
Algorithms for Association Rule Mining - A General
Survey and Comparison

Jochen Hipp
Wilhelm Schickard-lnstitute

University of TObingen
72076 TObingen, Germany

jochen.hipp @ infor-
matik.uni-tuebingen.de

Ulrich G0ntzer
Wilhelm Schickard-lnstitute

University of T0bingen
72076 TObingen, Germany

guentzer@ infor-
matik.uni-tuebingen.de

Gholamreza
Nakhaeizadeh

DaimlerChrysler AG
Research & Technology

FT3/AD
89081 UIm, Germany

rheza.nakhaeizadeh @
daimlerchrysler.com

ABSTRACT
Today there are several efficient algori thms t h a t cope wi th
the popular and computat ional ly expensive task of associ-
at ion rule mining. Actually, these algori thms are more or
less described on thei r own. In th is paper we explain the
fundamenta ls of association rule mining and moreover de-
rive a general framework. Based on this we describe to-
day 's approaches in context by point ing out common aspects
and differences. After t h a t we thoroughly investigate thei r
s t rengths and weaknesses and carry out several run t ime ex-
periments. I t t u rns out t h a t the run t ime behavior of the
algori thms is much more similar as to be expected.

1. INTRODUCTION

1.1 Association Rules
Since its in t roduct ion in 1993 [1] the task of association rule
mining has received a great deal of a t tent ion. Today the
mining of such rules is still one of the most popular pa t t e rn-
discovery methods in KDD.
In brief, an association rule is an expression X =~ Y, where
X and Y are sets of items. The meaning of such rules is
quite intuitive: Given a da tabase ~ of t ransact ions - where
each t ransac t ion T E D is a set of i tems - , X :=~ Y expresses
t h a t whenever a t ransac t ion T contains X t h a n T proba-
bly contains Y also. The probabil i ty or rule confidence is
defined as the percentage of t ransact ions containing Y in
addi t ion to X wi th regard to the overall number of t rans-
actions containing X. T h a t is, the rule confidence can be
unders tood as the condit ional probabil i ty p(Y C TIX C T).
The idea of mining association rules originates from t h e

analysis of market -basket da ta where rules like "A customer
who buys products xl and x2 will also buy product y with
probabi l i ty c%." axe found. Their direct applicability to
business problems together wi th their inherent tmders tand-
ability - even for non da t a mining experts - made associ-
a t ion rules a popular mining method. Moreover it became
clear t h a t association rules are not restr ic ted to dependency
analysis in the context of retail applications, bu t are suc-
cessfully applicable to a wide range of business problems.

SIGKDD Explorations.

When mining association rules there are mainly two prob-
lems to deal with: First of all there is the algorithmic com-
plexity. The number of rules grows exponentially with the
number of items. Fortunately today's algorithms are able to
efficiently prune this immense search space based on mini-
real thresholds for quality measures on the rules. Second,
interesting rules must be picked from the set of generated
rules. This might be quite costly because the generated rule
sets normally are quite large - e.g. more than 100, 000 rules
are not uncommon - and in cont ras t the percentage of use-
ful rules is typically only a very small fraction. The work
concerning the second problem mainly focuses on support-
ing the user when browsing the rule set, e.g. [14] and the
development of fur ther useful quali ty measures on the rules,
e.g. [7; 6; 22].

1.2 Outline of the Paper
In this paper we deal wi th the algori thmic aspects of associ-
a t ion rule mining. In fact, a broad variety of efficient algo-
r i thms to mine association rules have been developed dur ing
the last years. These approaches are more or less described
separately in the corresponding l i terature. To overcome th is
s i tuat ion we give a general survey of the basic ideas b e h i n d

association rule mining. In Section 2 we identify the ba-
sic strategies and describe t hem in detail. The resul t ing
framework is used in Section 3 to systematize and present
today ' s most common approaches in context. Fur thermore
we show the common principles and differences between the
algorithms. Finally in Section 4 we complete our overview
wi th a comparison of the algori thms concerning efficiency.
This comparison is based on theoret ic considerations and
concrete run t ime experiments . In Section 5 we conclude
wi th a shor t summary of our results.

1.3 Related Work
In our work we mainly restr ic t ourselves to wha t we call
t h e "classic association rule problem". T h a t is, the min-
ing of all rules existing in a da tabase ~ wi th respect to
minimal thresholds on cer tain quali ty measures, l) in this
case consists of market -basket like data , t h a t is, t ransac t ions
containing 1 0 - 20 i tems in the average out of a to ta l set of
1,000 - 100, 000 items.
Al though the "classic problem" is still topic of fur ther re-
search, dur ing recent years many algori thms for special-

Volume 2, Issue 1 - page 58

ized tasks have been developed: First of all, there axe the
approaches that enhance the association rules itself. E.g.
quantitative association rules, e.g. [24], generalized associ-
ation rules, e.g. [23; 12] and to some extent the work on
sequential patterns, e.g. [3; 15]. Moreover there axe several
generalizations of the rule problem, e.g. [16; 27].
In addition algorithms were developed that mine well de-
fined subsets of the rule set according to specified items or
quality measures etc, e.g. general constraints [17; 25], op-
timized rules [8; 20], maximal frequent itemsets [28], and
frequent closed itemsets [18; 19]. Moreover there axe algo-
ri thms to mine dense databases [5]. These approaches axe
supplemented by algorithms for online mining of association
rules, e.g. [10] and incremental algorithms, e.g. [26; 4].

2. BASIC PRINCIPLES

2.1 Formal Problem Description
Let Z = {Xl , . . . ,xn} be a set of distinct literals, called
items. A set X C Z with k = IX I is called a k-itemset
or simply an itemset. Let a database ~ be a multi-set of
subsets of Z. Each T E D is called a transaction. We say
that a transaction T E :D supports an itemset X C Z if
X C T holds. An association rule is an expression X =~ Y,
where X, Y axe itemsets and X n Y = O holds. The frac-
tion of transactions T supporting an itemset X with re-
spect to database ~D is called the support of X, supp(X) =
[{T 6 ~D [X C T}[/ I~ [. The support of a rule X =:~ Y is de-
fined as supp(X =~ Y) = supp(XUY). The confidence of this
rule is defined as conf(X =~ Y) = supp(X U Y)/supp(X),
c.f. [2].
As mentioned before the main challenge when mining associ-
ation rules is the immense number of rules that theoretically
must be considered. In fact the number of rules grows expo-
nentially with [I[. Since it is neither practical nor desirable
to mine such a huge set of rules, the rule sets axe typically
restricted by minimal thresholds for the quality measures
support and confidence, rninsupp and rninconf respectively.
This restriction allows us to split the problem into two sep-
axate parts [2]: An itemset X is frequent if supp(X) > min-
supp. Once, .T = {X C I I X frequent}, the set of all fre-
quent itemsets together with their support values is known,
deriving the desired association rules is straight forwaxd
(See [2] for minor enhancements.): For every X E .T check
the confidence of all rules X \ Y =~ Y, Y C X, ~ # Y ¢ X
and drop those that do not achieve minconf. According to
its definition above, it suffices to know all support values of
the subsets of X to determine the confidence of each rule.
The knowledge about the support values of all subsets of X
is ensured by the downward closure property of itemset sup-
port: All subsets of a frequent itemset must also be frequent,
c.f. I2].
With that in mind the task of association rule mining can
be reduced to the problem of finding all itemsets that axe
frequent with respect to a given minimal threshold minsupp.
The rest of this paper and most of the literature on associ-
ation rule mining addresses exactly this topic.

2.2 Traversing the Search Space
As explained we need to find all itemsets that satisfy min-
supp. For practical applications looking at all subsets of I
is doomed to failure by the huge search space. In fact, a lin-

early growing number of items still implies an exponential
growing number of itemsets that need to be considered.
For the special case I = {1, 2, 3, 4} we visualize the search
space that forms a lattice in Figure 1, c.f. [28]. The frequent

(}

{I} {2} {3} [4}

{ I , ~

{L2, 3} [[,2,4} I {1,3.41 12, 3, 4}

{1, 2,3.4}

Figure 1: Lattice for I = {1, 2, 3, 4}

itemsets axe located in the upper part of the figure whereas
the infrequent ones axe located in the lower part. Although
we do not explicitly specify support values for each of the
itemsets, we assume that the bold border separates the fre-
quent from the infrequent itemsets. The existence of such
a border is independent of any particular database :D and
minsupp. Its existence is solely guaranteed by the downward
closure property of itemset support.
The basic principle of the common algorithms is to employ
this border to efficiently prune the search space. As soon
as the border is found, we axe able to restrict ourselves on
determining the support values of the itemsets above the
border and to ignore the itemsets below.
Let map: I ~ { 1 , . . . , l I I } be a mapping that maps all
items x E I one-to-one onto natural numbers. Now the
items can be seen as totally ordered by the relation "<" be-
tween natural numbers. In addition, for X C Z let X.item :
{1, . . . , IXI} ~ I : n ~ X.itemn be a mapping with X.item,~
denoting the n-th i tem of the items x E X increasingly
sorted by "<". The n-prefix of an itemset X with n _< I X]
is then defined by P = {X.item,n I 1 < m < n}, c.f. [12].
Let the classes E (P) , P C I with E(P) = { X C I I IXI =
IPI + 1 and P is a prefix of X} be the nodes of a tree. Two
nodes axe connected by an edge, if all itemsets of a class E
can be generated by joining two itemsets of the parent class
E ' , e.g. Figure 2.
Together with the downward closure property of itemset
support this implies the following: If the parent class El
of a class E does not contain at least two frequent itemsets
than E must also not contain any frequent itemset. If we
encounter such a class E ' on our way down the tree, then
we have reached the border separating the infrequent from
the frequent itemsets. We do not need to go behind this
border so we prune E and all descendants of E from the
search space.
The latter procedure allows us to efficiently restrict the num-
ber of itemsets to investigate. We simply determine the

SIGKDD Explorations. Volume 2, Issue 1 - page 59

~{]} {2} {3} {4} 1

i i 3

Figure 2: Tree for :Z = {1, 2, 3, 4}

suppor t values only of those i temsets t h a t we "visit" on
our search for the border between frequent and infrequent
i temsets. Finally, the actual s t ra tegy to search for the bor-
der is a t our own choice. Today's common approaches em-
ploy bo th breadth-f i rs t search (BFS) or depth-f irs t search
(DFS). W i t h BFS the suppor t values of all (k - 1)-itemsets
are determined before count ing the suppor t values of the
k-itemsets. In contrast , DFS recursively descends following
the tree s t ruc ture defined above.

2.3 Determine Itemset Supports
In the following an i temset t h a t is potential ly frequent and
for which we decide to determine its suppor t dur ing lat t ice
traversal is called a candidate i temset or simply a candidate.
One common approach to determine the suppor t value of an
i temset is to directly count its occurrences in the database.
For t h a t purpose a counter is set up and initialized to zero
for each i temset t h a t is current ly under investigation. Then
all t ransact ions are scanned and whenever one of the candi-
dates is recognized as a subset of a t ransact ion, its counter
is incremented. Typically subset generat ion and candidate
lookup is in tegrated and implemented on a hashtree or a
similar da ta s tructure. In brief, not all subsets of each t rans-
action are generated bu t only those t h a t are contained in the
candidates or t h a t have a prefix in common wi th a t least one
of the candidates, c.f. [2] for fur ther details.
Another approach is to determine the suppor t values of can-
didates by set intersections. A rid is a unique t ransac t ion
identifier. For a single i tem the t idlist is the set of identifiers
t h a t correspond to the t ransact ions containing th is i tem.
Accordingly tidlists also exist for every i temset X and are
denoted by X.tidlist. The t idlist of a candidate C = X U Y is
ob ta ined by C.tidlist = X.tidlist A Y.tidlist. The t idlists are
sorted in ascending order to allow efficient intersections.
Note t h a t by buffering the t idlists of frequent candidates as
in termediate results, we remarkably speedup the generat ion
of the t idlists of the following candidates. Finally the actual
suppor t of a candidate is obta ined by determining [C.tlist[.

3. COMMON ALGORITHMS
In this section we briefly describe and systematize the most
common algorithms. We do this by referring to the funda-
menta ls of frequent i temset generat ion t h a t we identified in
the previous section. Our goal is no t to go to much into
detail bu t to show the basic principles and the differences

SIGKDD Explorations.

between the approaches.

3.1 Systematization
The algorithms that we consider in this paper are system-
atized in Figure 3. We characterize each of the algorithms
a) by its strategy to traverse the search space and b) by its
strategy to determine the support values of the itemsets. In

Apriori Partition

AprioriTID

DIC

FP- Eclat
growth

Figure 3: Systemat izat ion of the Algor i thms

addit ion an algori thm may employ specific opt imizat ions for
fur ther speedup.

3.2 BFS and Counting Occurrences
The most popular a lgor i thm of th is type is A p r i o r i [2]
where also the downward closure proper ty of i temset sup-
por t was introduced. Apriori makes additional use of this
property by pruning those candidates that have an infre-
quent subset before counting their supports. This optimiza-
tion becomes possible because BFS ensures that the support
values of all subsets of a candidate are known in advance.
Apriori counts all candidates of a cardinality k together in
one scan over the database. The critical part is looking up
the candidates in each of the transactions. For this purpose
[2] introduces a so called hashtree structure. The items in
each transaction are used to descend in the hashtree. When-
ever we reach one of its leafs, we find a set of candidates
having a common prefix that is contained in the transaction.
Then these candidates are searched in the transaction that
has been encoded as a bitmap before. In the case of success
the counter of the candidate in the tree is incremented.
AprioriTID [2] is an extension of the basic Apriori ap-
proach. Instead of relying on the raw database AprioriTID
internally represents each transaction by the current candi-
dates it contains. With AprioriHybrid both approaches
are combined, c.f. [2]. To some extent also SETM [13] is
an Apriori(TID)-like algorithm which is intended to be im-
plemented directly in SQL.
DIC is a further variation of the Apriori-Algorithm [7]. DIC
softens the strict separation between counting and generat-
ing candidates. Whenever a candidate reaches minsupp, that
is even when this candidate has not yet "seen" all trans-
actions, DIC starts generating additional candidates based

Volume 2, Issue 1 - page 60

on it. For t h a t purpose a prefix-tree is employed. In con-
t ras t to the hashtree, each node - leaf node or inner node -
of the prefix-tree is assigned to exactly one candidate re-
spectively frequent i temset. In contras t to the usage of a
hashtree t h a t means whenever we reach a node we can be
sure t ha t the i temset associated with this node is contained
in the transact ion. Fur thermore interlocking suppor t deter-
minat ion and candidate generation decreases the number of
database scans.

3.3 BFS and TID-List Intersections
The P a r t i t l o n - A l g o r i t h m [21] is an Apriori-like algori thm
t h a t uses set intersections to determine suppor t values. As
described above Apriori determines the suppor t values of all
(k - 1)-candidates before counting the k-candidates. The
problem is t h a t Par t i t ion of course wants to use the tidlists
of the frequent (k - 1)-itemsets to generate the tidlists of
the k-candidates. Obviously the size of those intermediate
results easily grows beyond the physical memory l imitat ions
of common machines. To overcome this Par t i t ion splits the
da tabase into several chunks t h a t are t rea ted independently.
The size of each chunk is chosen in such a way t ha t all in-
termediate tidlists fit into main memory. After determining
the frequent i temsets for each da tabase chunk, an extra scan
is necessary to ensure t h a t the locally frequent i temsets are
also globally frequent.

3.4 DFS and Counting Occurrences
Counting occurrences assumes candidate sets of a reasonable
size. For each of those candidate sets a database scan is per-
formed. E.g. Apriori t h a t relies on BFS scans the da tabase
once for every candidate size k. When using DFS the candi-
date sets consist only of the i temsets of one of the nodes of
the tree from Section 2.2. Obviously scanning the da tabase
for every node results in t remendous overhead. The simple
combinat ion of DFS with counting occurrences is therefore
of no practical relevance, c.f.[ll].
Recently in [9] a fundamenta l ly new approach called F P -
g r o w t h was introduced. In a preprocessing step FP-growth
derives a highly condensed representat ion of the t ransac t ion
data, the so called FP-tree. The generation of the FP- t ree is
done by counting occurrences and DFS. In contrast to for-
mer DFS-approaches, FP-growth does not follow the nodes
of the tree from Subsection 2.2, bu t directly descends to
some part of the i temsets in the search space. In a sec-
ond step FP-growth uses the FP-t ree to derive the suppor t
values of all frequent itemsets.

3.5 DFS and TID-List Intersections
In [28] the a lgor i thm E c l a t is introduced, t h a t combines
DFS with tidlist intersections. When using DFS it suffices
to keep the t idlists on the pa th from the root down to the
class current ly investigated in memory. T h a t is, spli t t ing
the da tabase as done by Par t i t ion is no longer needed.
Eclat employs an opt imizat ion called "fast intersections".
Whenever we intersect two tidlists then we are only inter-
ested in the result ing tidlist if its cardinali ty reaches min-
supp. In other words, we should break off each intersection
as soon as i t is sure t h a t it will not achieve this threshold.
Eclat originally generates only frequent i temsets of size >
3. We modified Eclat to mine also the frequent 1- and
2-itemsets by calling it on the class t ha t contains the 1-
i temsets together with thei r tidlists.

SIGKDD Explorations.

In addi t ion in [28] algori thms t h a t mine only the maximal
frequent i temsets are introduced, e.g. M a x E c l a t . An item-
set X is maximal frequent if for every frequent i temset Y
X C Y ~ Y = X holds. We do not consider these algo-
r i thms because a l though it is s t ra ight forward to derive the
set of all frequent i temsets from the maximal frequent i tem-
sets this does not hold for the corresponding suppor t values.
Wi t h o u t those, we are not able to derive rule confidences and
therefore we cannot generate association rules.

4. COMPARISON OF THE ALGORITHMS
In th is section we compare the algori thms and explain the
observed differences in performance behavior.

4.1 Experiments
To carry out performance studies we implemented the most
common algori thms to mine frequent itemsets, namely Apri-
ori, DIC, Part i t ion, an d Eclat, in C + + . Actual ly we had to
leave out DIC in the char ts for reasons explained later. In
addi t ion we did not consider Aprior iTID and FP-growth be-
cause these algori thms were designed to mine da ta t h a t is
not typical for retail environments , t ha t is da ta containing
quite long pat terns .
The experiments were performed on a SUN Ult raSPARC-II
workstat ion clocked at 248Mhz. The exper iments in Fig-
ures 4 - 11 were carried out on synthet ic datasets from [2;
21]. These datasets were generated with a da ta generator [2]
t h a t simulates the buying behavior of customers in retail
business. Datase t "T10.I4.D100K" means an average t rans-
action size of 10, an average size of the maximal potential ly
frequent i temsets of 4 and 100,000 generated transact ions.
The number of pa t t e rns was set to 2,000 and the number of
i tems to 1,000.
In addi t ion to the exper iments from [2; 21], we restr icted
the maximal length of generated i temsets from 1 up to 9
on the da tase t "T20.I4.D100K" a t minsupp = 0.33%, c.f.
Figure 9. Figures 10 and 11 show the behavior of the al-
gor i thms on real-world applications. The basket da ta con-
sists of about 70,000 customer t ransact ions wi th approxi-
mate ly 60,000 different items. The average t ransact ion size
is ~ 10.5 items. The car equipment da ta contains infor-
mat ion abou t 700, 000 cars wi th abou t 6,000 items. In the
average ~ 20 i tems are assigned to each ear.
I t is impor t an t to say t h a t all a lgori thms scale linearly wi th
the da tabase size.

4.2 Counting Occurrences vs. Intersecting Sets
The basic question concerning the run t ime of the algori thms
is whether counting occurrences or intersecting tidlists shows
be t te r performance results. The advantage of counting is
t h a t only candidates t h a t actually occur in the t ransact ions
cause any effort. In contrast , an intersection means at least
passing th rough all t ids of the smaller of the two tidiists,
even if the candidate is not contained in the da tabase at all.
("Fast Intersections" save some costs bu t we still need to
pass a substant ia l number of tids.) But intersections also
have thei r benefits. Count ing implies looking up the candi-
dates in the t ransact ions. Of course this can get quite ex-
pensive for candidates of higher cardinality. On the contrary
when using intersections the size of the candidate under in-
vestigation does not have any influence.
In practice bo th effects seem to balance out on the basket-

Volume 2, Issue 1 - page 61

. f ! ! ::::~ iT.:::

! '~f {i - i--::::-,.=:::~ ::;-~-~--:: k i -;::::

10 " ' ~ , i i l

. ~ i + i i .

o i
m m u p p ~ %

F i g u r e 4: T 1 0 . I 2 . D 1 0 0 K

2 0,715 0 .5 0 ,30 0 . ~
enllnsup~ k t %

F i g u r e 5: T 1 0 . I 4 . D 1 0 0 K

i l ~ . . ~ . ~ I I " " : : ~ ; ~ : : : I

.................. - - I I { ! ! " 7 ' :

, i .. i ~ i :~'~:i~::: ' ~
. i . i I . i - . - . i : : : . - - ~ , - < = ~ . '

II i i - - I

.................. 4 = : : : = : : ~ : : : : i i ~ i = ~ 4 ~ ~

. , y t

m m p p ~ %

F i g u r e 6: T 2 0 . I 2 . D 1 0 0 K

. 1 T ~, .. ~ ~ ;
i ', i - e - , -

! i i i ~
i l ~ i i i .,~" j

F i g u r e 8: T 2 0 . I 6 . D 1 0 0 K

14o | ~ i ! ~ . i . :

/ ~ " ~ ~ ~' ~ % = . : ; . ~ - : : - ~ ' - ~ = = ~

; " i i i ~ i

i)] / I ~ i ~ " i . iL ' |
+ . ! ~ ~ 7 . ~

.......... i ~ " i ~ i i i

- ' - i i i i i i i

1 2 4 s • 7 m

Figure 9: Max imal Frequent I temset Size

iiiZiii ;ii i i ii ! , I
I
j ... [..................... t - - / - ; : 7

i !
1~ t r 1 ! 7 - -) ~

• , j , j /

I / t ~" /

°1 0.6 o.2s o.12 o.oe
m m u p p l n %

Figure 10: Baske t D a t a

F i g u r e 7: T 2 0 . I 4 . D 1 0 0 K

S I G K D D Explorat ions .

m~mupp ~ %

Figure 11: Car E q u i p m e n t

Vo lume 2, Issue 1 - page 62

like data. The runtime behavior in Figures 4 - 8 does
not show any substantial differences between the algorithm
Apriori that counts occurrences and the tidlists intersecting
algorithms Partition and Eclat. Only at quite low aver-
age size of the maximal potentially frequent itemsets, e.g.
"T10.I2.D100K" in Figure 4, Apriori is somehow superior
whereas at larger average size of the maximal potentially fre-
quent itemsets, e.g. "T20.I6.D100K" in Figure 8, Partition
and Eclat perform better. The same explanation holds for
the real-world experiments. With an average size of ~ 2.2
items at rninsupp = 0.06% the frequent itemsets found in
the basket data were rather short compared to the frequent
itemsets from the car equipment database, that contained

4.1 items in the average at minsupp ---- 3%.
In Figure 9 it becomes clear what happens behind the scenes:
Eclat and Partition spend most of their time with determin-
ing the support values of the 2- and 3-candidates whereas
Apriori is efficiently handling such small itemsets. In con-
trast for itemsets with size > 4 the additional effort caused
for Eclat and Partition is to be neglected whereas this does
not hold for Apriori.

4.3 Relaxing the Separation between Candi-
date Generation and Support Counting

On the one hand the introduction of the prefix-tree with DIC
allows relaxing the separation between candidate generation
and support counting and therefore reduces the number of
database scans. Moreover each node is assigned to precisely
one itemset. Consequently looking up candidates in bitmap-
encoded transactions is no longer necessary. On the other
hand the memory usage of the prefix-tree caused problems,
when we experimented with our own implementation of DIC:
The prefix-tree is already setup before all frequent 1-itemsets
are known. That means a mapping to frequent items as
described in [2] to keep the memory usage of hash tables in
each node of the tree small is not possible. Moreover this
effect is strengthened by the fact that every candidate is
stored in its own node and that in addition a separate node
for each prefix of the candidate exists. Another drawback of
the prefix-tree is that the frequent itemsets are stored in the
same tree as the candidates. Each frequent k-itemset that is
not prefix of any kS-candidate with k ~ > k imposes overhead
when counting that is avoided by the hashtree-approach of
Apriori.
Actually we did not come to a final result concerning the
efficiency of DIC. But what we want to say is that DIC's
advantage of reducing the number of database scans should
not be overestimated in a retail environment. In [7] a perfor-
mance gain of only about 30% compared with basic Apriori
is detected for data with quite small average size of the max-
imal potentially frequent itemsets.

4.4 Additional Candidate Pruning
Typically the main task of the algorithms is determining
support values. That is, the time spent with candidate gen-
eration - and candidate pruning - can be neglected. Conse-
quently Apriori's candidate pruning step helps to reduce the
candidates to be counted but does not add any substantial
overhead, it is important to note that basic DFS, as em-
ployed by Eclat does not allow proper subset pruning. Only
right-most DFS as introduced in [12] for the mining of gen-
eralized association rules allows transferring the additional
prune step of Apriori to algorithms using DFS.

Our experiments suggest that the effect of additional can-
didate pruning is rather small for the datasets we took into
consideration. Additional pruning does not help Partition
to compensate Eclat's advantage based on the "fast inter-
sections". This impression was also supported by further
studies with an enhanced version of Eclat that incorporates
additional candidates pruning by using right-most DFS.

4.5 Splitting the Database
Partition needs to split the database. Whereas this opti-
mization helps to cope with large databases it adds the ad-
ditional overhead of an extra pass to determine the globally
frequent itemsets. In our experiments the size of the trans-
action sets were always small enough that we could employ
Partition without splitting. In [21] especially at lower val-
ues for minsupp Partition that splits suffers strongly. The
reason is the increasing number of locally frequent itemsets
that finally turn out to be globally infrequent.

4.6 "Fast Intersections"
Eclat's fast intersections are obviously an advantage. The
overhead caused by checking whether minsupp is still reach-
able is clearly outweighed by breaking off unnecessary in-
tersections. As a result in all our experiments Eclat beats
Partition with a nearly constant factor.

5. CONCLUSION
In this paper we dealt with the algorithmic aspects of asso-
ciation rule mining. We restricted ourselves to the "classic"
association rule problem, that is the generation of all associ-
ation rules that exist in market basket-like data with respect
to minimal thresholds for support and confidence.
From the broad variety of efficient algorithms that have been
developed we compared the most important ones. We sys-
tematized the algorithms and analyzed their performance
based on both runtime experiments and theoretic consid-
erations. The results were quite surprising: Although we
identified fundamental differences concerning the employed
strategies, the algorithms show quite similar runtime behav-
ior in our experiments. At least there is no algorithm that
is fundamentally beating out the other ones. In fact our
experiments showed that the advantages and disadvantages
we identified concerning the strategy to determine the sup-
port values of the frequent itemsets nearly balance out on
market basket-like data.
In a forthcoming paper we pursue the development of a hy-
brid approach that efficiently combines counting occurrences
and ticUist intersections [11].

6. REFERENCES

[1] It. Agrawal, T. Imielinski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases.
In Proc. of the ACM SIGMOD Int'l Conf. on Manage-
ment of Data (A CM SIGMOD '93), Washington, USA,
May 1993.

[2] It. Agrawal and It. Srikant. Fast algorithms for min-
ing association rules. In Proc. of the 20th Int'l Conf.
on Very Large Databases (VLDB 'g~), Santiago, Chile,
June 1994.

SIGKDD Explorations. Volume 2, Issue 1 - page 63

[3] R. Agrawal and It. Srikant. Mining sequential patterns.
In Proc. of the Int'l Conf. on Data Engineering (ICDE),
Taipei, Taiwan, March 1995.

[4] N. F. Ayan, A. U. Tansel, and E. Arkun. An efficient
algorithm to update large itemsets with early pruning.
In Proc. of the 5th Int'l Conf. on Knowledge Discovery
and Data Mining (KDD '99), San Diego, California,
USA, August 1999.

[5] It. J. Bayardo Jr., It. Agrawal, and D. Gunopulos.
Constraint-based rule mining in large, dense databases.
In Proe. of the 15th Int'l Conf. on Data Engineering,
Sydney, Australia, March 1999.

[6] S. Brin, It. Motwani, and C. Silverstein. Beyond market
baskets: Generalizing association rules to correlations.
In Proc. of the ACM SIGMOD Int'l Conf. on Manage-
ment of Data (ACM SIGMOD '97), 1997.

[7] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dy-
namic itemset counting and implication rules for mar-
ket basket data. In Proc. of the ACM SIGMOD Int'l
Conf. on Management of Data, 1997.

[8] T. Fukuda, Y. Morimoto, S. Morishita, and
T. Tokuyama. Mining optimized association rules for
numeric attributes. In Proc. of the 15th ACM SIGACT-
SIGMOD-SIGART Syrup. on Principles of Database
Systems (PODS '96), Montreal, Canada, June 1996.

[9] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In Proc. of the 2000
ACM-SIGMOD Int'l Conf. on Management of Data,
Dallas, Texas, USA, May 2000.

[10] C. Hidber. Online association rule mining. In Proe.
of the 1999 ACM SIGMOD Conf. on Management of
Data, 1999.

[11] J. Hipp, U. Giintzer, and G. Nakhaeizadeh. Mining
association rules: Deriving a superior algorithm by
analysing today's approaches. In Proe. of the 4th Eu-
ropean Conf. on Principles and Practice of Knowledge
Discovery, Lyon, France, September 2000. to appear.

[12] J. Hipp, A. Myka, It. Wirth, and U. Gfintzer. A new
algorithm for faster mining of generalized association
rules. In Proc. of the 2nd European Symposium on
Principles of Data Mining and Knowledge Discovery
(PKDD '98), Nantes, France, September 1998.

[13] M. Houtsma and A. Swami. Set-oriented mining for as-
sociation rules in relational databases. Technical Report
t tJ 9567, IBM Almaden Research Center, San Jose,
California, Oktober 1993.

[14] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivo-
nen, and A. I. Verkamo. Finding interesting rules from
large sets of discovered association rules. In Proc. of the
3rd Int'l Conf. on Information and Knowledge Manage-
ment, Gaithersburg, Maryland, 29. Nov - 2. Dez 1994.

[15] H. Mannila, H. Toivonen, and I. Verkamo. Discovery of
frequent episodes in event sequences. Data Mining and
Knowledge Discovery, 1(3), November 1997.

[16] It. Motwani, E. Cohen, M. Datar, S. Fujiware, A. Gio-
nis, P. Indyk, J. D. Ullman, and C. Yang. Finding inter-
esting associations without support pruning. In Proc. of
the 16th Int'l Conf. on Data engineering (ICDE). IEEE,
2000.

[17] R. Ng, L. S. Lakshmanan, J. Han, and A. Pang. Ex-
ploratory mining and pruning optimizations of con-
strained associations rules. In Proc. of 1998 A CM SIG-
MOD Int'l Conf. on Management of Data, Seattle,
Washington, USA, June 1998.

[18] N. Pasqnier, Y. Bastide, It. Taouil, and L. Lakhal. Dis-
covering frequent closed itemsets for association rules.
In Proc. of the 7th Int'l Conf. on Database Theory
(ICDT'99), Jerusalem, Israel, January 1999.

[19] J. Pei, J. Hart, and It. Mao. An efficient algorithm for
mining frequent closed itemsets. In Proc. of the 2000
ACM-SIGMOD Int'l Conf. on Management of Data,
Dallas, Texas, USA, May 2000.

[20] It. Rastogi and K. Shim. Mining optimized support
rules for numeric attributes. In Proe. of the 15th Int'l
Conf. on Data Engineering, Sydney, Australia, March
1999. IEEE Computer Society Press.

[21] A. Savasere, E. Omiecinski, and S. Navathe. An effi-
cient algorithm for mining association rules in large
databases. In Proe. of the 21st Conf. on Very Large
Databases (VLDB '95), Ziirich, Switzerland, Septem-
ber 1995.

[22] C. Silverstein, S. Brin, It. Motwani, and J. D. Ull-
man. Scalable techniques for mining causal structures.
In Proe. of 1998 ACM SIGMOD Int'l Conf. on Manage-
ment of Data, Seattle, Washington, USA, June 1998.

[23] It. Srikant and It. Agrawal. Mining generalized associ-
ation rules. In Proc. of the 21st Conf. on Very Large
Databases (VLDB '95), Ziirich, Switzerland, Septem-
ber 1995.

[24] It. Srikant and It. Agrawal. Mining quantitative asso-
ciation rules in large relational tables. In Proe. of the
1996 ACM SIGMOD Conf. on Management of Data,
Montreal, Canada, June 1996.

[25] It. Srikant, Q. Vu, and It. Agrawal. Mining association-
rules with item constraints. In Proe. of the 3rd Int'l
Conf. on KDD and Data Mining (KDD '97), Newport
Beach, California, August 1997.

[26] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An
efficient algorithm for the incremental updation of asso-
ciation rules in large databases. In Proe. of the 3rd Int 'l
Conf. on KDD and Data Mining (KDD '97), Newport
Beach, California, August 1997.

[27] D. Tsur, J. D. UUman, S. Abitboul, C. Clifton, It. Mot-
wani, S. Nestorov, and A. Rosenthal. Query flocks: A
generalization of association-rule mining. In Proc. of
1998 ACM SIGMOD Int'l Conf. on Management of
Data, Seattle, Washington, USA, June 1998.

[28] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New algorithms for fast discovery of association rules.
In Proc. of the 8rd Int'l Conf. on KDD and Data Minin 9
(KDD '97), Newport Beach, California, August 1997.

SIGKDD Explorations. Volume 2, Issue 1 - page 64

