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ABSTRACT 
Today there  are several efficient algori thms t h a t  cope wi th  
the  popular  and  computat ional ly  expensive task of associ- 
at ion rule mining. Actually, these algori thms are more or 
less described on thei r  own. In th is  paper  we explain the  
fundamenta ls  of association rule mining and  moreover de- 
rive a general framework. Based on this  we describe to- 
day 's  approaches in context  by point ing out  common aspects 
and  differences. After t h a t  we thoroughly investigate thei r  
s t rengths  and  weaknesses and  carry out  several run t ime  ex- 
periments.  I t  t u rns  out  t h a t  the  run t ime  behavior  of the  
algori thms is much more similar as to be expected. 

1. INTRODUCTION 

1.1 Association Rules 
Since its in t roduct ion in 1993 [1] the  task of association rule 
mining has  received a great deal of a t tent ion.  Today the  
mining of such rules is still one of the  most  popular  pa t t e rn-  
discovery methods  in KDD. 
In brief, an  association rule is an expression X =~ Y, where 
X and  Y are sets of items. The  meaning of such rules is 
quite intuitive: Given a da tabase  ~ of t ransact ions  - where 
each t ransac t ion  T E D is a set of i tems - ,  X :=~ Y expresses 
t h a t  whenever a t ransac t ion  T contains X t h a n  T proba-  
bly contains Y also. The  probabil i ty  or rule confidence is 
defined as the  percentage of t ransact ions  containing Y in 
addi t ion to X wi th  regard to the  overall number  of t rans-  
actions containing X.  T h a t  is, the  rule confidence can be 
unders tood as the  condit ional  probabil i ty  p(Y C TIX C T). 
The idea of mining association rules originates from t h e  

analysis of market -basket  da ta  where rules like "A customer 
who buys products  xl  and  x2 will also buy  product  y with  
probabi l i ty  c%." axe found. Their  direct applicability to 
business problems together  wi th  their  inherent  tmders tand-  
ability - even for non  da t a  mining experts  - made  associ- 
a t ion rules a popular  mining method.  Moreover it became 
clear t h a t  association rules are not  restr ic ted to dependency 
analysis in the  context  of retail  applications, bu t  are suc- 
cessfully applicable to a wide range of business problems. 
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When mining association rules there are mainly two prob- 
lems to deal with: First of all there is the algorithmic com- 
plexity. The number of rules grows exponentially with the 
number of items. Fortunately today's algorithms are able to 
efficiently prune this immense search space based on mini- 
real thresholds for quality measures on the rules. Second, 
interesting rules must be picked from the set of generated 
rules. This might be quite costly because the generated rule 
sets normally are quite large - e.g. more than 100, 000 rules 
are not  uncommon  - and  in cont ras t  the  percentage of use- 
ful rules is typically only a very small  fraction. The  work 
concerning the  second problem mainly  focuses on support-  
ing the  user when browsing the  rule set, e.g. [14] and  the  
development  of fur ther  useful quali ty measures on the  rules, 
e.g. [7; 6; 22]. 

1.2 Outline of the Paper 
In this  paper  we deal wi th  the  algori thmic aspects of associ- 
a t ion rule mining. In fact, a broad variety of efficient algo- 
r i thms  to mine association rules have been  developed dur ing 
the  last  years. These  approaches are more or less described 
separately in the  corresponding l i terature.  To overcome th is  
s i tuat ion we give a general survey of the  basic ideas b e h i n d  

association rule mining.  In Section 2 we identify the  ba- 
sic strategies and  describe t hem in detail. The  resul t ing 
framework is used in Section 3 to systematize and  present  
today ' s  most  common approaches in context.  Fur thermore  
we show the  common principles and  differences between the  
algorithms. Finally in Section 4 we complete our overview 
wi th  a comparison of the  algori thms concerning efficiency. 
This  comparison is based on theoret ic  considerations and  
concrete run t ime  experiments .  In Section 5 we conclude 
wi th  a shor t  summary  of our results. 

1.3 Related Work 
In our work we mainly restr ic t  ourselves to wha t  we call 
t h e  "classic association rule problem".  T h a t  is, the  min- 
ing of all rules existing in a da tabase  ~ wi th  respect  to 
minimal  thresholds  on cer tain quali ty measures,  l )  in this  
case consists of market -basket  like data ,  t h a t  is, t ransac t ions  
containing 1 0  - 20 i tems in the  average out  of a to ta l  set of 
1,000 - 100, 000 items. 
Al though the  "classic problem" is still topic of fur ther  re- 
search, dur ing recent years many  algori thms for special- 
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ized tasks have been developed: First of all, there axe the 
approaches that  enhance the association rules itself. E.g. 
quantitative association rules, e.g. [24], generalized associ- 
ation rules, e.g. [23; 12] and to some extent the work on 
sequential patterns, e.g. [3; 15]. Moreover there axe several 
generalizations of the rule problem, e.g. [16; 27]. 
In addition algorithms were developed that  mine well de- 
fined subsets of the rule set according to specified items or 
quality measures etc, e.g. general constraints [17; 25], op- 
timized rules [8; 20], maximal frequent itemsets [28], and 
frequent closed itemsets [18; 19]. Moreover there axe algo- 
ri thms to mine dense databases [5]. These approaches axe 
supplemented by algorithms for online mining of association 
rules, e.g. [10] and incremental algorithms, e.g. [26; 4]. 

2. BASIC PRINCIPLES 

2.1 Formal Problem Description 
Let Z = {Xl , . . .  ,xn} be a set of distinct literals, called 
items. A set X C Z with k = IX I is called a k-itemset 
or simply an itemset. Let a database ~ be a multi-set of 
subsets of Z. Each T E D is called a transaction. We say 
that  a transaction T E :D supports an itemset X C Z if 
X C T holds. An association rule is an expression X =~ Y, 
where X, Y axe itemsets and X n Y = O holds. The frac- 
tion of transactions T supporting an itemset X with re- 
spect to database ~D is called the support of X,  supp(X) = 
[{T 6 ~D [ X C T}[ / I~  [. The support of a rule X =:~ Y is de- 
fined as supp(X =~ Y) = supp(XUY). The confidence of this 
rule is defined as conf(X =~ Y) = supp(X U Y)/supp(X),  
c.f. [2]. 
As mentioned before the main challenge when mining associ- 
ation rules is the immense number of rules that  theoretically 
must be considered. In fact the number of rules grows expo- 
nentially with [I[. Since it is neither practical nor desirable 
to mine such a huge set of rules, the rule sets axe typically 
restricted by minimal thresholds for the quality measures 
support and confidence, rninsupp and rninconf respectively. 
This restriction allows us to split the problem into two sep- 
axate parts [2]: An itemset X is frequent if supp(X) > min- 
supp. Once, .T = {X C I I X frequent}, the set of all fre- 
quent itemsets together with their support values is known, 
deriving the desired association rules is straight forwaxd 
(See [2] for minor enhancements.): For every X E .T check 
the confidence of all rules X \ Y =~ Y, Y C X, ~ # Y ¢ X 
and drop those that  do not achieve minconf. According to 
its definition above, it suffices to know all support values of 
the subsets of X to determine the confidence of each rule. 
The knowledge about the support values of all subsets of X 
is ensured by the downward closure property of itemset sup- 
port: All subsets of a frequent itemset must also be frequent, 
c.f. I2]. 
With that  in mind the task of association rule mining can 
be reduced to the problem of finding all itemsets that  axe 
frequent with respect to a given minimal threshold minsupp. 
The rest of this paper and most of the literature on associ- 
ation rule mining addresses exactly this topic. 

2.2 Traversing the Search Space 
As explained we need to find all itemsets that  satisfy min- 
supp. For practical applications looking at all subsets of I 
is doomed to failure by the huge search space. In fact, a lin- 

early growing number of items still implies an exponential 
growing number of itemsets that  need to be considered. 
For the special case I = {1, 2, 3, 4} we visualize the search 
space that  forms a lattice in Figure 1, c.f. [28]. The frequent 

(} 

{I} {2} {3} [4} 

{ I , ~  

{L2, 3} [ [ ,2,4} I {1,3.41 12, 3, 4} 

{1, 2,3.4} 

Figure 1: Lattice for I = {1, 2, 3, 4} 

itemsets axe located in the upper part of the figure whereas 
the infrequent ones axe located in the lower part. Although 
we do not explicitly specify support values for each of the 
itemsets, we assume that  the bold border separates the fre- 
quent from the infrequent itemsets. The existence of such 
a border is independent of any particular database :D and 
minsupp. Its existence is solely guaranteed by the downward 
closure property of itemset support. 
The basic principle of the common algorithms is to employ 
this border to efficiently prune the search space. As soon 
as the border is found, we axe able to restrict ourselves on 
determining the support values of the itemsets above the 
border and to ignore the itemsets below. 
Let map: I ~ { 1 , . . . , l I I }  be a mapping that  maps all 
items x E I one-to-one onto natural numbers. Now the 
items can be seen as totally ordered by the relation "<" be- 
tween natural numbers. In addition, for X C Z let X.item : 
{1, . . .  , IXI} ~ I : n ~ X.itemn be a mapping with X.item,~ 
denoting the n-th i tem of the items x E X increasingly 
sorted by "<".  The n-prefix of an itemset X with n _< I X] 
is then defined by P = {X.item,n I 1 < m < n}, c.f. [12]. 
Let the classes E ( P ) , P  C I with E(P)  = { X  C I I IXI = 
IPI + 1 and P is a prefix of X} be the nodes of a tree. Two 
nodes axe connected by an edge, if all itemsets of a class E 
can be generated by joining two itemsets of the parent class 
E ' ,  e.g. Figure 2. 
Together with the downward closure property of itemset 
support this implies the following: If the parent class El  
of a class E does not contain at least two frequent itemsets 
than E must also not contain any frequent itemset. If we 
encounter such a class E '  on our way down the tree, then 
we have reached the border separating the infrequent from 
the frequent itemsets. We do not need to go behind this 
border so we prune E and all descendants of E from the 
search space. 
The latter procedure allows us to efficiently restrict the num- 
ber of itemsets to investigate. We simply determine the 
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Figure 2: Tree for :Z = {1, 2, 3, 4} 

suppor t  values only of those i temsets  t h a t  we "visit" on 
our search for the  border  between frequent and  infrequent  
i temsets.  Finally, the  actual  s t ra tegy to search for the  bor-  
der is a t  our own choice. Today's  common approaches em- 
ploy bo th  breadth-f i rs t  search (BFS) or depth-f irs t  search 
(DFS). W i t h  BFS the  suppor t  values of all (k - 1)-itemsets 
are determined before count ing the  suppor t  values of the  
k-itemsets.  In contrast ,  DFS recursively descends following 
the  tree s t ruc ture  defined above. 

2.3 Determine Itemset Supports 
In the  following an  i temset  t h a t  is potential ly frequent  and  
for which we decide to determine its suppor t  dur ing lat t ice 
traversal  is called a candidate  i temset  or simply a candidate.  
One common approach to determine the  suppor t  value of an  
i temset  is to directly count its occurrences in the  database.  
For t h a t  purpose a counter is set up and initialized to zero 
for each i temset  t h a t  is current ly under  investigation. Then  
all t ransact ions  are scanned and  whenever one of the  candi- 
dates is recognized as a subset  of a t ransact ion,  its counter  
is incremented.  Typically subset  generat ion and  candidate  
lookup is in tegrated and  implemented  on a hashtree  or a 
similar da ta  s tructure.  In brief, not  all subsets  of each t rans-  
action are generated bu t  only those t h a t  are contained in the  
candidates  or t h a t  have a prefix in common wi th  a t  least one 
of the  candidates,  c.f. [2] for fur ther  details. 
Another  approach is to  determine the  suppor t  values of can- 
didates by set intersections. A rid is a unique t ransac t ion  
identifier. For a single i tem the  t idlist  is the  set of identifiers 
t h a t  correspond to the  t ransact ions  containing th is  i tem. 
Accordingly tidlists also exist for every i temset  X and  are 
denoted by X.tidlist. The  t idlist  of a candidate  C = X U Y  is 
ob ta ined  by C.tidlist = X.tidlist A Y.tidlist. The  t idlists  are 
sorted in ascending order to allow efficient intersections. 
Note t h a t  by buffering the  t idlists of frequent candidates  as 
in termediate  results, we remarkably  speedup the  generat ion 
of the  t idlists of the  following candidates.  Finally the  actual  
suppor t  of a candidate  is obta ined  by determining [C.tlist[. 

3. COMMON ALGORITHMS 
In this  section we briefly describe and  systematize the  most  
common algorithms. We do this  by referring to the  funda- 
menta ls  of frequent i temset  generat ion t h a t  we identified in 
the  previous section. Our  goal is no t  to  go to much  into 
detail  bu t  to show the  basic principles and  the  differences 
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between the  approaches.  

3.1 Systematization 
The algorithms that we consider in this paper are system- 
atized in Figure 3. We characterize each of the algorithms 
a) by its strategy to traverse the search space and b) by its 
strategy to determine the support values of the itemsets. In 

Apriori Partition 

AprioriTID 

DIC 

FP- Eclat 
growth 

Figure 3: Systemat izat ion of the  Algor i thms 

addit ion an  algori thm may  employ specific opt imizat ions  for 
fur ther  speedup. 

3.2 BFS and Counting Occurrences 
The most  popular  a lgor i thm of th is  type  is A p r i o r i  [2] 
where also the  downward closure proper ty  of i temset  sup- 
por t  was introduced. Apriori makes additional use of this 
property by pruning those candidates that have an infre- 
quent subset before counting their supports. This optimiza- 
tion becomes possible because BFS ensures that the support 
values of all subsets of a candidate are known in advance. 
Apriori counts all candidates of a cardinality k together in 
one scan over the database. The critical part is looking up 
the candidates in each of the transactions. For this purpose 
[2] introduces a so called hashtree structure. The items in 
each transaction are used to descend in the hashtree. When- 
ever we reach one of its leafs, we find a set of candidates 
having a common prefix that is contained in the transaction. 
Then these candidates are searched in the transaction that 
has been encoded as a bitmap before. In the case of success 
the counter of the candidate in the tree is incremented. 
AprioriTID [2] is an extension of the basic Apriori ap- 
proach. Instead of relying on the raw database AprioriTID 
internally represents each transaction by the current candi- 
dates it contains. With AprioriHybrid both approaches 
are combined, c.f. [2]. To some extent also SETM [13] is 
an Apriori(TID)-like algorithm which is intended to be im- 
plemented directly in SQL. 
DIC is a further variation of the Apriori-Algorithm [7]. DIC 
softens the strict separation between counting and generat- 
ing candidates. Whenever a candidate reaches minsupp, that 
is even when this candidate has not yet "seen" all trans- 
actions, DIC starts generating additional candidates based 
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on it. For t h a t  purpose a prefix-tree is employed. In con- 
t ras t  to  the  hashtree,  each node - leaf node or inner  node - 
of the  prefix-tree is assigned to exactly one candidate  re- 
spectively frequent i temset.  In contras t  to the  usage of a 
hashtree t h a t  means whenever we reach a node we can be 
sure t ha t  the  i temset  associated with this  node is contained 
in the  transact ion.  Fur thermore  interlocking suppor t  deter- 
minat ion  and candidate  generation decreases the  number  of 
database  scans. 

3.3 BFS and TID-List Intersections 
The P a r t i t l o n - A l g o r i t h m  [21] is an  Apriori-like algori thm 
t h a t  uses set intersections to determine suppor t  values. As 
described above Apriori determines the  suppor t  values of all 
(k - 1)-candidates before counting the  k-candidates.  The  
problem is t h a t  Par t i t ion  of course wants to use the  tidlists 
of the  frequent (k - 1)-itemsets to generate the  tidlists of 
the  k-candidates.  Obviously the  size of those intermediate  
results easily grows beyond the  physical memory l imitat ions 
of common machines.  To overcome this  Par t i t ion splits the  
da tabase  into several chunks t h a t  are t rea ted  independently.  
The  size of each chunk is chosen in such a way t ha t  all in- 
termediate  tidlists fit into main  memory. After determining 
the  frequent i temsets  for each da tabase  chunk, an extra  scan 
is necessary to ensure t h a t  the  locally frequent i temsets are 
also globally frequent. 

3.4 DFS and Counting Occurrences 
Counting occurrences assumes candidate  sets of a reasonable 
size. For each of those candidate  sets a database  scan is per- 
formed. E.g. Apriori t h a t  relies on BFS scans the  da tabase  
once for every candidate  size k. When  using DFS the  candi- 
date sets consist only of the  i temsets of one of the  nodes of 
the  tree from Section 2.2. Obviously scanning the  da tabase  
for every node results in t remendous  overhead. The simple 
combinat ion of DFS with counting occurrences is therefore 
of no practical relevance, c.f.[ll]. 
Recently in [9] a fundamenta l ly  new approach called F P -  
g r o w t h  was introduced. In a preprocessing step FP-growth 
derives a highly condensed representat ion of the  t ransac t ion  
data,  the  so called FP-tree.  The  generation of the  FP- t ree  is 
done by counting occurrences and  DFS. In contrast  to for- 
mer  DFS-approaches,  FP-growth  does not follow the  nodes 
of the  tree from Subsection 2.2, bu t  directly descends to 
some  part  of the  i temsets in the  search space. In a sec- 
ond step FP-growth  uses the  FP-t ree  to derive the  suppor t  
values of all frequent itemsets.  

3.5 DFS and TID-List Intersections 
In [28] the  a lgor i thm E c l a t  is introduced, t h a t  combines 
DFS with tidlist  intersections. When  using DFS it suffices 
to keep the  t idlists on the  pa th  from the  root  down to the  
class current ly investigated in memory. T h a t  is, spli t t ing 
the  da tabase  as done by Par t i t ion  is no longer needed. 
Eclat  employs an opt imizat ion called "fast intersections".  
Whenever  we intersect  two tidlists then  we are only inter- 
ested in the  result ing tidlist  if its cardinali ty reaches min- 
supp. In other  words, we should break off each intersection 
as soon as i t  is sure t h a t  it will not  achieve this threshold.  
Eclat originally generates  only frequent i temsets  of size > 
3. We modified Eclat  to  mine also the  frequent 1- and  
2-itemsets by calling it  on the  class t ha t  contains the  1- 
i temsets together  with  thei r  tidlists. 
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In addi t ion in [28] algori thms t h a t  mine only the  maximal  
frequent i temsets are introduced,  e.g. M a x E c l a t .  An item- 
set X is maximal  frequent if for every frequent i temset  Y 
X C Y ~ Y = X holds. We do not  consider these algo- 
r i thms  because a l though it is s t ra ight  forward to derive the  
set of all frequent i temsets  from the  maximal  frequent i tem- 
sets this  does not  hold for the  corresponding suppor t  values. 
Wi t h o u t  those, we are not  able to  derive rule confidences and  
therefore we cannot  generate association rules. 

4. COMPARISON OF THE ALGORITHMS 
In th is  section we compare the  algori thms and  explain the  
observed differences in performance behavior.  

4.1 Experiments 
To carry out  performance studies we implemented the  most  
common algori thms to mine frequent itemsets,  namely Apri- 
ori, DIC, Part i t ion,  an d  Eclat, in C + + .  Actual ly we had  to 
leave out  DIC in the  char ts  for reasons explained later. In 
addi t ion we did not  consider Aprior iTID and  FP-growth  be- 
cause these algori thms were designed to mine da ta  t h a t  is 
not  typical for retail  environments ,  t ha t  is da ta  containing 
quite long pat terns .  
The experiments  were performed on a SUN Ult raSPARC-II  
workstat ion clocked at  248Mhz. The  exper iments  in Fig- 
ures 4 - 11 were carried out  on synthet ic  datasets  from [2; 
21]. These datasets  were generated with a da ta  generator  [2] 
t h a t  simulates the  buying behavior  of customers in retail  
business. Datase t  "T10.I4.D100K" means an  average t rans-  
action size of 10, an  average size of the  maximal  potential ly 
frequent i temsets of 4 and  100,000 generated transact ions.  
The  number  of pa t t e rns  was set to 2,000 and  the number  of 
i tems to 1,000. 
In addi t ion to the  exper iments  from [2; 21], we restr icted 
the  maximal  length of generated i temsets from 1 up to 9 
on the  da tase t  "T20.I4.D100K" a t  minsupp = 0.33%, c.f. 
Figure 9. Figures 10 and  11 show the  behavior  of the  al- 
gor i thms on real-world applications. The  basket  da ta  con- 
sists of about  70,000 customer t ransact ions  wi th  approxi- 
mate ly  60,000 different items. The  average t ransact ion size 
is ~ 10.5 items. The  car equipment  da ta  contains infor- 
mat ion  abou t  700, 000 cars wi th  abou t  6,000 items. In the  
average ~ 20 i tems are assigned to each ear. 
I t  is impor t an t  to say t h a t  all a lgori thms scale linearly wi th  
the  da tabase  size. 

4.2 Counting Occurrences vs. Intersecting Sets 
The basic question concerning the  run t ime  of the  algori thms 
is whether  counting occurrences or intersecting tidlists shows 
be t te r  performance results. The  advantage of counting is 
t h a t  only candidates  t h a t  actually occur in the  t ransact ions  
cause any effort. In contrast ,  an  intersection means  at  least 
passing th rough  all t ids  of the  smaller of the  two tidiists, 
even if the  candidate  is not  contained in the  da tabase  at  all. 
("Fast  Intersections" save some costs bu t  we still need to 
pass a substant ia l  number  of tids.) But  intersections also 
have thei r  benefits. Count ing implies looking up the  candi- 
dates in the  t ransact ions.  Of course this  can get quite ex- 
pensive for candidates  of higher cardinality. On the  contrary 
when using intersections the  size of the  candidate  under  in- 
vestigation does not  have any influence. 
In practice bo th  effects seem to balance out  on the  basket- 
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like data. The runtime behavior in Figures 4 - 8 does 
not show any substantial differences between the algorithm 
Apriori that counts occurrences and the tidlists intersecting 
algorithms Partition and Eclat. Only at quite low aver- 
age size of the maximal potentially frequent itemsets, e.g. 
"T10.I2.D100K" in Figure 4, Apriori is somehow superior 
whereas at larger average size of the maximal potentially fre- 
quent itemsets, e.g. "T20.I6.D100K" in Figure 8, Partition 
and Eclat perform better. The same explanation holds for 
the real-world experiments. With an average size of ~ 2.2 
items at rninsupp = 0.06% the frequent itemsets found in 
the basket data were rather short compared to the frequent 
itemsets from the car equipment database, that contained 

4.1 items in the average at minsupp ---- 3%. 
In Figure 9 it becomes clear what happens behind the scenes: 
Eclat and Partition spend most of their time with determin- 
ing the support values of the 2- and 3-candidates whereas 
Apriori is efficiently handling such small itemsets. In con- 
trast for itemsets with size > 4 the additional effort caused 
for Eclat and Partition is to be neglected whereas this does 
not hold for Apriori. 

4.3 Relaxing the Separation between Candi- 
date Generation and Support Counting 

On the one hand the introduction of the prefix-tree with DIC 
allows relaxing the separation between candidate generation 
and support counting and therefore reduces the number of 
database scans. Moreover each node is assigned to precisely 
one itemset. Consequently looking up candidates in bitmap- 
encoded transactions is no longer necessary. On the other 
hand the memory usage of the prefix-tree caused problems, 
when we experimented with our own implementation of DIC: 
The prefix-tree is already setup before all frequent 1-itemsets 
are known. That means a mapping to frequent items as 
described in [2] to keep the memory usage of hash tables in 
each node of the tree small is not possible. Moreover this 
effect is strengthened by the fact that every candidate is 
stored in its own node and that in addition a separate node 
for each prefix of the candidate exists. Another drawback of 
the prefix-tree is that the frequent itemsets are stored in the 
same tree as the candidates. Each frequent k-itemset that is 
not prefix of any kS-candidate with k ~ > k imposes overhead 
when counting that is avoided by the hashtree-approach of 
Apriori. 
Actually we did not come to a final result concerning the 
efficiency of DIC. But what we want to say is that DIC's 
advantage of reducing the number of database scans should 
not be overestimated in a retail environment. In [7] a perfor- 
mance gain of only about 30% compared with basic Apriori 
is detected for data with quite small average size of the max- 
imal potentially frequent itemsets. 

4.4 Additional Candidate Pruning 
Typically the main task of the algorithms is determining 
support values. That is, the time spent with candidate gen- 
eration - and candidate pruning - can be neglected. Conse- 
quently Apriori's candidate pruning step helps to reduce the 
candidates to be counted but does not add any substantial 
overhead, it is important to note that basic DFS, as em- 
ployed by Eclat does not allow proper subset pruning. Only 
right-most DFS as introduced in [12] for the mining of gen- 
eralized association rules allows transferring the additional 
prune step of Apriori to algorithms using DFS. 

Our experiments suggest that the effect of additional can- 
didate pruning is rather small for the datasets we took into 
consideration. Additional pruning does not help Partition 
to compensate Eclat's advantage based on the "fast inter- 
sections". This impression was also supported by further 
studies with an enhanced version of Eclat that incorporates 
additional candidates pruning by using right-most DFS. 

4.5 Splitting the Database 
Partition needs to split the database. Whereas this opti- 
mization helps to cope with large databases it adds the ad- 
ditional overhead of an extra pass to determine the globally 
frequent itemsets. In our experiments the size of the trans- 
action sets were always small enough that we could employ 
Partition without splitting. In [21] especially at lower val- 
ues for minsupp Partition that splits suffers strongly. The 
reason is the increasing number of locally frequent itemsets 
that finally turn out to be globally infrequent. 

4.6 "Fast Intersections" 
Eclat's fast intersections are obviously an advantage. The 
overhead caused by checking whether minsupp is still reach- 
able is clearly outweighed by breaking off unnecessary in- 
tersections. As a result in all our experiments Eclat beats 
Partition with a nearly constant factor. 

5. CONCLUSION 
In this paper we dealt with the algorithmic aspects of asso- 
ciation rule mining. We restricted ourselves to the "classic" 
association rule problem, that is the generation of all associ- 
ation rules that exist in market basket-like data with respect 
to minimal thresholds for support and confidence. 
From the broad variety of efficient algorithms that have been 
developed we compared the most important ones. We sys- 
tematized the algorithms and analyzed their performance 
based on both runtime experiments and theoretic consid- 
erations. The results were quite surprising: Although we 
identified fundamental differences concerning the employed 
strategies, the algorithms show quite similar runtime behav- 
ior in our experiments. At least there is no algorithm that 
is fundamentally beating out the other ones. In fact our 
experiments showed that the advantages and disadvantages 
we identified concerning the strategy to determine the sup- 
port values of the frequent itemsets nearly balance out on 
market basket-like data. 
In a forthcoming paper we pursue the development of a hy- 
brid approach that efficiently combines counting occurrences 
and ticUist intersections [11]. 
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