ARLINGTON. = -

Association Rule Mining

Sharma Chakravarthy
Information Technology Laboratory (IT Lab)
Computer Science and Engineering Department
The University of Texas at Arlington, Arlington, TX

Email: sharma@cse.uta.edu
URL: http://itlab.uta.edu/sharma

Association rules

» Capture co-occurrence of items / events

= Not causality, which is to be inferred by a domain
expert!

» Also called market basket analysis / link analysis

» Input: Transactions; each Ti is a set of items

» Problem: Find rules that can indicate good co-
occurrences in the data set

» First paper appeared in Sigmod 1993 (Agarwal, Imielinksi, and Swami)

© Sharma cn@ § 3 H

Motivation

» Walmart has lots of data about point of sales

= data on each user and the basket of items that has been
bought during each visit

» Similarly, phone companies have information available
about phone calls made at a particular time to a
location

» Also, you have logs of what urls have been visited in
each session and how much time has been spent at
each url or session, what has been bought etc.

» How can the above information be leveraged for direct
marketing, better placement of items on shelves etc.

= |n other words, for improving a business, i.e., deriving
business intelligence (BI)!

© Sharma Chw § 2 H

Terminology

=13, 1,,.., 1, setofitems (sold) Large

T = a database of transactions ti very large

t[k] = 1 if t bought item I, t[k] = 0 otherwise

An itemset is a (proper) subset of the number of
itemsina Txti

YV V V V

» let X be a subset of items in |
= t satisfies X if for all items I, in X, t[k] = 1

© Sharma cn@ § 4 H

Association Rules

» Association rule mining was a departure from the
prevalent mining problems and approaches

» Classification was being used for direct
marketing, load approval etc.

» There was nothing that analyzed point of sales to
figure out what items are being bought together

» Note that this varies from store to store based on
demographics such as population served, their
buying habits, income of the population, etc.

© Sharma Chw § 5 H

Confidence measure P(Y | X)

This indicates how likely item |Transaction1 | @ ¥ = s
Y is purchased when item X is |Trensaction2 | @ i
purchased, expressed as I""’“m:{”j : -
{X -> Y}. This is measured by | "o ot 1=

. . Transaction 5 Wy
th_e p_roportlo_n of t_ran;actlons Tansacion6 | 7 B ©
with item X, in which item Y |1aneaction7 | *
also appears. In Table, the Transaction8 | * ©

confidence of {apple -> beer} is
3 out of 4, or 75%.

Confidence {@ > W}= Support {@}

© Sharma Ch@ § 7 E

Support measure

This says how often Transaction1 | @ v %

an itemset occurs, as measureg Transaction2 O

by the proportion of I’a"s“‘?"j : .

transactions in which an ransaction =

. Transaction 5 o

Itemset appears' In Transaction 6 R~

Table 1/ the Support Transaction 7 .

of {apple} IS Transaction 8 &)

4 out of 8, (50%) 4
Support {@} = 8

support of itemset {apple, beer, rice}
is 2 out of 8, or 25%.

© Sharma Chw § 6 H

Lift measure

This says how likely item Y Transactionl | @ ¥ _ %
is purchased vs{hen item X is Transaction2 | @ ¥
purchased, while controlling ;

for how popular item Y is. In Transaction3 | @ L

Table, the lift of Transaction4 | @ ©
{apple -> beer} is 1,which Transaction 5 WU N
implies no association Transaction 6 WU
between items. A lift value) o

greater than 1 means that item Y is Transaction 7 "
likely to be bought if item X is bought, Transaction 8 -9

while a value less than 1 means that item

Y is unlikely to be bought if item X is bought Ratio of observed

@ Support to that
Lift {@ >)= Support {@, 1V} Expected If X and Y
Support {@} x Support {1¥} were independent

© Sharma Ch@ § 8 E

Association rule mining

» Consider a large number of transactions each containing
items associated with that transaction

Association rules are of the form X = Y to mean that whenever X

occurs, there is a strong correlation of Y occurring!

Here X & Y are sets (e.g., items that have been bought in the same
transaction), such that X N Y = &.

Support (X2Y) = P(XUY) =

Count of transactions containing the items X U Y = frequency(X, Y)
Total number of transactions N

Confidence (X%Y) P(Y | X) = Support {X U Y} conditional probability!
Support {X}

Lift (X%Y) = Support {XU Y}
SUPPGTT IX] ™ SuppoOrYY) 1<lift>1

P(X, Y)/ P(X) * P(Y)

© Sharma Chw § 9 H

Example

] Bread | Cake Sugar Problem Statement:
100 | X Find all the Associations
200 X among the items such
300 X that the Support is 50%
400 X and Confidence is 75%
Support of {Eggs, Milk} = 50.0% Rules
Rules: Head |Symbol| Body | Support |Confidence
Eggs =>Milk Confidence = 66.7% | Cake => | Sugar | 750 100.0
Milk => Eggs Confidence = 100.0% Sugar ~ Cake 5.0 1000
Milk | = | Eggs | 500 100.0

© Sharma Ch@ § 1 H

Association Rules: Details

» To discover associations, we assume that we have a
set of transactions, each transaction being a list of
items (e.g., list of books, items bought)

» Suppose A and B appear together in only 1% of the
transactions but whenever A appears there is 80%
chance that B also appears

» The 1% presence of A and B together is called the

support of the rule and 80% is called the confidence
of the rule (A 2 B)

© Sharma Chw § 10 H

Association rules

» Beer = diapers rule became a widely used
example to illustrate that fathers watching
super bowl (or sports) and taking care of

babies shopped for these 2 items together!

» Other provoking examples tried to enhance the
utility of this approach!

© Sharma Ch@ § 12 H

Association Rules

» Support indicates the frequency of the pattern. A
minimum support (min_sup) is necessary if an
association is going to be of some business value.

» A user might be interested in finding all associations
which have x% support with y% confidence

» Also, all associations satisfying additional user
constraints may be needed

» Also, associations need to be found efficiently from
large data sets (need for real data sets and not
samples)

» Confidence denotes the strength of the association.
In addition, Lift can also be used

© Sharma Chw § 13 H

Number of itemsets
» If there are n items, how many itemsets are
possible?

i+ G+ v Co=20

nTn

= Forn =100, 219 js approx. 1.27 * 103°

= Typically, tens of thousands (Walmart sells more
items than that)

» How many transactions? (basket or point of sales)
= Typically in Millions

» The problem is to count frequency of itemsets
satisfying min_sup and generate rules satisfying
min_conf
= So, why is this a problem?

© Sharma Ch@ § 15 H

Frequent Item

A candidate itemset is any valid itemset

A frequent Itemset is one that satisfies min_sup.

Conceptually, finding association rules, is a simple

two step approach:

= Step 1 - discover all frequent items that have support
above the minimum support required

= Step 2 - Use the set of frequent items to generate all
association rules that have high enough confidence

» Once we have frequent items (step 1) along with
count, we can generate (enumerate) all rules to
satisfy min_conf

Y VYV

» Rule generation is a separate step!
» Ourfocusison step 1

© Sharma Chw § 14 H

Frequent Itemset Generation

Given d items, there
are 29 possible
candidate itemsets

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 dh |

Rule generation (1)

» Llarge/frequent itemsets are used to generate the desired rules

» Need to generate all rules and compute its confidence to output a rule

» For each frequent itemset s of size k (i.e., k items), how many rules can
be generated?

1. Meaningful subsets of s that can generate rules? (how many?)

26— (k-1)

But how many such itemsets are there? 2

2. Forevery such subset “a”, output a rule of the form x = y (where a= x uy) if
the ratio of support(x u y) to support(x) is at least equal to the minimum

confidence. (How many?)

Gttt (o

Hopefully,

1. the number of frequent itemsets may not be large! (why?)
2. The size of the largest frequent itemset may not be large ! (why?)

© Sharma Chm §

12}

Computational Complexity

e Given d unique items:
— Total number of itemsets = 29
— Total number of possible association rules:

wio®

d-1 d d-k d - k
5 R = k XY
k=1 j=1
8+ /
: =3 -2 41
53
£
22 If d=6, R =602 rules
1

2 3 4 5 3 7 8 9 10

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 dh

Rule generation (1)

fa, b} [2] G fa, b, c} [6] 3C+5C, {a, b, ¢, d} [14] 4Cy +,C; +,4C5
a=>b a=>b,c a=>b,cd
b>a b->a,c b->
c>ab c>
d->
a,b>c a,b>cd
a,c>b a,c>b,d
b,c>a a,d>b,c
b,c>
b,d >
general formula:
c,d>
it G+t Gy a,b,c>d
a,b,d>
This is exponential! a,c,d>
b,c,d>
© Sharma Chm ™ 18 H

Frequent Itemset Generation Strategies

e Reduce the number of candidates (M)
— Complete search: M=2d
— Use pruning techniques to reduce M

e Reduce the number of transactions (N)
— Reduce size of N as the size of itemset increases

— Used by DHP (Direct Hashing and Pruning) and
vertical-based mining algorithms

e Reduce the number of comparisons (NM)
— Use efficient data structures to store the candidates or

transactions
— No need to match every candidate against every
transaction
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 @b

Association Rules

» Given a set of transactions T, the goal of
association rule mining is to find all rules having
= support 2 minsup threshold (min_sup)
= confidence = minconf threshold (min_conf)

» Brute-force approach:
= List all possible association rules
= Compute the support and confidence for each rule
= Prune rules that fail the min_sup and min_conf thresholds

= =» Computationally prohibitive!

© Sharma Chw § 21 H

Algorithms
» AIS

> SETM

Y

Apriori
» AprioriTid
» AprioriHybrid

> FP-Tree

© Sharma cn@ § 23 H

Storage issues

> Itis possible to generate itemsets systematically
although it is very large

= Main-memory approaches may be not possible!

» Counting is the more expensive part
= As memory may not be sufficient to hold data

= Making one (or multiple) passes on data stored on
secondary storage for counting is going to be expensive

> Rule generation can be expensive if number of
frequent itemsets are very large and the size of
frequent itemsets are large!

© Sharma Chw § 22 H

AIS (1993)

First algorithm for association rules

Candidate itemsets are generated and counted on-
the-fly as the database is scanned

3. For each Transaction, it is determined which of the
frequent itemsets of the previous pass (frontiers)
are contained in this transaction

4. New candidate itemsets are generated by extending
these frequent itemsets (frontiers) with other items
in this transaction

For the first time you come across database in mining

1. Started by DBMS researchers
2. Size of input is very large (not samples)

© Sharma cn@ § 24 H

AIS Algorithm

» The algorithm makes multiple passes over the database

» The frontier set for a pass consists of those items that are
extended during the pass

» Candidate itemsets for the current pass are generated from
the tuples in the database and the itemsets in the frontier
set generated in the previous pass.

» Each itesmset has a counter to keep track of the number of
transactions in which it appears (for min_sup checking)

» At the end of a pass, the support for a candidate itemset is
compared with min_sup to determine if it is frequent

» Itis also determined whether it should be added to frontier
set

» Algorithm terminates when frontier set is empty.

Spring 2019 = W CSE 6331 H

AIS Frontier set

» Forexample, let1={A, B, C, D, E, F } and assume that the items are ordered in
alphabetic order.
» Further assume that the frontier set contains only one itemset, AB.
» For the database tuple t = ABCDF, the following candidate itemsets are
generated and predicted whether it is small or large (frequent):
ABC expected large: continue extending
ABCD expected small: do not extend any further
ABCF expected large: cannot be extended further
ABD expected small: do not extend any further
ABF expected large: cannot be extended further

» Statistical independence was used to estimate support for an itemset

» Product of prior probability and the database size is used for prediction
= Naive Bayes déja vu

» Please look up the details in the paper (as part of my lectures)

Spring 2019 = W CSE 6331 H‘

AIS Algorithm

» All algorithms are iterative

» In the kth pass only those itemsets that contain exactly k items are
computed/generated (candidate itemsets). And frequent itemsets
of size k are identified.

» Having identified some itemsets in the kth pass, we need to
identify in (k + 1) pass only those itemsets that are 1-extensions
(an itemset extended by exactly one item) of large itemsets found
in the kth pass.

» If an itemset is small, its 1-extension is also going to be small (or
not large or frequent). Thus, the frontier set for the next pass is set
to candidate itemsets determined large (frequent) in the current
pass, and only 1-extensions of a frontier itemset are generated and
measured during a pass.

» Notion of expected to be large is introduced

7

Remember, apriori property was not yet established!

Spring 2019 = W CSE 6331 H

AIS Disadvantages

» In AIS candidate sets were generated on the fly. New
candidate item sets were generated by extending the
large item sets that were generated in the previous pass
with other items in the transaction.

» Frontier set generates more candidate itemsets than
needed! There is pruning but it is approximate!

» Larger number of candidate itemsets were generated as
compared to the frequent itemsets

This algorithm uses some heuristics (prediction) so results may differ
from ground truth

But, No false positives are generated!
Some true positives may not be generated

© Sharma cn@ § 28 H

SETM Algorithm (1994)

1. Used RDBMS to store and compute association
rules. Schema was tid, item (2 attributes)

2. Generate 1 item frequent itemsets using SQL
GROUP BY and HAVING COUNT(*) >= min_sup

3. Itemsets have items in lexicographic order

SELECT rl.trans-id, rl.item, r2.item

FROM SALES r1, SALES r2

WHERE rl.trans-id = r2.trans-id AND rl.item < r2.item
Please understand how/why it works and why lexicographic order is needed for
items

4. Min_sup counting can also done by using GROUP BY
and HAVING clauses

© Sharma Chw § 29 H

Example of SETM

Spring 2019 = W CSE 6331 E

SETM Algorithm

» Uses RDBMS to store and compute association rules. Schema
is tid, item (2 attributes)

» Uses lexicographic order for correctness
» Uses sort-merge join (for efficiency, not correctness)

k:=1;
sort R, on item;
C1 := generate counts from R;;
repeat
k:=k+1;
sort R, on trans-id, item, . .., item,_;;
R, := merge-scan R,_,, R; // sort-merge join was used
sort R, onitem, ..., item,;
¢, := generate counts from R’ ;
R, := filter R, to retain supported patterns;
until R, = {}

© Sharma Chw § 30 H

SETM discussion

» Candidate items are generated on-the-fly as the
database is scanned (using sort-merge join), but
counted at the end of the pass.

» New candidate items are generated in the same
way as in AlS algorithm (which does not use a
DBMS), but TID of the generating Tx is saved with
candidate itemset as part of the relation

» At the end of the pass, the support count is
computed using GROUP BY and non-frequent
itemsets are filtered

© Sharma cn@ § 32 H

SETM

» Showed that association rule mining can be done
using SQL and RDBMS

» Sort-merge was used for speed up
» Specialized black-boxes were avoided

Main memory is not a limitation any more
Buffer management is handled by DBMS
Query optimization is handled by DBMS

Y V VY

\%

Has the same limitations of AIS — generates too
many candidate itemsets — most of which does
not become frequent!

© Sharma Chw § 33 H

Frequent Itemset Generation Strategies

» Reduce the number of candidates (M)
= Complete search: M=2¢
= Use pruning techniques to reduce M

» Reduce the number of transactions (N)
= Reduce size of N as the size of itemset increases

= Used by DHP (direct hashing and pruning) and vertical-
based mining algorithms

» Reduce the number of comparisons (NM)

= Use efficient data structures to store the candidates or
transactions

= No need to match every candidate against every
transaction

Apriori class of Algorithms

» VIdb94 paper presents 2 new algorithms: Apriori
and AprioriTid

» These two outperform earlier algorithms (AIS and
SETM)

» The performance gap is shown to increase with the
size, and ranges from a factor of 3 for small
problems to more for larger problems.

» Also proposes Apriori Hybrid, which is a hybrid of
the above 2 new algorithms and is found to have
excellent scale up properties.

© Sharma Chw § 34 H

Comparison

» All the previous algorithms (AIS and SETM) that
were used to determine all association rules were
slow (relatively)

» This is due to the generation of a large number of
sets which eventually turned out to be small (did
not satisfy minimum support)

» In other words, they had lower support than the
user defined minimum support.

© Sharma cn@ § 36 H

Earlier Algorithms

> In case of the AIS and SETM, candidate sets were
generated on the fly. New candidate item sets were
generated by extending the large item sets that
were generated in the previous pass with ALL items
in the transaction.

© Sharma Chw § 37 H

The Apriori Algorithm

» The Apriori and AprioriTid algorithms generate the
candidate itemsets to be counted in a pass by using
only the itemsets found frequent in the previous
pass — without considering ALL the transactions in
the database.

» The basic intuition is that all itemsets of a
large/frequent itemset must be large/frequent

» Therefore, the candidate itemsets having k items
can be generated by joining large itemsets having
k-1 items, and deleting those that contain any
subset that is not large.

» Apriori principle: if an itemset is frequent, then all
its subsets must be frequent!

© Sharma cn@ § 39 H

Earlier Algorithms

» Disadvantages

= Algorithm makes passes over the data until the
frontier set is empty; Frontier set is based on the
number of itemsets that were expected to be small
but turn out be large.

= The number of combinations that are generated that
turn out to be not large is considerably greater in
these 2 algorithms.

© Sharma Chw § 38 H

Reducing Number of Candidates
» Apriori principle:

= |f an itemset is frequent, then all of its subsets must also
be frequent

» Apriori principle holds due to the following property of
the support measure:

VX,Y (X CY)= s(X) = s(Y)

= Support of an itemset never exceeds the support of its
subsets

= This is known as the anti-monotone property of support

A 123

10

Frequent
Itemset

Figure 6.3. An illustration of the Apriori principle. If {¢.d, e} is frequent, then all subsets of this
itemset are frequent.

© Sharma Chm_u 41 m

Frequent Itemset Generation

e Brute-force approach:
— Each itemset in the lattice is a candidate frequent itemset
— Count the support of each candidate by scanning the

database
Transactions List of
Candidates
TID | Items
1 |Bread, Milk 1
T 2 Bread, Diaper, Beer, Eggs |
N B Milk, Diaper, Beer, Coke M
4 Bread, Milk, Diaper, Beer {
‘ 5 Bread, Milk, Diaper, Coke
-+ w >

— Match each transaction against every candidate
— Complexity ~ O(NMw) => Expensive since M = 24 11l

| © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 dh

Infrequent
Itemset

~.
AN

Pruned “\
Supersets

Figure 6.4. Anillustration of support-based pruning. If {a, b} isinfrequent, then all supersets of {a, b}
are infrequent.

© Sharma Chm_u 42 m

Applying Apriori Principle

Items (1-itemsets)

Pairs (2-itemsets)

Bread,Milk] 3
Bread,Beer] 2 No need to generate
IHBread,Dia er} 3 | candidates involving Coke

Milk,Beer or Eggs (why?)

2
{Milk,Diaper} 3
Beer,Diaper] 3

Minimum Support = 3
| L) | N Triplets (3-itemsets)
If every subset is considered, |ﬁ mset Count |
6C, + 6C, + 6C; = 41 {Bread,Milk,Diaper} 3

With support-based pruning,
C,+%C,+1=6+6+1=13

n 73

11

Frequent set discovery Example Input

TID bread hotdog milk coffee mustar

» Level-wise search d
» Closure property of frequent sets

> Apriori algorithm 100 1 1 1

» Hashtrees to hold candidate itemsets 200 1 1 1
» Techniques to reduce I/0 and computation igg ! i ! 1 !
» Sampling (guess and correct)

» Dynamic itemset counting

© Sharma Chwm 45 H w © Sharma Chakravarthy 47

Aﬂm University of Texas
ARLINGTON.

Example Input
Example of Input Table

TID Iteml Item2 Item3 Item4 Item5 -
100 Bread milk coffee 100

1 This is the input used by most algorithms. All
. 100 3 items are numbered for efficiency of

200 hOtdOg milk mustard 100 4 computation and for ordering them. Converted
300 bread hotdog milk mustard w2 backlatse

200 3
400 hotdog coffee w s

300 1

300 2

300 3

300 5

400 2

400 5

w © Sharma Chakravarthy 46 w

Aﬂw University of Texas
ARLINGTON.

Example of Output Rules

\4

\7

VVVY VY

Rule Head Rule Body Confidence Support
1 3 100% 2
2 3 66.7% 2
2 5 100% 3
2 3,5 66.7% 2
3 1 66.7% 2
3 2 66.7% 2
3 5 66.7% 2
3 2.5 66.7% 2
5 2 100% 3
5 3 66.7% 2
5 23 100% 3
23 5 100% 2
2,5 3 66.7% 2
3.5 2 100% 2

The Apriori steps
Scan all transactions and find all 1-items that have support
above min_sup. Let these be F1. (pass 1)

Build item pairs from F1. This is the candidate set C2. Scan all
transactions and find all frequent pairs in C2. Let this be F2
(support count) (pass 2)

build sets of k items from Fk-1. This is set Ck.
Prune Ck using the apriori principle!
= Note this is not done in passes 1 and 2

Scan all transactions and find all frequent sets in Ck. Let this
be Fk. (pass k)

Stop when Fk is empty for some k

Generate all rules to satisfy confidence.

How many # of passes in total?

K (does not include candidate set generation, pruning)

© Sharma Chw § 51 H

Aﬂw University of Texas
ARLINGTON.

Association Rules generated

\4

[RuleHead [‘Inply’ Symbol [RuleBody | Confidence | Support |
For exanyple:

Bread = Milk X% 10%
Car > Insurance, Register | 85% o
Bike, Air Punper | => Ulock 80% %
Bike, Air Punper | = Uock, Helmet % 3%

Pass 2 characteristics
Scan all transactions and find all items that have
transaction support above min_sup. Let these be F1.

Build item pairs from F1. This is the candidate set
c2.

= no need for pruning! (why?)

= C2 does NOT have any subsets that are not frequent!
C2 is larger than C in any other pass! (why?)

C; is larger than any other combination! Confirm
this!

Scan all transactions and find all frequent pairs in C2.
Let this be F2.

General rule: build sets of k items from Fk-1. This is
set Ck. Prune Ck. Scan all transactions and find all
frequent sets (support count) in Ck. This be Fk.

© Sharma Chw § 52 H

Apriori Algorithm

e Method:

— Let k=1
— Generate frequent itemsets of length 1

— Repeat until no new frequent itemsets are identified

+ Generate length (k+1) candidate itemsets from length k
frequent itemsets

+ Prune candidate itemsets containing subsets of length k that
are infrequent

Count the support of each candidate by scanning the DB

+ Eliminate candidates that are infrequent, leaving only those
that are frequent

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 b

Example
» Consider the following:

TID Items bought

1 {b, m, 1t v}
2 {a, b, m, }

3 {m, bp, s, t}
4 {a, b, c, d}
5 {a, b}

6 {e, ¢ v}

7 {a, b, m}

© Sharma cn@ § 55 H

Apriori algorithm (without pruning)

1 F, = {frequent I-itemsets};
2 For (k=2; F_ <>empty, k++) do
// generate new candidate sets

3 Cy, = apriori-generation(F_,);

4

4 For each transaction t € D do //support counting (pass)

5 C, = subset(C,, t); // find all candidate sets contained in t
6 For each candidate ¢ € C, do

7 c.count++;

8 end

9 end

10 Fy = {c € C; | c.count > minsup};

11 end

12 Answer = U, Fy;

© Sharma Chw § 54 H

Computing F1

Support: 30% (at least 2), confidence: 60%
Frequent itemset of size 1 (F1)

Itemset frequency (count)
{a} 4
{b} 5
{m} 4
{t} 3

» These above items form the following pairs
{{a, b}, {a, m}, {a, t}, {b, m}, {b, t}, {m, t}}.
This set is C2. Now find the support of these itemsets.

© Sharma cn@ § 56 H

14

Computing F2

Item count Item count

{a,b} 4 {b,m} 3
{a,m} 2 {b, t} 1
{a,t} 0 {m,t} 2

» {a, b}, {a, m}, {b, m}, and {m, t} have 30% support

> So, F2is {a, b}, {a, m}, {b, m}, and (m, t}

© Sharma Chw § 57 H

Generating rules from F

» All frequent itemsets are:

F1: {a}, {b}, {m}, {t} Union

F2:{a, b}, {a, m}, {b, m}, and (m, t} Union

F3:{a, b, m}

No rules from F1 (why?)

Rules from F2

a = b has confidence of 3/3 = 100%

b = a has confidence of 3/5 = 60%

b = m has confidence of 3/5 = 60%

m = b has confidence of 3/3 = 100%

> Rules from F3 (compute confidence for these)
a2 {b,m}b>{amLM=>{a, b}
{a, b} > {m}, {a, m} > {b}, {b, m} > {a}

© Sharma Ch@ § 59 H

A\ 7

Computing F3

> F2is{a, b}, {a, m}, {b, m}, and (m, t}
> C3is {a, b, m}

» Support of {a, b, m}is 2. hence F3 is {a, b, m}
» Cdis{{}}, however, empty! (why?)

» Need at least 2 F3 items to generate a C4 item!

» The algorithm stops here. Note that we did not
apply the pruning step. We will come to that later.

© Sharma Chw § 58 H

Apriori candidate generation

» The Apriori-generation function takes as
argument F(k-1), the set of all frequent (k-1)-item
sets. it returns a superset of the set of all
frequent k-item sets. The function works as
follows: First, in the join step, we join F(k-1) with
F(k-1):

insert into C(k)

select p.item(1), p.item(2),... p.item(k-1), q.item(k-1)

from F(k-1)asp, F(k-1) as q

where p.item(1) = q.item(1),...,p.item(k-2) = q.item(k-2),
p.item(k-1) < q.item(k-1) //pay attention to this condition

» Assumes lexicographic ordering of items

© Sharma Ch@ § 60 H

15

Pruning step: example

> Let F3 be {{1,2,3},{1,2,4},{1,3,4}, {1,3,5},
{2,3,4}}
» After the join step,
C4 will be {{1,2,3,4}, {1,3,4,5}}
» Inthe prune step, all itemsets ¢ € Ck where some
(k-1)-subset of c is not in Fk-1, are deleted.

We delete {1,3,4,5} because the subset {1,4,5} is not
in F3

Hence, F4 is {1,2,3,4} how does this help?
Reduces the size of F4 from which to generate C5
Still need to compute the support of F4 itemsets!

© Sharma Chw § 61 H

Y VYV A\

Y

Y VvV

Comparison with AlS and SETM

Consider a transaction t {1,2,3,4,5}.
consider F3 {{1,2,3},{1,2,4},{1,3,4}, {1,3,5}, {2,3,4}}

AIS (and SETM) algorithms,

® In the 4t pass will generate {1, 2, 3, 4}and {1, 2, 3, 5}
using the frequent itemset {1, 2, 3} and transaction t

= Also, an additional 3 candidate itemsets {1, 2, 4, 5}{(1, 3, 4,
5}{2, 3, 4, 5} using the other large itemsets in F3 and t
which are not generated by the Apriori algorithm on
account of pruning.

Apriori is using the monotonicity property

“all subsets of a frequent itemset are also frequent” for

pruning. However, not all supersets of a frequent

itemset are frequent.

© Sharma cn@ § 63 H

The prune step of the algorithm

» We delete all the item sets c in C(k) such that some (k-1)-
subset of ¢ is not in F(k-1):

for each item sets ciin C(k) do //pass on C(k)
for each (k-1)-subsets s of c do //generate all subsets
if (s not in F(k-1)) then // check
delete ¢ from C(k);
end for
end for

» Any subset of a frequent item set must be frequent

» Use of integers and (lexicographic) order of items is
assumed!

© Sharma Chw § 62 H

K-way Join

The process of support counting in Kwj is as
follows: In any pass k:

2 Frequent itemsets of length k-1 are used to
generate candidate itemsets of length k (C,).

Prune some of the candidate itemsets generated
based on the apriori property

For support counting of these candidate
itemsets, k copies of input relation is joined with
the C

Turns out that all of the above can be done is SQL
As well as rule generation!

3/2020 = W © Sharma Chakravarthy H‘

16

>

>

Candidate Generation and Pruning

Prune step: additional joins with

(k-2) more copies of F; Pruning | (Sepitn_t)
Lliteml flkvl:ml

Join predicates enumerated by Uil b= e k2

skipping an item at a time

k-items have k (k-1)-item subsets;

Out of that 2 have been used for
generating the K item. No need
to check them. Hence, the other
(k-2) subsets need to be checked
by doing (k-2) joins

Diten_b 1 =leitem_k.1 M

] AN

£l

(Skipitenl)
itr? =[iten]

Uitem_k-1= Bitem_k2 /
Qiten k-1 =T3item_k.1 M

Uil =[2iteml
Uiten_t-2=Ditem b2
item_b-1 <[t - N

/ \ - Candidate

el feln generation

EEL T

© Sharma Chakravz

Candidate Set Ck Generation

Insert into C,

Select I.item,, I).item,, ..., I,.item,_, I.item,
From F,, I, F, I,

Where I.item, = I.item; AND

.item, AND

1,.item,

1,.itemy, = I,.item; , AND
1,.itemy ; < L.item,

Example: Fy. {{1,2,3}, {1,2,4}, {1,3,4}, {1,3,5}, {2,3,4}}
=C, {1,2,3.4},and {1, 3,4, 5}.
12/13/2020 A © Sharma Chakravarthy H‘ 67

Candidate Generation and pruning in SQL

» Join step: join 2 copies of F,;

insert into C,

select

from

l,.item,, ..., | .item,y, |,.item,

Feily Fealy

where I.item, = l,.item, and and

I,.item,, = l,.item,, and ‘

l,.item,, < L,.item,; *_

(Skipiter_k2)
wl =lbitanl

ipite ;
Tliten? =[3itenl -
et <iies y
Ui £12BHen bt [/
Riten_k-1=13itan_k-1 I>q
2
7N

Uiter] sDitan / Skl B

Tlitan_b2=Diten k2 ‘
Titen_-| <iten k- N

© Sharma Chakra:

art

Pruning explanation

» Consider Ck {13 4 5}
» The subsets are

= {1 3 4} generated by skipping item at position 4

= {13 5} generated by skipping item at position 3

= {145} generated by skipping item at position 2

= {3 45} generated by skipping item at position 1
» First 2 have been used in the generation of {1 3 4 5}
» Hence, skip positions 1 and 2 or 1 through k-2 (here k is

4) to check for subsets!

© Sharma Chakravarthy

2]

17

SQL conditions for Pruning

Prune step: in the k-itemset of C,, if there is any (k-1)-subset of C,
that is not in F,_;, we need to delete that k-itemset from C,.

Tp.item, = Ty.item,

Tpitemy = Lyitemy Skip Item,
Ly.itemy; = L.itemy

Tp.item, = Ii.item;

I.itemy.; = Iitemy. v
Ly.itemy; = [.itemy,; Skip Ttemy.

In the above example, one of the 4-itemset in C, is {1, 3, 4, 5}.
This 4-itemset needs to be deleted because one of the 3-item
subsets {3, 4, 5} is not in F;.

12/13/2020 A © Sharma Chakravarthy H 69

SQL-92 support counting - Kway

» Join k copies of input table (T) with C, and
do a group by on the itemsets
» insert into Fy
select item,, ..., item,, count(*)
fromC,, Tty, .., Tt
where t,.item = C,.item; and

requires K joins for
the kth pass

ty.item = C.item, and
t,.tid = t,.tid and t.item < t,.item and

i tid =t tid and t,;.item < t,.item
group by item,, item,, ... ,item,
having count(*) > minsup

12/13/2020 = W © Sharma Chakravarthy H 71

Candidate Set Ck Generation

Example: Fy {{1.2,3}. {1,2.4}, {1,3,4}, {1,3,5},
{2,3,4}}
=>C,, {1,2,3,4},and {1, 3,4

(Skip itemy.2)
Ipitem, = Iitem,

Iitemy., = Litemy»

(Skip item;) Ly.itemy = Iitemy
Ty.item, = Ly item, >
e I

Prune 2
I.itemy, = [.item .
Liem L, |>><] Complete Query Diagram
Fuily
I).item, = L.item,

Candidate T Ipitemy, = Litemy >

Generation Ful, Fuly L.itemy; < L.itemy

12/13/2020 = W > Sharma Chakravarthy H‘ 70

3. Requires k joins for the k™ pass

Support Counting for Kwj in pass k

Join C, with k copies of T

2. Follow up the join with a group by

on the items and filter on minsup

Having count(*) > minsup

Group by

C,.item; = t,.item . .
. item,... item

Ck.itemk.= ty.item ><]'
7=~ NotethatCkis used

t.tid = ttid c, asaninner relation !

ty.tid = t.tid D i”’/./ Th
!,j‘(em<(:ileV \ Attributes of Input Table (T) :

tid, item|
N ()

12/13/2020 ﬁ

Tt,

23 .

© Sharma Chakravarthy

18

K-way join plan (C, outer)

having
Count(?) 3 amihsup

Series of joins of C, with k

Groop by

. iteml,. temk
copies of T
Final join result is groupec e Se S
on the k items ootz T
Ckitenl =t Ll [> T
e T

4
2/13/2020 = W > Sharma Chakravarthy H

Writing Apriori Algorithm using SQL
» Convert given data into Transact (tid, item) relation

Write a script (or a generator) that generates SQL for
each iteration

> Create intermediate tables for Ck and Fk
» Use the stopping condition

» Once final F is generated, construct another SQL for
creating rules with support and confidence

» We did performance evaluation of various Apriori
algorithms for Oracle, DB2, and Sybase.

12/13/2020 = W © Sharma Chakravarthy E

Difference between inner and outer Ck

» Ck needs to be materialized if inner
» Requires additional I/O

» No materialization needed if outer

» Can write a single (large) query for candidate
generation, pruning, and support counting

» May involve 10’s of joins!

» Current optimizers were not designed for that
many join optimizations!

2020 = W © Sharma Chakravarth H

Without using SQL

» The prune step requires testing all (k-1) subsets of a
newly generated k-candidate itemset are present in
L

» To make this membership test fast, large/frequent
itemsets are stored in a hash table

» Candidate itemsets are stored in a hash tree

» Hash tree exploits the ordering assumption. All
subsets are found by hashing the itemset

© Sharma Ch@ § 76 E

19

Reducing Number of Comparisons

e Candidate counting:
— Scan the database of transactions to determine the
support of each candidate itemset
— To reduce the number of comparisons, store the
candidates in a hash structure
+ Instead of matching each transaction against every candidate,
match it against candidates contained in the hashed buckets

Transactions Hash Structure

TID |Items
1 Bread, Milk T
2 Bread, Diaper, Beer, Eggs - K
N [3 Milk, Diaper, Beer, Coke
4 Bread, Milk, Diaper, Beer -
* 5 |Bread, Milk, Diaper, Coke]
Buckets
‘ © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 b

Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:

{145),{124},{457),{125),{458},{159),{136},{234},{567}, {345},
{356),{357},{689},{367},{368}

You need: Hash function (buckets = size of itemset);
Level determines which item to hash!

« Max leaf size: max number of itemsets stored in a leaf node (if number of
candidate itemsets exceeds max leaf size, split the node)

Hash function (mod 3)

147, 359
2,58
124
Max leaf size: 3 457 125 159
© Tan,Steinbach, Kumar Introduction to Data Mining 411812004 o

Hash Tree

» A hash tree is used that contains itemsets at leaf
nodes.

» Intermediate nodes contain pointers to other
leaf/intermediate nodes

» Atransaction is hashed on its items to test for
subset membership.

> At depth d, if the ith item was used, the rest of the
items after i is used for hashing.

© Sharma Chwm 78 H‘

Association Rule Discovery: Hash tree

Hash Function Candidate Hash Tree

258

} 367
Hashon !
1,40r7 | 368

- [124 25 [159]: 689

Po[457 |45 f
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 @b

20

Association Rule Discovery: Hash tree

Hash Function Candidate Hash Tree

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 b

Subset Operation (support counting)

Given a transaction t, what
are the possible subsets of
size 3?

: You can only start with
Transaction, t Y

Iltems 1, 2, and 3

Num ways to Level 1
choose the first
item

Level 2
Num ways to
choose the
second item 12[356) 13[56] 15/6]

123

Num ways to 135 235
choose the third 125 36 156 236 256 356
item 126

Level 3 Subsets of 3 items

© Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004 d

Association Rule Discovery: Hash tree

Hash Function Candidate Hash Tree

Hash on
3,60r9

457 | 1458

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 b

Subset Operation Using Hash Tree

12356/ transaction Hash Function

2356 147, | 369
258
| © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 @b

21

Subset Operation Using Hash Tree

transaction Hash Function
(+ESSE g e
\ _
—

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 b

Factors Affecting Complexity

e Choice of minimum support threshold
— lowering support threshold results in more frequent itemsets

— this may increase number of candidates and max length of
frequent itemsets

e Dimensionality (number of items) of the data set
— more space is needed to store support count of each item

— if number of frequent items also increases, both computation and
1/0 costs may also increase

e Size of database

— since Apriori makes multiple passes, run time of algorithm may
increase with number of transactions

e Average transaction width
— transaction width increases with denser data sets

— This may i) increase max length of frequent itemsets and ii)
traversals of hash tree (number of subsets in a transaction
increases with its width)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 dh |

Subset Operation Using Hash Tree

transaction Hash Function
EEe |

Match transaction against 11 out of 15 candidates

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 b |

22

Correctness

» Ckis a superset of Fk
» Ckis a superset of Fk by the way Ck is generated

» Subset pruning is based on the monotonicity
property and every item pruned is guaranteed not
be large

» Hence, Ck is always a superset of Fk

© Sharma Chw § 89 H

Impact of memory: Buffer management

» F, fitsin memory and C, does not: generate as
many C, as possible, scan database and count
support and write F, to disk. Delete small itemsets.
Repeat until all of F, is generated for that pass.
= # of passes on database (or transactions) is equal to

the #of partitions of Ck due to memory limitation
= |ncreases passes on the database!

» F., does not fit in memory: externally sort F, ;. Bring
into memory F,_; items in which the first k-2 items
are the same. Generate Candidate itemsets. Scan
data and generate Fk.
= Unfortunately, pruning cannot be done (why?)

© Sharma Ch@ § 91 E

Buffer management

» In the candidate generation of pass k, we need
storage for F_; and the candidate itemsets C,

» In the counting phase of pass k, we need storage for
C.and at least one page to buffer the database
transactions (C, is a subset of C,)

» Transactions are assumed be stored on the disk
(whether in a database or not does not matter)

© Sharma Chw § 9% H

Effect of memory on pruning

> Let F3 be {{1,2,3},{1,2,4},{1,3,4}, {1,3,5}, {2,3,4}}
sorted on firs 2 itemsets

» Suppose | can only load {{1,2,3},{1,2,4}, {1, 3, 4}}
into memory

> C4 will be {{1,2,3,4}}

> To test all its subsets in F3, | need to check {2, 3, 4} is
in F3 in addition to {1, 2, 3} and {1, 2, 4}

> However, {2, 3, 4}is NOT in memory. Hence cannot
be checked!

» Only checking for {1, 2, 3}and {1, 2, 4} is not
enough!

© Sharma Ch@ § %2 E

23

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets
is frequent

Can generate
ALL frequent itemsets
From maximal frequent
itemset

Maximal
Itemsets

Infrequent Frequent

Itemsets ~ itemset
~
_Border
‘ © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 &b

Maximal vs Closed Itemsets

Transaction lds

TID | ltems

ABC

ABCD

BCE

ACDE

(SN U R B

DE

Not supported by _,,——”"
any transactions ~

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 dh

Closed Itemset

e An itemset is closed if none of its immediate supersets
has the same support (not min_sup!) as the itemset

TID ltems | Itemset |Support] [Itemset [Support
1 {AB} A {A,B} 4 Itemset | Support
2 {B.C,D} {AC} 2 {AB,C} 2
3 | {AB,C,D} {AD} 3 {AB,D} 3
4 {A,B,D} {B,C} 3 {A.C,D} 2
5 {AB,C,D} {B,D} 4 {B,C,D} 3
{C.D} 3 (ABCD}| 2
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 b

Maximal vs Closed Frequent Itemsets

Closed but
not maximal

Closed and
maximal
frequent

#Closed =9
Maximal =4

© Tan,Steinbach, Kumar

Introd ABCDE Y3ta Mining 4/18/2004 b

24

Maximal vs Closed Itemsets

Frequent
Itemsets

Closed
Frequent
Itemsets

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 b

Example (generate, prune, count)

DATABASE 5]
TID ITEMS | TID ITEMS]
100 134 100 {{1}, {3}, {4}}
200 235 200 {{2}, {3}, {53}
300 1235 300 {132} {3}, {5}}
400 25 400 {235}
I'1
ITEMSET SUPPORT
{1} 2 Given:
é;; : User defined |_-ninimum
P = support is 2.
19; 3

© Sharma Ch@ § 9 H

AprioriTid

» It is similar to the Apriori Algorithm and uses
Apriori-gen function to determine the candidate
sets initially.

» But the basic difference is that for determining the
support, the database is not used after the first
pass.

» Rather a set C’k is used for this purpose

» Each member of C’kis of the form <TID, {Xk} >
where Xk is potentially large/frequent k itemset
present in the transaction with the identifier TID

» C’1 corresponds to database D.

© Sharma Chw § 98 H

AprioriTid

> If a transaction does not contain a candidate
itemset, then C’k will not have any entry for this
transaction

» Hence, for large values of k the number of entries in
C’k may be much smaller than the number of
transactions in the database (why?)

» Number of transactions in which this itemset exists
decreases as the number of items in an itemset (k)
increases!

© Sharma Ch@ § 100 H

25

AprioriTid Algorithm

» Also, for large values of k, each entry may be smaller
than the corresponding transaction because very
few candidates may be contained in the transaction

» However for small values for k each entry may be
larger than the corresponding transaction because
an entry in C’k includes all candidate k itemsets
contained in the transaction

© Sharma Chw § 101 H

Algorithm

7. Forall entries tin C’k-1 do begin
//determine candidate itemsets in Ck
//contained in the transaction with
//identifies t.TID
Ct = {cin Ck|(c-c[k]) in t.set-of-items
and (c-c[k-1]) in t.set-of-items}

8. for all candidates c in ct do

9. c.count++

10. If (Ct <> @) the C’k += <t.TID, ct>
11. end

© Sharma Ch@ § 103 H

Algorithm AprioriTid

L, ={large 1 itemsets};
C', = database D; //as sets
For(k=2; L, != empty; k++)
C, = apriori-gen(L,);
C' = empty;
forall transactions t belonging to C'

11 //Determine candidate item sets in C,
contained in the transaction with identifier t.Tid

Terminology:
Large instead of frequent

Youswpe

12. L ={cinC, | c.count >= minsup}
13. end
14. Answer = U, L,

© Sharma Chw § 102 H

Example (generate, prune, count)

DATABASE o5}
[TID ITEMS TID ITEMS]
100 134 100 {{1}, {3}, {43}
200 235 200 {{23}, {3}, {53}
300 1235 300 {1}{2} {3} {5}}
400 25 400 {235}
Ly
ITEMSET SUPPORT
{1} 2 Given:
i;; : User defined |_-ninimum
P = support is 2.
19+ 3

© Sharma Ch@ § 104 H

C, c, Example
ITEMSET TID ITEMS
{1, 2} 1 100 {{1,3}} » The first entry C’'1is { {1} {3} {4} } corresponding to
{1,3y 2 200 {2,3}, {2,5}{3,5}} transaction 100
{1,5r 1 300 {{1,2}, {1,3}, {1,5}} » The Ctin step 7 corresponding to this entry tis { {1
{2,3y 2 {2, 3} {2, 5}, {3, 5} 3}}, because {1 3} is a member of C2 and both ({1 3}
{2,5y 3 400 {{2,5}} —{1}) and ({1 3} - {{3}) are members of t-itemsets.
3 5,} 2 » Then apriorigen gives L3
Cy L,
TID ITEMS ITEMSET SUPPORT
100 {{1}, {33}, {43} {1,3} 2
200 {2}, {33, {53} {2,3} 2
300 {{1}{2},{3},{5}} | {2,5} 3
W400 arma {{2}'{5}} 105 3, 5} 2 © Sharma Ch@ . 107 H
(contd) AprioriTid
G Cs » Fork>1, C'kis generated by the algorithm (step
ITEMSETS TID ITEMS 10). The members of C’k corresponding to
{2,3,5} 2 200 {{2 3, 5} transaction tis
} 300 {{2,3,5}} <t.TID, {cin Ck | c contained in t}>
C, » If a transaction does not contain any candidate
TID ITEMS itemset, then C’k will not have any entry for this
100 {{1,3}} transaction.
200 {2,3},{2,5}{3,5}} » Number of entries in C’k may be less than the # of
300 {{1,2}, {1,3}, {1,5}} L3 transactions especially for large values of k
12,3}3,{2, 55 {3, 53} ITEMSET SUPPORT
400 2,5
W25 | 535 >
© Sharma Chw N 106 H‘ © Sharma Ch@ N 108 H

27

Data Structures

Each candidate itemset is given a unique ID

Ck is kept in an array indexed by ID

A member of C’k is now of the form < TID, {ID} >
Each C’k is stored in a sequential structure

YV V V V

A\

The above is used for apriori-generation

» These are also used for step 7 for efficiently
generating C’'k

© Sharma Chw § 109 H

Performance

» Parameters

o
1
i

i
i

Number of transactions

Average size of the transactions

Average size of the maximal potentially

large [temsets

Number of maximal potentially large itemsets
Number of items

© Sharma Ch@ § 11 H

Buffer Management

» Inthe k™ pass, AprioriTid needs memory for L_; and
C, during candidate generation.

» During the counting phase, it needs memory for C, ,,
C,, and a page each for C’,_; and C’,. entries in C’, ;
are needed sequentially, but C’, can be written out
as generated.

© Sharma Chw § 10 H

THL2DL00K T10.02.D100K

Time (sec)

160
0
120

100

4
: 5’%

Time (sec)

215

10 05 03 0% 2 15 10l 05 08 0E
Minimum Support Minimum Suppod

© Sharma Ch@ § 12 H

28

T2014.D100K T20.16.D100K
1800 T 3500 T T
1600 o
AprloriTid -—
0 Apror +—
100
2500
1200
g 1000 g 2000
2 ?
£ 40 £
E f 1500
600
1000
40
Pl w f
DM 0 . .
o151 0B 05 0B 0 2015 1 s 05 030X
Minimum Support Minimum Support
© Sharma Ch N 113

Apriori Vs. AprioriTid

14

12 APRIORI TID

10

mzZE o= -

APRIORI

© Sharma Chw § 15 H

Disadvantages

» Apriori Algorithm

= For determining the support of the candidate sets the
algorithm always looks into every transaction in the
database. Hence it takes a longer time (more passes
on data)

» AprioriTid Algorithm

= During initial passes the size of C’k is very large and is
almost equivalent to the size of the database. Hence
the time taken will be equal to that of Apriori. And
also it might incur an additional cost if it cannot
completely fit into the memory.

© Sharma Chw § 14 H

Algorithm Apriori Hybrid

Idea: Not necessary to use the same algorithm in all
passes over data.

During the Initial Passes : Apriori Algorithm is used.
During the Later Passes : AprioriTid Algorithm is
used.

Apriori Hybrid uses the Apriori in the initial passes
and switches to AprioriTid when it expects that the
set C’k at the end of the pass will fit into the
memory.

© Sharma Chw § 16 H

29

Disadvantages of Apriori Hybrid

» An extra cost is incurred for switching from Apriori
to AprioriTid algorithm.

» Suppose at the end of K th pass we decide to switch
from Apriori to AprioriTid. Then in the (k+1) pass,
after having generated the candidate sets we also
have to add the Tids to C'k+1

» If C’k remains large till the end then we do not get
much benefits of using Apriori Hybrid Algorithm

© Sharma Chw § 17 H

Summary

» Data Mining is a tool box consisting of different tools
designed for different purposes

» Choosing the appropriate tool is one of the difficult
aspects of data mining

» Understanding the domain and matching the DM
techniques for what one wants to do is another
challenge

» Interpreting the results of the mining output is the
third challenge

» Buying a DM system is much easier than using it
effectively and improving business!

© Sharma cn@ § 19 H

Conclusions

» The performance gap increased with the problem
size and ranged from a factor of three for small
problems to more than an order of magnitude for
large problems.

» The algorithms presented in the paper have been
implemented on several data repositories and were
found to give consistent results.

© Sharma Chw § 18 H

Thank You !!!

For more information visit:
http://itiab.uta.edu

30

