemy

12/13/2020 A > Sharma Chakravarthy H‘ 35

i tid =t tid and t,;.item < t,.item
group by item,, item,, ... ,item,
having count(*) > minsup
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Support Counting for Kwj in pass k

Join C, with k copies of T

Follow up the join with a group by on

the items and filter on minsup Having count(*) > minsup

Requires k joins for the k™ pass

K-way join plan (C, outer)

» Series of joins of C, with k

coat(*) = i hagp

Groop by

12/13/2020 = W > Sharma Chakravarthy H‘ 39
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. —t i Group by copies of T item .. ek
Ck-ltcmy t,.item item, ... item, . N ' R /"
Citem. = t..item — » Final join result is groupec tesd :\_ma/D<]\
K 'k~ ke e . .
typ.tid = t.tid /\ Note that Ckis L!SGd on the k items Chiten2 = 2item ~ T
BT <] ¢, asaninner relation ! |
tipitem < t.item /,/-\
-~ T2
. " = Tt Chitenl =t Litem [ <]
t,.tid = t,.tid =
t,.item<(ri|eV \ Attributes of Input Table (T) : / \
(tid, item) ce Tu
Tt T4,
12/13/2020 % © Sharma Chakravarthy H 37 12/13/2020 A H 38
Example: Frequent itemsets
Di i . . .
ifference between inner and outer Ck generation using Kwj
.. e Transaction 3 o T Fy
> Ck needs to be materialized if inner Td [ 1d T T [temi[item2]count
Tid | lid
> Requires storage and additional I/O 1' '1 ftem | Count K [ KN R
2 3 c T3 T3 2 [ 5] 3
1 i 3 3 Item, | Item, 1 4 1 4 3 4 2
> No materialization needed if outer R B 2 |2 Py A
5 3
. . . 2 4 2 3
» Can write a single (large) query for candidate 2|3 join o B Cs
; i d ; 2 5 ) 215 2]5 2 5] [itemt|tem2|items
generation, pruning, and support counting ST T3 15
. .. 3 2 F, 2 3 5
» May involve 10’s of joins! ST Mo oo 3| 5 3|3 3|3 s |45
em ul
. . 4 5 3 4
» Current optimizers were not designed for that 34l 2 3 T z 2
many join optimizations and importantly self-joins! R | I T2 YR
K e [l

10



SQL-92 support counting - Kway

> Simple and easy to write in SQL
» Only down side is the number of joins

» Also, Optimizers were never stressed for so many
joins
Optimizers were never optimized for self-joins!
SQL is generated by a script!

12/13/2020 A > Sharma Chakravarthy H 4

Performance comparisons of SQL-92 approaches

E
g
£
=

Comparison for dataset TSD10K

HPass | BPass 2 0Pass 3 OPass4 MPass 5 @Pass 6 @Pass 7‘

3000 —
2500
2000
1500

3 100 In both the datasets, Kway

00

join emerged to be the winner.

S Y & F o F &
& £ & &
Linp ey ey eEy For lower supports on larger
0.20% 015% Support (0% 0.05%

datasets, pass two is the most

Time in seconds

Comparison for dataset TSD100K time consuming

B Pass | MPass 2 OPass 3 OPass 4 BPass 5 @Pass 6 BPass 7‘

Intelligent Miner is not SQL
based and hence appears to be

|
o faster.
E .
o

5
o &g p &L p &L s &L

o S £ £oF
0.20% 015%  Support  010% 0.05%
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Scale-Up Experiment

Both Kway Join and Subquery approaches have the similar scale-up behavior.

o sox 500k

121312020 Fm Scale-Up Experiments-for'SQL-92 machcs 43

Optimizations

» Reduce the size of input dataset

= Non-frequent 1-itemsets are pruned out from the input
table and this pruned input table is used instead in further
passes.

= Effective for higher supports (why?)
» Optimize the second pass.

= Skip generation of F, and C, and directly generate F, by
joining 2 copies of input dataset.

= Effective for large data sets (why?)
» Reduce the number of joins done in any pass

= Materialize all the frequent itemsets contained in any
transaction at the end of the pass k and use them for
support counting in pass k+1

= Effective for higher iterations (why?)

12/13/2020 = W © Sharma Chakravarthy E
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Non-frequent item pruning

Experiments

1200000 1 n Effect of Pruning on table size (TSI2D1000K) Wi andt Pi on TEI201000K (Oracle)
» Reducing the size of T m g £000
> Ti di | f 300000 [ 5 6000 DPass §
is stored in normal form - s o oPmed
» Simply drop the (tid, item) o 4000 b mPass 3
. — = c
records of non-frequent items a0 g 3000 < 0
2 oo 2 OPass 2
> Join Twith F; 5 o H F 150 B Ohead
o
> Significant reduction in size of s 1— 2 0 O 2 _HEHQ mPass |
3
N N
- S R
> Improyed perfqrmance 0 P e Q 3% | 2% | 1% [L20°D 1590 10%
especially for higher support REEs RERgE Supnottvalues Suppotvalies
R Rrspptvaues R Rforsupertvaes
T10.4.D100K T512.0100K Effect Of Prunll‘lg
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Effect of Pruned Input Second pass optimization
» C,is Cartesian product of F,’s
Effect of Pruning on table size (TG12D1000K) K and Pi on T51201000K (Oracle) R
S a000 | » Usually C, is very large
£ %o 54 »> Avoid generating C,
5 oo ﬂ . » F,isfound by joining 2 copies of Pass 2 optimizaton (T10.4.0100K)
5 — o0 L the pruned T
= o e g @ =l [zl |zl 2l =l 2] » Significant performance gains
IS RN SN g p 8
< 3% | 2% | 1% |p.20%{ 15%0.10% 120001
Supportvalues Support values o000
Pass wise for K] on TSI2D1 000K PassWise for Pi on TEI2D1000K (Oracle) insert into F2 g
(©racie) o select p.item, g.item,count(*) § o
2000 from Tfp, Tfq e
g & 1500 where p.tid=q.tid and p.item <g.item .
E E ’:EE group by p.item, g.item oon
oL having count(*) > :minsup
.
N ® o o
N Support

12/13/2020 = W © Sharma Chak

ravarthy
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Number of Candidate Itemsets in Different Passes

C. C. Cy C. Cq C; Cy Cy
T512D500K. Sup=0.10% 307720 126 7 0
T512D1000K. Sup = 0.10% 309291 127 61 0
T1014D100K. Sup = 0.75% 12470 65 3 0
T1014D100K. Sup = 0.33% 216153 2453 905 354 109 20 2 0

)
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Summary

» Explored SQL-aware implementations of association
rule mining

Analyzed the best SQL-92 option
» Cost formulae to characterize execution time

Y

» Identified optimizations of
= Set-oriented apriori approach
» Performance experiments and scale-up properties
» Moves us towards our short term vision
» Basis for optimizations for the long term vision

g0 Results

CSEUTA
Table Name | Ranking | Supp = 0.2% |[Supp = 0.15%| Supp = 0.1%
T512D100K. First RicSpo RicSpo Kwj
Second All All RicSpo
Last RicPi RicPi RicPi
T512D500K First RicSpo RicSpo Spo
Second Spo Spo RicSpo
Last RicPi RicPi RicPi
Ranking | Supp = 2.0% | Supp = 1.0% [Supp = 0.75%|Supp = 0.33%
T1014D100K First All RicSpo RicSpo Ric
Second Pi All All Spo
Last Ric RicPi RicPi RicSpo

Trends in Oracle for SQL-92 based approaches
Al all optimizations
RicPi: Reuse of item combinations with pruned input
RicSpo: Reuse of item combinations with Second pass optimization
Spo: Second pass optimization
Kwjolyayjoin 51

T Results
Table Name Ranking Supp = 0.2% Supp = 0.15% Supp = 0.1%
T512D100K First RicSpo Spo RicSpo
Second Spo RicSpo All
Last RicPi SpoPi SpoPi
T512D500K First Spo Spo Spo
Second RicSpo RicSpo RicSpo
Last SpoPi SpoPo SpoPi
Ranking Supp = 2.0% Supp = 1.0% Supp = 0.75%
T1014D100K First Spo RicSpo RicSpo
Second RicSpo All All
Last Ric Kwj Kwj

Trends in IBM DB2/UDB for SQL-92 based approaches

AlL all optimizations
RicPi: Reuse of item combinations with pruned input
RicSpo: Reuse of item combinations with Second pass optimization
Spo: Second pass optimization
Kwj: K-way join
12/13/2020 5
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Mining-aware Optimizer

» Typically, data is stored in different DBMSs

How can we perform mining on any RDBMS

» Our experiments indicated that different RDBMSs
optimize queries in different ways

= Even support variations had impact on the performance in
different DBMSs

» Hence a global approach to mining did not seem
appropriate !

\4

» Analyze sql-92 and sql-or to generate and consolidate
heuristics as metadata to be used by a mining-aware
optimizer

12/13/2020 A © Sharma Chakravarthy H 53

Motivation

Limitation: Existing mining tools can’t connect to multiple Database
Management Systems.
« Solution: Use Java Database Connectivity (JDBC)

Limitation: Most of the mining tools use Cache-Mine architecture.
Data are copied into the local disk.
« Solution: Use SQL-based approach. Three of the approaches
are based purely on SQL-92 and three of them are based on
SQL-OR (Oracle).

Limitation: Existing mining products do not provide expressive rule
visualization
« Solution: We use “rule-item” relationship in the association rule
visualization to replace the “item-item” relationship [MINESET] or
directed graph [MINER].
« Java 3D, a new feature provided by JDK1.2, is used to
implement three-dimensional display.

12/13/2020 = W © Sharma Chakravarthy H 54

Motivation

Limitation: Most of the available products can only use the data from
one table (DBMiner has 64k transactions)

+ Solution: We provide the user with an interface to choose the
tables to be used as data source. For each table, the user can
specify the columns that correspond to items. A set of JOIN/UNION
operations are transparently applied to generate the input data set.

Limitation: Existing products use only one mining algorithm. However,
the choice of an algorithm needs to be based on data as well as DBMS
characteristics.
« Solution: Implement a Mining Optimizer based on meta data to
decide the algorithm to be used based on the data set and the
underlying DBMS used.

12/13/2020 = W > Sharma Chakravarthy H‘ 55

Short-term Goal

» Layered architecture

MINING QUERY
¥
Vi T ‘/J_-_“\\
VMO o o T
_Mlmng Opfimizer X ,5
| awes—
| H ics
Cosls
JDBC Optimizer
i Characteristics
Tnformix, Sybase <.— > DB2, Oracle | Dynamic stats

» JDBC provides the database connection and SQL
interface

» VMO generates and visualizes the association rules

1312020 A © Sharma Chakravarthy H‘ 56
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Mapping

Mining is done on a relation with 2 attributes
(Tid, Item)

However, user has data in relations and has to
map it into integer (Tid, Item) format

Most mining tools accept single Tid and single
column items.

Our mining optimizer accepts multiple Tid
columns and Single/Multiple Items (attributes)
specified by the user from multiple relations

vV V V V

» Table input(Date, CustomerlD, item,, item,, item)

12/13/2020 A © Sharma Chakravarthy H 57

Mapping (Contd.)

InputTable1 InputTable2
Date CustID ITEM Date CustlD ITEM
00 | 100 Wi 00 | w0 | v
700 | 100 | fews 500|300 | Suer
V100 | 100 | Bread 500 | 300 | e
300 | 200 | sugar 500 | 50 | Cake
e O T a0 |00 | Suear
1/2/00 200 Cake 1/4/00 400 Cake

MappedTidsTable FinallnputTable

Number (TODT) T CostlD (TTDD2) [ TIDT - T
11200 200 2 ! !
17300 300 3 ! 3
1400 400 4 ! 4
2 B
3 3
2 5
MappedltemsTable 5 3
TTEMD | TTENT 3 3
Bread 1 5 T
7 5 3 5
Milk T T 3
Sugar 5 [ 5
12/13/2020 A H‘ 58

Rules table with descriptions mapped back

RULES (FINAL)
Rule Head Symbol | Rule Body | Confidence(%) | Suppori(%)
Cake = [Eas 67
Eggs = [ Cake 67
Eggs = | Milk 67
Milk = [Eges 100
Cake = | Sugar 100
= [ Cake 100
= | Sugar 7
= E; 7
= | Ees. 7
= | Cake, 7
= | Cake, 7
= | Sugar 100
= [Eggs 7
= [ Cake 100

12/13/2020 = W > Sharma Chakravarthy H‘ 59

Rule Table with Filter capability

Rule Visualization

SniEoc

CoNFDENGE

SUPRORT

i = The key is to construct g
: e 5 where clause using the
— B 4 | standard SQL operators
B [0l tn o such as ‘LIKE’, ‘NOT’,
= e = == AND et

12/13/2020 = W © Sharma Chakravarthy H‘ 60
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Rule Visualization

Rule Table with Sort capability

=3 Sveor Bo0v ConFiDENcE SupPoRT
Pump, Gozt

Louk ot o7 0%

Lotk Pums o7 iy

Pump, Lock coat e, Eags oo s

i, Lock E = a0 s
Ste,Pum, Lock g, ik a0 o

Lock, i Coat a0 s

i, Loc Eags Coat, ik a5t s

pump, Lo Coat 100 s

e, Lo, ik Coat 100 s

ook, Con Pums 100 s

Lovk Egpe.Goat fne 100 5%

Numoer orRues:  SOtF

5| | comdonce | Batiuning [rortasnce asc,sumen cose,

 suport | Assena
o HesL Sort Clear Close

A
X4

Rule Visualization
Ifmg in Riille head

# of Rules based

+ Customize the "
graph . )
- by . _—
modifying . |
the . [T
attributes :
* Add more s
constraints ‘
« by 3
modifying
the where
clause [ 2 .

2330 Association Rule Visuaization

3-D Visualization
Obtained by clicking
On the previous (head:3)

All database

access using
relational operators
Each column is a rule
1st coat, lock, pump

-> bike, eggs
(50% sup, 80% conf)

Coat

Lock

Pump

Rule Head

Issues with Large Set of Rules

» Even a small data set can produce hundreds and
thousands of rules (depending on the support used)
= How to deal with them?
= How do we prune rules systematically

» Objective interestingness measures
= Support, confidence, and correlation
= Used to rank patterns (itemsets or rules)
= Analyze top-k patterns

» Subjective interestingness measures
= {butter} >{bread} is subjectively not interesting
= {Diaper} > {Beer} is subjectively interesting

2]

A
X4

16



Application of Interestingness Measure

. K led
Interestingness nowledge
Measures 7

Patterns

Postprocessing

Preprocesse:
Data

Mining

Selected

Preprocessing

Selection

A 12}

Computing Interestingness Measure

» Given a rule X — Y, information needed to compute rule
interestingness can be obtained from a contingency table

2-way Contingency table for X — Y f,,: support of X and Y
Y Y f,o: frequency of X and Y
X » fro ., fo,: support of X and Y
X o o o foo: support of X and'Y
f,q f1o T f1+ : support count for X

\ F+1: support count for Y

Used to define various measures

+ support, confidence, lift, Gini,
J-measure, etc.

A 123

Drawback of Confidence
(people who drink coffee and tea)

Independently gathered information
Use it evaluate the following rule

Coffee | Coffee

Tea 15 5 20
Tea 75 5 80
90 10 100

Association Rule: Tea — Coffee
support is 15/100 or 15% (pretty high)

Confidence= P(Coffee|Tea) = 15/20 = 0.75 = 75% (high)

but P(Coffee) = 90/100 = 0.9 (people who drink coffee regardless of whether
they drink Tea)

= Although confidence is high, rule is misleading
= P(Coffee|Tea) = 75/80 = 0.9375 (people who drink coffee and not tea)

A 12}

Statistical Independence

» Population of 1000 students
= 600 students know how to swim (S)
= 700 students know how to bike (B)
= 420 students know how to swim and bike (S,B)

P(SAB) =420/1000 = 0.42
P(S) x P(B) =0.6 x 0.7 = 0.42

= P(SAB) = P(S) x P(B) => Statistical independence
= P(SAB) > P(S) x P(B) => Positively correlated
= P(SAB) < P(S) x P(B) => Negatively correlated

A 123
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Statistical-based Measures

> Measures that take into account statistical
(in)dependence

» PSis Pietesky-Shapiro measure

Lift =

Interest =

PY 1X)
P(Y)
P(X,Y)
P(X)P(Y)

PS =P(X,Y)-P(X)P(Y)

¢ — coefficient =

P(X,Y)-P(X)P(Y)
JPCO[1 - P(X)]P(Y)[1- P(Y)]

P H

Example: Lift/Interest

Coffee | Coffee

Tea 15 5 20
Tea 75 5 80

90 10 100

= Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9

2]

Drawback of Lift & Interest

Y Y Y Y
X 10 0 10 X ) 0 90
X 0 90 | 90 X 0 10 | 10
10 90 | 100 90 10 | 100

Lif

T 0.00.1)

0.1

Lift

09
(0.9)(0.9)

Statistical independence:
If P(X,Y)=P(X)P(Y) => Lift=1

12}

There are lots of
measures proposed
in the literature

Some measures are
good for certain
applications, but not
for others

What criteria should
we use to determine
whether a measure
is good or bad?

What about Apriori-
style support based
pruning? How does
it affect these
measures?

~w

Forrmula

# | Measure
1| ¢ cient P(A,B)_P(A)P(B)
o TR TR iy emnrton
2 | Goodman Krushal's () | D=t PUAsnu) hn ms Pl D)oy D) —mems PO
3 | Odds ratio (a) fagras
8 A BYP(45) P (4B,
4 | Yules @ P(4,5)P(AB)LP(4,B)P(4.5)
5 Yule's Y V/P(A,B)P(AB) —/P(4,B) P(4,
/P(A4,B)P(AB) +/P(ABP(AB)
¥i4,By4 P 4,8y P(4) F(B)—P(D)P(E
6 | Kappa (x) T,P(Ayp(mfyayp(% o
Mutual ton (M 5 E; P(44B3) 108 srasiatiry
fut; M) | s, PrA o PUAD— S, P(B) 108 PEZ)
J Measure {J) max (P(4, B) log( 55242 + P(AB) log( 5T7%),
P(A,B)log(552) + P(AB) log(552))
9 | Gini index (G) max (P(A) [P(B|4)" + P(B|A)’] + P(A)[P(B|4)" + P(B|A)"]
-P(B' ~ P(BY’, - -
P(B)[P(4|B)’ + P(A|B)"] + P(B)[P(4[B)" + P(4|B)’]
—P(4) - P(@)?)
10 | Support (s) P(4,B)
11 | Confidence (c) max(P(B|4), P(4|B))
2 | Laplae (1) ma (B2, B0
13 | Conviction (V) max &P‘({‘Eﬁf)ﬂl Eg’.%(fl
14 | Interest (1) P
15 | cosine (IS) TR
/P(A)P(B)
16 | Piatetsky-Shapiro's (PS) | P(A,B) — P(A)P(B)
17 | Certainty factor (F) max (PELAEE PARLEA)

Added Value (AV)
Gollective strength (S)
Jaceard (¢)

Klosgen (K)

max(P(B|A) - P(B), P(A|B) — P(4))
P{A,B)+P(AB) xl—PAPE—PKPE
P(A)P(B)+P(A)P(B) 1-P(A,B)—P(AB)
(s
P{AYIP(B)— PUAB]

\/P(AvB)M(P)(BM) — P(B), P(A|B) — P(4))
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Discussion

12/13/2020 ﬁ © Sharma Chakravarthy H

Thank You !!!

For more information visit:
http://itiab.uta.edu

Spring 2019 ﬁ

CSE 6331
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