
Fast Algorithms for Mining Association Rules

Rakesh Agrawal Ramakrishnan Srikant�

IBM Almaden Research Center

��� Harry Road� San Jose� CA �����

Abstract

We consider the problem of discovering association rules
between items in a large database of sales transactions�
We present two new algorithms for solving this problem
that are fundamentally di�erent from the known algo�
rithms� Empirical evaluation shows that these algorithms
outperform the known algorithms by factors ranging from
three for small problems to more than an order of mag�
nitude for large problems� We also show how the best
features of the two proposed algorithms can be combined
into a hybrid algorithm� called AprioriHybrid� Scale�up
experiments show that AprioriHybrid scales linearly with
the number of transactions� AprioriHybrid also has ex�
cellent scale�up properties with respect to the transaction
size and the number of items in the database�

� Introduction

Progress in bar�code technology has made it possi�
ble for retail organizations to collect and store mas�
sive amounts of sales data� referred to as the basket

data� A record in such data typically consists of the
transaction date and the items bought in the trans�
action� Successful organizations view such databases
as important pieces of the marketing infrastructure�
They are interested in instituting information�driven
marketing processes� managed by database technol�
ogy� that enable marketers to develop and implement
customized marketing programs and strategies ����

The problem of mining association rules over basket
data was introduced in ���� An example of such a
rule might be that 	
� of customers that purchase

�Visiting from the Department of Computer Science� Uni�
versity of Wisconsin� Madison�

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or distributed
for direct commercial advantage� the VLDB copyright notice
and the title of the publication and its date appear� and notice
is given that copying is by permission of the Very Large Data
Base Endowment� To copy otherwise� or to republish� requires
a fee and�or special permission from the Endowment�

Proceedings of the ��th VLDB Conference
Santiago� Chile� ����

tires and auto accessories also get automotive services
done� Finding all such rules is valuable for cross�
marketing and attached mailing applications� Other
applications include catalog design� add�on sales�
store layout� and customer segmentation based on
buying patterns� The databases involved in these
applications are very large� It is imperative� therefore�
to have fast algorithms for this task�

The following is a formal statement of the problem
���� Let I fi�� i�� � � � � img be a set of literals�
called items� Let D be a set of transactions� where
each transaction T is a set of items such that T �
I� Associated with each transaction is a unique
identi�er� called its TID� We say that a transaction
T contains X� a set of some items in I� if X � T �
An association rule is an implication of the form
X � Y � where X � I� Y � I� and X � Y ��
The rule X � Y holds in the transaction set D with
con�dence c if c� of transactions in D that contain
X also contain Y � The rule X � Y has support s

in the transaction set D if s� of transactions in D
contain X �Y � Our rules are somewhat more general
than in ��� in that we allow a consequent to have more
than one item�

Given a set of transactions D� the problem of min�
ing association rules is to generate all association rules
that have support and con�dence greater than the
user�speci�ed minimum support �called minsup� and
minimum con�dence �called minconf � respectively�
Our discussion is neutral with respect to the repre�
sentation of D� For example� D could be a data �le�
a relational table� or the result of a relational expres�
sion�

An algorithm for �nding all association rules�
henceforth referred to as the AIS algorithm� was pre�
sented in ���� Another algorithm for this task� called
the SETM algorithm� has been proposed in ����� In
this paper� we present two new algorithms� Apriori
and AprioriTid� that di�er fundamentally from these
algorithms� We present experimental results showing

that the proposed algorithms always outperform the
earlier algorithms� The performance gap is shown to
increase with problem size� and ranges from a fac�
tor of three for small problems to more than an or�
der of magnitude for large problems� We then dis�
cuss how the best features of Apriori and Apriori�
Tid can be combined into a hybrid algorithm� called
AprioriHybrid� Experiments show that the Apriori�
Hybrid has excellent scale�up properties� opening up
the feasibility of mining association rules over very
large databases�

The problem of �nding association rules falls within
the purview of database mining ��� ����� also called
knowledge discovery in databases ����� Related� but
not directly applicable� work includes the induction
of classi�cation rules �
� ���� ����� discovery of causal
rules ��	�� learning of logical de�nitions ��
�� �tting
of functions to data ����� and clustering �	� ����� The
closest work in the machine learning literature is the
KID� algorithm presented in ����� If used for �nding
all association rules� this algorithm will make as many
passes over the data as the number of combinations
of items in the antecedent� which is exponentially
large� Related work in the database literature is
the work on inferring functional dependencies from
data ����� Functional dependencies are rules requiring
strict satisfaction� Consequently� having determined
a dependency X � A� the algorithms in ���� consider
any other dependency of the form X � Y � A

redundant and do not generate it� The association
rules we consider are probabilistic in nature� The
presence of a rule X � A does not necessarily mean
that X � Y � A also holds because the latter may
not have minimumsupport� Similarly� the presence of
rules X � Y and Y � Z does not necessarily mean
that X � Z holds because the latter may not have
minimum con�dence�

There has been work on quantifying the �useful�
ness� or �interestingness� of a rule ����� What is use�
ful or interesting is often application�dependent� The
need for a human in the loop and providing tools to
allow human guidance of the rule discovery process
has been articulated� for example� in ��� ����� We do
not discuss these issues in this paper� except to point
out that these are necessary features of a rule discov�
ery system that may use our algorithms as the engine
of the discovery process�

��� Problem Decomposition and Paper

Organization

The problem of discovering all association rules can
be decomposed into two subproblems ����

�� Find all sets of items �itemsets� that have transac�
tion support above minimum support� The support

for an itemset is the number of transactions that
contain the itemset� Itemsets with minimum sup�
port are called large itemsets� and all others small

itemsets� In Section �� we give new algorithms�
Apriori and AprioriTid� for solving this problem�

�� Use the large itemsets to generate the desired rules�
Here is a straightforward algorithm for this task�
For every large itemset l� �nd all non�empty subsets
of l� For every such subset a� output a rule of
the form a � �l 	 a� if the ratio of support�l�
to support�a� is at least minconf� We need to
consider all subsets of l to generate rules with
multiple consequents� Due to lack of space� we do
not discuss this subproblem further� but refer the
reader to ��� for a fast algorithm�

In Section �� we show the relative performance
of the proposed Apriori and AprioriTid algorithms
against the AIS ��� and SETM ���� algorithms�
To make the paper self�contained� we include an
overview of the AIS and SETM algorithms in this
section� We also describe how the Apriori and
AprioriTid algorithms can be combined into a hybrid
algorithm� AprioriHybrid� and demonstrate the scale�
up properties of this algorithm� We conclude by
pointing out some related open problems in Section ��

� Discovering Large Itemsets

Algorithms for discovering large itemsets make mul�
tiple passes over the data� In the �rst pass� we count
the support of individual items and determine which
of them are large� i�e� have minimumsupport� In each
subsequent pass� we start with a seed set of itemsets
found to be large in the previous pass� We use this
seed set for generating new potentially large itemsets�
called candidate itemsets� and count the actual sup�
port for these candidate itemsets during the pass over
the data� At the end of the pass� we determine which
of the candidate itemsets are actually large� and they
become the seed for the next pass� This process con�
tinues until no new large itemsets are found�

The Apriori and AprioriTid algorithms we propose
di�er fundamentally from the AIS ��� and SETM ����
algorithms in terms of which candidate itemsets are
counted in a pass and in the way that those candidates
are generated� In both the AIS and SETM algorithms�
candidate itemsets are generated on�the��y during the
pass as data is being read� Speci�cally� after reading
a transaction� it is determined which of the itemsets
found large in the previous pass are present in the
transaction� New candidate itemsets are generated by
extending these large itemsets with other items in the
transaction� However� as we will see� the disadvantage

is that this results in unnecessarily generating and
counting too many candidate itemsets that turn out
to be small�

The Apriori and AprioriTid algorithms generate
the candidate itemsets to be counted in a pass by
using only the itemsets found large in the previous
pass � without considering the transactions in the
database� The basic intuition is that any subset
of a large itemset must be large� Therefore� the
candidate itemsets having k items can be generated
by joining large itemsets having k 	 � items� and
deleting those that contain any subset that is not
large� This procedure results in generation of a much
smaller number of candidate itemsets�

The AprioriTid algorithm has the additional prop�
erty that the database is not used at all for count�
ing the support of candidate itemsets after the �rst
pass� Rather� an encoding of the candidate itemsets
used in the previous pass is employed for this purpose�
In later passes� the size of this encoding can become
much smaller than the database� thus saving much
reading e�ort� We will explain these points in more
detail when we describe the algorithms�

Notation We assume that items in each transaction
are kept sorted in their lexicographic order� It is
straightforward to adapt these algorithms to the case
where the database D is kept normalized and each
database record is a �TID� item� pair� where TID is
the identi�er of the corresponding transaction�

We call the number of items in an itemset its size�
and call an itemset of size k a k�itemset� Items within
an itemset are kept in lexicographic order� We use
the notation c���
 c���
 � � �
 c�k� to represent a k�
itemset c consisting of items c���� c���� � � �c�k�� where
c��� � c��� � � � � � c�k�� If c X
 Y and Y

is an m�itemset� we also call Y an m�extension of
X� Associated with each itemset is a count �eld to
store the support for this itemset� The count �eld is
initialized to zero when the itemset is �rst created�

We summarize in Table � the notation used in the
algorithms� The set Ck is used by AprioriTid and will
be further discussed when we describe this algorithm�

��� Algorithm Apriori

Figure � gives the Apriori algorithm� The �rst pass
of the algorithm simply counts item occurrences to
determine the large ��itemsets� A subsequent pass�
say pass k� consists of two phases� First� the large
itemsets Lk�� found in the �k	��th pass are used to
generate the candidate itemsets Ck� using the apriori�
gen function described in Section ������ Next� the
database is scanned and the support of candidates in
Ck is counted� For fast counting� we need to e�ciently
determine the candidates in Ck that are contained in a

Table �� Notation

k�itemset An itemset having k items�
Set of large k�itemsets

Lk �those with minimum support��
Each member of this set has two �elds	
i� itemset and ii� support count�

Set of candidate k�itemsets
Ck �potentially large itemsets��

Each member of this set has two �elds	
i� itemset and ii� support count�
Set of candidate k�itemsets when the TIDs

Ck of the generating transactions are kept
associated with the candidates�

given transaction t� Section ����� describes the subset
function used for this purpose� See ��� for a discussion
of bu�er management�

� L� � flarge
�itemsetsg�
� for � k � � Lk�� �� �� k�� � do begin

�� Ck � apriori�gen�Lk�� �� �� New candidates
�� forall transactions t � D do begin

�� Ct � subset�Ck � t�� �� Candidates contained in t

�� forall candidates c � Ct do

�� c�count���
�� end

�� Lk � fc � Ck j c�count � minsupg

�� end

� Answer �

S
k
Lk�

Figure �� Algorithm Apriori

����� Apriori Candidate Generation

The apriori�gen function takes as argument Lk���
the set of all large �k	 ���itemsets� It returns a
superset of the set of all large k�itemsets� The
function works as follows� � First� in the join step�
we join Lk�� with Lk���

insert into Ck

select p�item�� p�item�� ���� p�itemk��� q�itemk��

from Lk�� p� Lk�� q

where p�item� � q�item�� � � �� p�itemk�� � q�itemk���
p�itemk�� � q�itemk���

Next� in the prune step� we delete all itemsets c � Ck
such that some �k	���subset of c is not in Lk���

�Concurrent to our work� the following two�step candidate
generation procedure has been proposed in ����	

C�

k

 fX �X �jX�X � � Lk��� jX �X �j
 k � �g

Ck
 fX � C�

k
jX contains k members of Lk��g

These two steps are similar to our join and prune steps
respectively� However� in general� step � would produce a
superset of the candidates produced by our join step�

forall itemsets c � Ck do

forall �k�
��subsets s of c do
if �s �� Lk��� then
delete c from Ck�

Example Let L� be ff� � �g� f� � �g� f� � �g� f�
� �g� f� � �gg� After the join step� C� will be ff� � �
�g� f� � � �g g� The prune step will delete the itemset
f� � � �g because the itemset f� � �g is not in L��
We will then be left with only f� � � �g in C��

Contrast this candidate generation with the one
used in the AIS and SETM algorithms� In pass k

of these algorithms� a database transaction t is read
and it is determined which of the large itemsets in
Lk�� are present in t� Each of these large itemsets
l is then extended with all those large items that
are present in t and occur later in the lexicographic
ordering than any of the items in l� Continuing with
the previous example� consider a transaction f� �
� � �g� In the fourth pass� AIS and SETM will
generate two candidates� f� � � �g and f� � � �g�
by extending the large itemset f� � �g� Similarly� an
additional three candidate itemsets will be generated
by extending the other large itemsets in L�� leading
to a total of � candidates for consideration in the
fourth pass� Apriori� on the other hand� generates
and counts only one itemset� f� � � �g� because it
concludes a priori that the other combinations cannot
possibly have minimum support�

Correctness We need to show that Ck � Lk�
Clearly� any subset of a large itemset must also
have minimum support� Hence� if we extended each
itemset in Lk�� with all possible items and then
deleted all those whose �k	 ���subsets were not in
Lk��� we would be left with a superset of the itemsets
in Lk�

The join is equivalent to extending Lk�� with each
item in the database and then deleting those itemsets
for which the �k	���itemset obtained by deleting the
�k	��th item is not in Lk��� The condition p�itemk��

� q�itemk�� simply ensures that no duplicates are
generated� Thus� after the join step� Ck � Lk� By
similar reasoning� the prune step� where we delete
from Ck all itemsets whose �k	���subsets are not in
Lk��� also does not delete any itemset that could be
in Lk�

Variation� Counting Candidates of Multiple

Sizes in One Pass Rather than counting only
candidates of size k in the kth pass� we can also
count the candidates C�

k��
� where C�

k��
is generated

from Ck� etc� Note that C �

k��
� Ck�� since Ck�� is

generated from Lk� This variation can pay o� in the

later passes when the cost of counting and keeping in
memory additional C�

k��
	 Ck�� candidates becomes

less than the cost of scanning the database�

����� Subset Function

Candidate itemsets Ck are stored in a hash�tree� A
node of the hash�tree either contains a list of itemsets
�a leaf node� or a hash table �an interior node�� In an
interior node� each bucket of the hash table points to
another node� The root of the hash�tree is de�ned to
be at depth �� An interior node at depth d points to
nodes at depth d��� Itemsets are stored in the leaves�
When we add an itemset c� we start from the root and
go down the tree until we reach a leaf� At an interior
node at depth d� we decide which branch to follow
by applying a hash function to the dth item of the
itemset� All nodes are initially created as leaf nodes�
When the number of itemsets in a leaf node exceeds
a speci�ed threshold� the leaf node is converted to an
interior node�

Starting from the root node� the subset function
�nds all the candidates contained in a transaction
t as follows� If we are at a leaf� we �nd which of
the itemsets in the leaf are contained in t and add
references to them to the answer set� If we are at an
interior node and we have reached it by hashing the
item i� we hash on each item that comes after i in t

and recursively apply this procedure to the node in
the corresponding bucket� For the root node� we hash
on every item in t�

To see why the subset function returns the desired
set of references� consider what happens at the root
node� For any itemset c contained in transaction t� the
�rst item of c must be in t� At the root� by hashing on
every item in t� we ensure that we only ignore itemsets
that start with an item not in t� Similar arguments
apply at lower depths� The only additional factor is
that� since the items in any itemset are ordered� if we
reach the current node by hashing the item i� we only
need to consider the items in t that occur after i�

��� Algorithm AprioriTid

The AprioriTid algorithm� shown in Figure �� also
uses the apriori�gen function �given in Section ������
to determine the candidate itemsets before the pass
begins� The interesting feature of this algorithm is
that the database D is not used for counting support
after the �rst pass� Rather� the set Ck is used
for this purpose� Each member of the set Ck is
of the form � TID� fXkg �� where each Xk is a
potentially large k�itemset present in the transaction
with identi�er TID� For k �� C� corresponds to
the database D� although conceptually each item i

is replaced by the itemset fig� For k � �� Ck is
generated by the algorithm �step ���� The member

of Ck corresponding to transaction t is �t�T ID�
fc � Ckjc contained in tg�� If a transaction does
not contain any candidate k�itemset� then Ck will
not have an entry for this transaction� Thus� the
number of entries in Ck may be smaller than the
number of transactions in the database� especially for
large values of k� In addition� for large values of k�
each entry may be smaller than the corresponding
transaction because very few candidates may be
contained in the transaction� However� for small
values for k� each entry may be larger than the
corresponding transaction because an entry in Ck
includes all candidate k�itemsets contained in the
transaction�

In Section ������ we give the data structures used
to implement the algorithm� See ��� for a proof of
correctness and a discussion of bu�er management�

� L� � flarge
�itemsetsg�

� C� � database D�
�� for � k � � Lk�� �� �� k�� � do begin

�� Ck � apriori�gen�Lk���� �� New candidates
�� Ck � ��

�� forall entries t � Ck�� do begin

�� �� determine candidate itemsets in Ck contained
�� in the transaction with identi�er t�TID
Ct � fc � Ck j �c� c�k�� � t�set�of�itemsets �

�c� c�k�
�� � t�set�of�itemsetsg�
�� forall candidates c � Ct do

�� c�count���

�� if �Ct �� �� then Ck �� � t�TID� Ct ��

� end

� Lk � fc � Ck j c�count � minsupg

�� end

�� Answer �

S
k
Lk�

Figure �� Algorithm AprioriTid

Example Consider the database in Figure � and
assume that minimum support is � transactions�
Calling apriori�gen with L� at step � gives the
candidate itemsets C�� In steps � through ��� we
count the support of candidates in C� by iterating over
the entries in C� and generate C�� The �rst entry in
C� is f f�g f�g f�g g� corresponding to transaction
���� The Ct at step � corresponding to this entry t

is f f� �g g� because f� �g is a member of C� and
both �f� �g � f�g� and �f� �g � f�g� are members of
t�set�of�itemsets�

Calling apriori�gen with L� gives C�� Making a pass
over the data with C� and C� generates C�� Note that
there is no entry in C� for the transactions with TIDs
��� and ���� since they do not contain any of the
itemsets in C�� The candidate f� � �g in C� turns
out to be large and is the only member of L�� When

we generate C� using L�� it turns out to be empty�
and we terminate�

Database
TID Items

��
 � �
�� � �
���
 � �
��� �

C�

TID Set�of�Itemsets

�� f f
g� f�g� f�g g
�� f fg� f�g� f�g g
��� f f
g� fg� f�g� f�g g
��� f fg� f�g g

L�

Itemset Support

f
g
fg �
f�g �
f�g �

C�

Itemset Support
f
 g

f
 �g
f
 �g

f �g
f �g �
f� �g

C�

TID Set�of�Itemsets

�� f f
 �g g
�� f f �g� f �g� f� �g g
��� f f
 g� f
 �g� f
 �g�

f �g� f �g� f� �g g
��� f f �g g

L�

Itemset Support

f
 �g
f �g
f �g �
f� �g

C�

Itemset Support

f � �g

C�

TID Set�of�Itemsets
�� f f � �g g
��� f f � �g g

L�

Itemset Support
f � �g

Figure �� Example
����� Data Structures

We assign each candidate itemset a unique number�
called its ID� Each set of candidate itemsets Ck is kept
in an array indexed by the IDs of the itemsets in Ck�
A member of Ck is now of the form � TID� fIDg ��
Each Ck is stored in a sequential structure�

The apriori�gen function generates a candidate k�
itemset ck by joining two large �k	���itemsets� We
maintain two additional �elds for each candidate
itemset� i� generators and ii� extensions� The
generators �eld of a candidate itemset ck stores the
IDs of the two large �k 	 ���itemsets whose join
generated ck� The extensions �eld of an itemset
ck stores the IDs of all the �k� ���candidates that
are extensions of ck� Thus� when a candidate ck is
generated by joining l�

k�� and l�
k��� we save the IDs

of l�
k��

and l�
k��

in the generators �eld for ck� At the
same time� the ID of ck is added to the extensions
�eld of l�

k��
�

We now describe how Step � of Figure � is
implemented using the above data structures� Recall
that the t�set�of�itemsets �eld of an entry t in Ck��

gives the IDs of all �k	 ���candidates contained in
transaction t�TID� For each such candidate ck�� the
extensions �eld gives Tk� the set of IDs of all the
candidate k�itemsets that are extensions of ck��� For
each ck in Tk� the generators �eld gives the IDs of
the two itemsets that generated ck� If these itemsets
are present in the entry for t�set�of�itemsets� we can
conclude that ck is present in transaction t�TID� and
add ck to Ct�

� Performance

To assess the relative performance of the algorithms
for discovering large sets� we performed several
experiments on an IBM RS����� ���H workstation
with a CPU clock rate of �� MHz� �� MB of main
memory� and running AIX ���� The data resided in
the AIX �le system and was stored on a �GB SCSI
���� drive� with measured sequential throughput of
about � MB�second�

We �rst give an overview of the AIS ��� and SETM
���� algorithms against which we compare the per�
formance of the Apriori and AprioriTid algorithms�
We then describe the synthetic datasets used in the
performance evaluation and show the performance re�
sults� Finally� we describe how the best performance
features of Apriori and AprioriTid can be combined
into an AprioriHybrid algorithm and demonstrate its
scale�up properties�

��� The AIS Algorithm

Candidate itemsets are generated and counted on�
the��y as the database is scanned� After reading a
transaction� it is determined which of the itemsets
that were found to be large in the previous pass are
contained in this transaction� New candidate itemsets
are generated by extending these large itemsets with
other items in the transaction� A large itemset l is
extended with only those items that are large and
occur later in the lexicographic ordering of items than
any of the items in l� The candidates generated
from a transaction are added to the set of candidate
itemsets maintained for the pass� or the counts of
the corresponding entries are increased if they were
created by an earlier transaction� See ��� for further
details of the AIS algorithm�

��� The SETM Algorithm

The SETM algorithm ���� was motivated by the desire
to use SQL to compute large itemsets� Like AIS�
the SETM algorithm also generates candidates on�
the��y based on transactions read from the database�

It thus generates and counts every candidate itemset
that the AIS algorithm generates� However� to use the
standard SQL join operation for candidate generation�
SETM separates candidate generation from counting�
It saves a copy of the candidate itemset together with
the TID of the generating transaction in a sequential
structure� At the end of the pass� the support count
of candidate itemsets is determined by sorting and
aggregating this sequential structure�

SETM remembers the TIDs of the generating
transactions with the candidate itemsets� To avoid
needing a subset operation� it uses this information
to determine the large itemsets contained in the
transaction read� Lk � Ck and is obtained by deleting
those candidates that do not have minimum support�
Assuming that the database is sorted in TID order�
SETM can easily �nd the large itemsets contained in a
transaction in the next pass by sorting Lk on TID� In
fact� it needs to visit every member of Lk only once in
the TID order� and the candidate generation can be
performed using the relational merge�join operation
�����

The disadvantage of this approach is mainly due
to the size of candidate sets Ck� For each candidate
itemset� the candidate set now has as many entries
as the number of transactions in which the candidate
itemset is present� Moreover� when we are ready to
count the support for candidate itemsets at the end
of the pass� Ck is in the wrong order and needs to be
sorted on itemsets� After counting and pruning out
small candidate itemsets that do not have minimum
support� the resulting set Lk needs another sort on
TID before it can be used for generating candidates
in the next pass�

��� Generation of Synthetic Data

We generated synthetic transactions to evaluate the
performance of the algorithms over a large range of
data characteristics� These transactions mimic the
transactions in the retailing environment� Our model
of the �real� world is that people tend to buy sets
of items together� Each such set is potentially a
maximal large itemset� An example of such a set
might be sheets� pillow case� comforter� and ru�es�
However� some people may buy only some of the
items from such a set� For instance� some people
might buy only sheets and pillow case� and some only
sheets� A transaction may contain more than one
large itemset� For example� a customer might place an
order for a dress and jacket when ordering sheets and
pillow cases� where the dress and jacket together form
another large itemset� Transaction sizes are typically
clustered around a mean and a few transactions have
many items� Typical sizes of large itemsets are also

clustered around a mean� with a few large itemsets
having a large number of items�

To create a dataset� our synthetic data generation
program takes the parameters shown in Table ��

Table �� Parameters

jDj Number of transactions
jT j Average size of the transactions
jIj Average size of the maximal potentially

large itemsets
jLj Number of maximal potentially large itemsets
N Number of items

We �rst determine the size of the next transaction�
The size is picked from a Poisson distribution with
mean � equal to jT j� Note that if each item is chosen
with the same probability p� and there are N items�
the expected number of items in a transaction is given
by a binomial distribution with parameters N and p�
and is approximated by a Poisson distribution with
mean Np�

We then assign items to the transaction� Each
transaction is assigned a series of potentially large
itemsets� If the large itemset on hand does not �t in
the transaction� the itemset is put in the transaction
anyway in half the cases� and the itemset is moved to
the next transaction the rest of the cases�

Large itemsets are chosen from a set T of such
itemsets� The number of itemsets in T is set to
jLj� There is an inverse relationship between jLj and
the average support for potentially large itemsets�
An itemset in T is generated by �rst picking the
size of the itemset from a Poisson distribution with
mean � equal to jIj� Items in the �rst itemset
are chosen randomly� To model the phenomenon
that large itemsets often have common items� some
fraction of items in subsequent itemsets are chosen
from the previous itemset generated� We use an
exponentially distributed random variable with mean
equal to the correlation level to decide this fraction
for each itemset� The remaining items are picked at
random� In the datasets used in the experiments�
the correlation level was set to ���� We ran some
experiments with the correlation level set to ���� and
���� but did not �nd much di�erence in the nature of
our performance results�

Each itemset in T has a weight associated with
it� which corresponds to the probability that this
itemset will be picked� This weight is picked from
an exponential distribution with unit mean� and is
then normalized so that the sum of the weights for all
the itemsets in T is �� The next itemset to be put
in the transaction is chosen from T by tossing an jLj�
sided weighted coin� where the weight for a side is the

probability of picking the associated itemset�
To model the phenomenon that all the items in

a large itemset are not always bought together� we
assign each itemset in T a corruption level c� When
adding an itemset to a transaction� we keep dropping
an item from the itemset as long as a uniformly
distributed random number between � and � is less
than c� Thus for an itemset of size l� we will add l

items to the transaction �	 c of the time� l	 � items
c��	 c� of the time� l	 � items c���	 c� of the time�
etc� The corruption level for an itemset is �xed and
is obtained from a normal distribution with mean ���
and variance ����

We generated datasets by setting N ���� and jLj
 ����� We chose � values for jT j� �� ��� and ��� We
also chose � values for jIj� �� �� and �� The number of
transactions was to set to ������� because� as we will
see in Section ���� SETM could not be run for larger
values� However� for our scale�up experiments� we
generated datasets with up to �� million transactions
�
�
MB for T���� Table � summarizes the dataset
parameter settings� For the same jT j and jDj values�
the size of datasets in megabytes were roughly equal
for the di�erent values of jIj�

Table �� Parameter settings

Name jT j jIj jDj Size in Megabytes

T��I�D
��K �
��K ��
T
��I�D
��K
�
��K ���
T
��I��D
��K
� �
��K
T��I�D
��K �
��K ���
T��I��D
��K � �
��K
T��I��D
��K � �
��K

��� Relative Performance

Figure � shows the execution times for the six
synthetic datasets given in Table � for decreasing
values of minimum support� As the minimumsupport
decreases� the execution times of all the algorithms
increase because of increases in the total number of
candidate and large itemsets�

For SETM� we have only plotted the execution
times for the dataset T��I��D���K in Figure �� The
execution times for SETM for the two datasets with
an average transaction size of �� are given in Table ��
We did not plot the execution times in Table �
on the corresponding graphs because they are too
large compared to the execution times of the other
algorithms� For the three datasets with transaction
sizes of ��� SETM took too long to execute and
we aborted those runs as the trends were clear�
Clearly� Apriori beats SETM by more than an order
of magnitude for large datasets�

T��I��D���K T���I��D���K

0

10

20

30

40

50

60

70

80

0.250.330.50.7511.52

T
im

e
 (

se
c)

Minimum Support

SETM
AIS

AprioriTid
Apriori

0

20

40

60

80

100

120

140

160

0.250.330.50.7511.52

T
im

e
 (

se
c)

Minimum Support

AIS
AprioriTid

Apriori

T���I��D���K T���I��D���K

0

50

100

150

200

250

300

350

0.250.330.50.7511.52

T
im

e
 (

se
c)

Minimum Support

AIS
AprioriTid

Apriori

0

100

200

300

400

500

600

700

800

900

1000

0.250.330.50.7511.52

T
im

e
 (

se
c)

Minimum Support

AIS
AprioriTid

Apriori

T���I��D���K T���I��D���K

0

200

400

600

800

1000

1200

1400

1600

1800

0.250.330.50.7511.52

T
im

e
 (

se
c)

Minimum Support

AIS
AprioriTid

Apriori

0

500

1000

1500

2000

2500

3000

3500

0.250.330.50.7511.52

T
im

e
 (

se
c)

Minimum Support

AIS
AprioriTid

Apriori

Figure �� Execution times

Table �� Execution times in seconds for SETM

Algorithm Minimum Support
���
���
��� ����� ����

Dataset T
��I�D
��K
SETM ��
�
 ���
�
���
Apriori ��� ���

��
���
���

Dataset T
��I��D
��K
SETM �
 �
 ��� ��
���
Apriori ��� ���

�
���
���

Apriori beats AIS for all problem sizes� by factors
ranging from � for high minimum support to more
than an order of magnitude for low levels of support�
AIS always did considerably better than SETM� For
small problems� AprioriTid did about as well as
Apriori� but performance degraded to about twice as
slow for large problems�

��� Explanation of the Relative Performance

To explain these performance trends� we show in
Figure � the sizes of the large and candidate sets in
di�erent passes for the T���I��D���K dataset for the
minimum support of ������ Note that the Y�axis in
this graph has a log scale�

1

10

100

1000

10000

100000

1e+06

1e+07

1 2 3 4 5 6 7

N
u
m

b
e
r

o
f
It
e
m

se
ts

Pass Number

C-k-m (SETM)
C-k-m (AprioriTid)
C-k (AIS, SETM)

C-k (Apriori, AprioriTid)
L-k

Figure �� Sizes of the large and candidate sets
�T���I��D���K� minsup ������

The fundamental problem with the SETM algo�
rithm is the size of its Ck sets� Recall that the size of
the set Ck is given by

X

candidate itemsets c

support�count�c��

Thus� the sets Ck are roughly S times bigger than the
corresponding Ck sets� where S is the average support
count of the candidate itemsets� Unless the problem
size is very small� the Ck sets have to be written
to disk� and externally sorted twice� causing the

SETM algorithm to perform poorly�� This explains
the jump in time for SETM in Table � when going
from ���� support to ���� support for datasets with
transaction size ��� The largest dataset in the scale�
up experiments for SETM in ���� was still small
enough that Ck could �t in memory hence they did
not encounter this jump in execution time� Note that
for the same minimum support� the support count for
candidate itemsets increases linearly with the number
of transactions� Thus� as we increase the number of
transactions for the same values of jT j and jIj� though
the size of Ck does not change� the size of Ck goes up
linearly� Thus� for datasets with more transactions�
the performance gap between SETM and the other
algorithms will become even larger�

The problem with AIS is that it generates too many
candidates that later turn out to be small� causing
it to waste too much e�ort� Apriori also counts too
many small sets in the second pass �recall that C� is
really a cross�product of L� with L��� However� this
wastage decreases dramatically from the third pass
onward� Note that for the example in Figure �� after
pass �� almost every candidate itemset counted by
Apriori turns out to be a large set�

AprioriTid also has the problem of SETM that Ck

tends to be large� However� the apriori candidate
generation used by AprioriTid generates signi�cantly
fewer candidates than the transaction�based candi�
date generation used by SETM� As a result� the Ck of
AprioriTid has fewer entries than that of SETM� Apri�
oriTid is also able to use a single word �ID� to store
a candidate rather than requiring as many words as
the number of items in the candidate�� In addition�
unlike SETM� AprioriTid does not have to sort Ck�
Thus� AprioriTid does not su�er as much as SETM
from maintaining Ck�

AprioriTid has the nice feature that it replaces a
pass over the original dataset by a pass over the set
Ck� Hence� AprioriTid is very e�ective in later passes
when the size of Ck becomes small compared to the

�The cost of external sorting in SETM can be reduced
somewhat as follows� Before writing out entries in Ck to
disk� we can sort them on itemsets using an internal sorting
procedure� and write them as sorted runs� These sorted runs
can then be merged to obtain support counts� However�
given the poor performance of SETM� we do not expect this
optimization to a�ect the algorithm choice�

�For SETM to use IDs� it would have to maintain two
additional in�memory data structures	 a hash table to nd
out whether a candidate has been generated previously� and
a mapping from the IDs to candidates� However� this would
destroy the set�oriented nature of the algorithm� Also� once we
have the hash table which gives us the IDs of candidates� we
might as well count them at the same time and avoid the two
external sorts� We experimentedwith this variant of SETM and
found that� while it did better than SETM� it still performed
much worse than Apriori or AprioriTid�

size of the database� Thus� we �nd that AprioriTid
beats Apriori when its Ck sets can �t in memory and
the distribution of the large itemsets has a long tail�
When Ck doesn!t �t in memory� there is a jump in
the execution time for AprioriTid� such as when going
from ����� to ���� for datasets with transaction size
�� in Figure �� In this region� Apriori starts beating
AprioriTid�

��� Algorithm AprioriHybrid

It is not necessary to use the same algorithm in all the
passes over data� Figure � shows the execution times
for Apriori and AprioriTid for di�erent passes over the
dataset T���I��D���K� In the earlier passes� Apriori
does better than AprioriTid� However� AprioriTid
beats Apriori in later passes� We observed similar
relative behavior for the other datasets� the reason
for which is as follows� Apriori and AprioriTid
use the same candidate generation procedure and
therefore count the same itemsets� In the later
passes� the number of candidate itemsets reduces
�see the size of Ck for Apriori and AprioriTid in
Figure ��� However� Apriori still examines every
transaction in the database� On the other hand�
rather than scanning the database� AprioriTid scans
Ck for obtaining support counts� and the size of Ck

has become smaller than the size of the database�
When the Ck sets can �t in memory� we do not even
incur the cost of writing them to disk�

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

T
im

e
 (

se
c)

Pass #

Apriori
AprioriTid

Figure �� Per pass execution times of Apriori and
AprioriTid �T���I��D���K� minsup ������

Based on these observations� we can design a
hybrid algorithm� which we call AprioriHybrid� that
uses Apriori in the initial passes and switches to
AprioriTid when it expects that the set Ck at the
end of the pass will �t in memory� We use the
following heuristic to estimate if Ck would �t in
memory in the next pass� At the end of the
current pass� we have the counts of the candidates

in Ck� From this� we estimate what the size of Ck

would have been if it had been generated� This
size� in words� is �

P
candidates c � Ck

support�c� �

number of transactions�� If Ck in this pass was small
enough to �t in memory� and there were fewer large
candidates in the current pass than the previous pass�
we switch to AprioriTid� The latter condition is added
to avoid switching when Ck in the current pass �ts in
memory but Ck in the next pass may not�

Switching from Apriori to AprioriTid does involve
a cost� Assume that we decide to switch from Apriori
to AprioriTid at the end of the kth pass� In the
�k� ��th pass� after �nding the candidate itemsets
contained in a transaction� we will also have to add
their IDs to Ck�� �see the description of AprioriTid
in Section ����� Thus there is an extra cost incurred
in this pass relative to just running Apriori� It is only
in the �k���th pass that we actually start running
AprioriTid� Thus� if there are no large �k����itemsets�
or no �k � ���candidates� we will incur the cost of
switching without getting any of the savings of using
AprioriTid�

Figure � shows the performance of AprioriHybrid
relative to Apriori and AprioriTid for three datasets�
AprioriHybrid performs better than Apriori in almost
all cases� For T���I��D���K with ���� support�
AprioriHybrid does a little worse than Apriori since
the pass in which the switch occurred was the
last pass AprioriHybrid thus incurred the cost of
switching without realizing the bene�ts� In general�
the advantage of AprioriHybrid over Apriori depends
on how the size of the Ck set decline in the later
passes� If Ck remains large until nearly the end and
then has an abrupt drop� we will not gain much by
using AprioriHybrid since we can use AprioriTid only
for a short period of time after the switch� This is
what happened with the T���I��D���K dataset� On
the other hand� if there is a gradual decline in the
size of Ck� AprioriTid can be used for a while after the
switch� and a signi�cant improvement can be obtained
in the execution time�

��	 Scale
up Experiment

Figure
 shows how AprioriHybrid scales up as the
number of transactions is increased from ������� to
�� million transactions� We used the combinations
�T��I��� �T���I��� and �T���I�� for the average sizes
of transactions and itemsets respectively� All other
parameters were the same as for the data in Table ��
The sizes of these datasets for �� million transactions
were ��	MB� ��	MB and
�
MB respectively� The
minimum support level was set to ������ The
execution times are normalized with respect to the
times for the ������� transaction datasets in the �rst

T���I��D���K

0

5

10

15

20

25

30

35

40

0.250.330.50.7511.52

T
im

e
 (

se
c)

Minimum Support

AprioriTid
Apriori

AprioriHybrid

T���I��D���K

0

5

10

15

20

25

30

35

40

45

50

55

0.250.330.50.7511.52

T
im

e
 (

se
c)

Minimum Support

AprioriTid
Apriori

AprioriHybrid

T���I��D���K

0

100

200

300

400

500

600

700

0.250.330.50.7511.52

T
im

e
 (

se
c)

Minimum Support

AprioriTid
Apriori

AprioriHybrid

Figure �� Execution times� AprioriHybrid

graph and with respect to the � million transaction
dataset in the second� As shown� the execution times
scale quite linearly�

0

2

4

6

8

10

12

100 250 500 750 1000

R
e
la

tiv
e
 T

im
e

Number of Transactions (in ’000s)

T20.I6
T10.I4
T5.I2

0

2

4

6

8

10

12

14

1 2.5 5 7.5 10

R
e
la

tiv
e
 T

im
e

Number of Transactions (in Millions)

T20.I6
T10.I4
T5.I2

Figure
� Number of transactions scale�up

Next� we examined how AprioriHybrid scaled up
with the number of items� We increased the num�
ber of items from ���� to ������ for the three pa�
rameter settings T��I��D���K� T���I��D���K and
T���I��D���K� All other parameters were the same
as for the data in Table �� We ran experiments for a
minimum support at ������ and obtained the results
shown in Figure 	� The execution times decreased a
little since the average support for an item decreased
as we increased the number of items� This resulted
in fewer large itemsets and� hence� faster execution
times�

Finally� we investigated the scale�up as we increased
the average transaction size� The aim of this
experiment was to see how our data structures scaled
with the transaction size� independent of other factors
like the physical database size and the number of
large itemsets� We kept the physical size of the

0

5

10

15

20

25

30

35

40

45

1000 2500 5000 7500 10000

T
im

e
 (

se
c)

Number of Items

T20.I6
T10.I4
T5.I2

Figure 	� Number of items scale�up

database roughly constant by keeping the product
of the average transaction size and the number of
transactions constant� The number of transactions
ranged from ������� for the database with an average
transaction size of � to ������ for the database with
an average transaction size ��� Fixing the minimum
support as a percentage would have led to large
increases in the number of large itemsets as the
transaction size increased� since the probability of
a itemset being present in a transaction is roughly
proportional to the transaction size� We therefore
�xed the minimum support level in terms of the
number of transactions� The results are shown in
Figure ��� The numbers in the key �e�g� ���� refer
to this minimum support� As shown� the execution
times increase with the transaction size� but only
gradually� The main reason for the increase was that
in spite of setting the minimum support in terms
of the number of transactions� the number of large
itemsets increased with increasing transaction length�
A secondary reason was that �nding the candidates
present in a transaction took a little longer time�

� Conclusions and Future Work

We presented two new algorithms� Apriori and Apri�
oriTid� for discovering all signi�cant association rules
between items in a large database of transactions�
We compared these algorithms to the previously
known algorithms� the AIS ��� and SETM ���� algo�
rithms� We presented experimental results� showing
that the proposed algorithms always outperform AIS
and SETM� The performance gap increased with the
problem size� and ranged from a factor of three for
small problems to more than an order of magnitude
for large problems�

We showed how the best features of the two pro�

0

5

10

15

20

25

30

5 10 20 30 40 50

T
im

e
 (

se
c)

Transaction Size

500
750

1000

Figure ��� Transaction size scale�up

posed algorithms can be combined into a hybrid al�
gorithm� called AprioriHybrid� which then becomes
the algorithm of choice for this problem� Scale�up ex�
periments showed that AprioriHybrid scales linearly
with the number of transactions� In addition� the ex�
ecution time decreases a little as the number of items
in the database increases� As the average transaction
size increases �while keeping the database size con�
stant�� the execution time increases only gradually�
These experiments demonstrate the feasibility of us�
ing AprioriHybrid in real applications involving very
large databases�

The algorithms presented in this paper have been
implemented on several data repositories� including
the AIX �le system� DB��MVS� and DB�������
We have also tested these algorithms against real
customer data� the details of which can be found in
���� In the future� we plan to extend this work along
the following dimensions�

 Multiple taxonomies �is�a hierarchies� over items
are often available� An example of such a
hierarchy is that a dish washer is a kitchen
appliance is a heavy electric appliance� etc� We
would like to be able to �nd association rules that
use such hierarchies�

 We did not consider the quantities of the items
bought in a transaction� which are useful for some
applications� Finding such rules needs further
work�

The work reported in this paper has been done
in the context of the Quest project at the IBM Al�
maden Research Center� In Quest� we are exploring
the various aspects of the database mining problem�
Besides the problem of discovering association rules�
some other problems that we have looked into include

the enhancement of the database capability with clas�
si�cation queries ��� and similarity queries over time
sequences ���� We believe that database mining is an
important new application area for databases� com�
bining commercial interest with intriguing research
questions�

Acknowledgment We wish to thank Mike Carey
for his insightful comments and suggestions�

References

��� R� Agrawal� C� Faloutsos� and A� Swami� Ef�
�cient similarity search in sequence databases�
In Proc� of the Fourth International Conference

on Foundations of Data Organization and Algo�

rithms� Chicago� October �		��

��� R� Agrawal� S� Ghosh� T� Imielinski� B� Iyer� and
A� Swami� An interval classi�er for database
mining applications� In Proc� of the VLDB

Conference� pages �������� Vancouver� British
Columbia� Canada� �		��

��� R� Agrawal� T� Imielinski� and A� Swami�
Database mining� A performance perspective�
IEEE Transactions on Knowledge and Data En�

gineering� �����	���	��� December �		�� Special
Issue on Learning and Discovery in Knowledge�
Based Databases�

��� R� Agrawal� T� Imielinski� and A� Swami� Mining
association rules between sets of items in large
databases� In Proc� of the ACM SIGMOD Con�

ference on Management of Data� Washington�
D�C�� May �		��

��� R� Agrawal and R� Srikant� Fast algorithms for
mining association rules in large databases� Re�
search Report RJ 	
�	� IBM Almaden Research
Center� San Jose� California� June �		��

��� D� S� Associates� The new direct marketing�
Business One Irwin� Illinois� �		��

��� R� Brachman et al� Integrated support for data
archeology� In AAAI��� Workshop on Knowledge

Discovery in Databases� July �		��

�
� L� Breiman� J� H� Friedman� R� A� Olshen� and
C� J� Stone� Classi�cation and Regression Trees�
Wadsworth� Belmont� �	
��

�	� P� Cheeseman et al� Autoclass� A bayesian
classi�cation system� In �th Int�l Conf� on

Machine Learning� Morgan Kaufman� June �	

�

���� D� H� Fisher� Knowledge acquisition via incre�
mental conceptual clustering� Machine Learning�
����� �	
��

���� J� Han� Y� Cai� and N� Cercone� Knowledge
discovery in databases� An attribute oriented
approach� In Proc� of the VLDB Conference�
pages ������	� Vancouver� British Columbia�
Canada� �		��

���� M� Holsheimer and A� Siebes� Data mining� The
search for knowledge in databases� Technical
Report CS�R	���� CWI� Netherlands� �		��

���� M� Houtsma and A� Swami� Set�oriented mining
of association rules� Research Report RJ 	����
IBM Almaden Research Center� San Jose� Cali�
fornia� October �		��

���� R� Krishnamurthy and T� Imielinski� Practi�
tioner problems in need of database research� Re�
search directions in knowledge discovery� SIG�

MOD RECORD� ����������
� September �		��

���� P� Langley� H� Simon� G� Bradshaw� and
J� Zytkow� Scienti�c Discovery	 Computational

Explorations of the Creative Process� MIT Press�
�	
��

���� H� Mannila and K��J� Raiha� Dependency
inference� In Proc� of the VLDB Conference�
pages ������
� Brighton� England� �	
��

���� H� Mannila� H� Toivonen� and A� I� Verkamo�
E�cient algorithms for discovering association
rules� In KDD��
	 AAAI Workshop on Knowl�

edge Discovery in Databases� July �		��

��
� S� Muggleton and C� Feng� E�cient induction
of logic programs� In S� Muggleton� editor�
Inductive Logic Programming� Academic Press�
�		��

��	� J� Pearl� Probabilistic reasoning in intelligent
systems� Networks of plausible inference� �		��

���� G� Piatestsky�Shapiro� Discovery� analy�
sis� and presentation of strong rules� In
G� Piatestsky�Shapiro� editor� Knowledge Dis�

covery in Databases� AAAI�MIT Press� �		��

���� G� Piatestsky�Shapiro� editor� Knowledge Dis�

covery in Databases� AAAI�MIT Press� �		��

���� J� R� Quinlan� C
��	 Programs for Machine

Learning� Morgan Kaufman� �		��

