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Several organizations have collected massive amountsof such data. These data sets are usually storedon tertiary storage and are very slowly migrating todatabase systems. One of the main reasons for thelimited success of database systems in this area isthat current database systems do not provide necessaryfunctionality for a user interested in taking advantageof this information.This paper introduces the problem of \mining"a largecollection of basket data type transactions for associa-tion rules between sets of items with some minimumspeci�ed con�dence, and presents an e�cient algorithmfor this purpose. An example of such an association ruleis the statement that 90% of transactions that purchasebread and butter also purchase milk. The antecedentof this rule consists of bread and butter and the con-sequent consists of milk alone. The number 90% is thecon�dence factor of the rule.The work reported in this paper could be viewed as astep towards enhancing databases with functionalitiesto process queries such as (we have omitted thecon�dence factor speci�cation):� Find all rules that have \Diet Coke" as consequent.These rules may help plan what the store should doto boost the sale of Diet Coke.� Find all rules that have \bagels" in the antecedent.These rules may help determine what products maybe impacted if the store discontinues selling bagels.� Find all rules that have \sausage" in the antecedentand \mustard" in the consequent. This query can bephrased alternatively as a request for the additionalitems that have to be sold together with sausage inorder to make it highly likely that mustard will alsobe sold.� Find all the rules relating items located on shelvesA and B in the store. These rules may help shelfplanning by determining if the sale of items on shelfA is related to the sale of items on shelf B. 1



� Find the \best" k rules that have \bagels" in theconsequent. Here, \best" can be formulated in termsof the con�dence factors of the rules, or in termsof their support, i.e., the fraction of transactionssatisfying the rule.The organization of the rest of the paper is asfollows. In Section 2, we give a formal statement ofthe problem. In Section 3, we present our algorithmfor mining association rules. In Section 4, we presentsome performance results showing the e�ectiveness ofour algorithm, based on applying this algorithm to datafrom a large retailing company. In Section 5, we discussrelated work. In particular, we put our work in contextwith the rule discovery work in AI. We conclude with asummary in Section 6.2 Formal ModelLet I = I1; I2; . . . ; Im be a set of binary attributes,called items. Let T be a database of transactions. Eachtransaction t is represented as a binary vector, with t[k]= 1 if t bought the item Ik, and t[k] = 0 otherwise.There is one tuple in the database for each transaction.Let X be a set of some items in I. We say that atransaction t satis�es X if for all items Ik in X, t[k] =1. By an association rule, we mean an implication of theformX =) Ij, where X is a set of some items in I, andIj is a single item in I that is not present in X. Therule X =) Ij is satis�ed in the set of transactions Twith the con�dence factor 0 � c � 1 i� at least c% oftransactions in T that satisfy X also satisfy Ij . We willuse the notation X =) Ij j c to specify that the ruleX =) Ij has a con�dence factor of c.Given the set of transactions T , we are interestedin generating all rules that satisfy certain additionalconstraints of two di�erent forms:1. Syntactic Constraints: These constraints involverestrictions on items that can appear in a rule. Forexample, we may be interested only in rules that havea speci�c item Ix appearing in the consequent, orrules that have a speci�c item Iy appearing in theantecedent. Combinations of the above constraintsare also possible | we may request all rules that haveitems from some prede�ned itemset X appearing inthe consequent, and items from some other itemsetY appearing in the antecedent.2. Support Constraints: These constraints concern thenumber of transactions in T that support a rule. Thesupport for a rule is de�ned to be the fraction oftransactions in T that satisfy the union of items inthe consequent and antecedent of the rule.

Support should not be confused with con�dence.While con�dence is a measure of the rule's strength,support corresponds to statistical signi�cance.Besides statistical signi�cance, another motivationfor support constraints comes from the fact thatwe are usually interested only in rules with supportabove some minimum threshold for business reasons.If the support is not large enough, it means that therule is not worth consideration or that it is simplyless preferred (may be considered later).In this formulation, the problem of rule mining canbe decomposed into two subproblems:1. Generate all combinations of items that have frac-tional transaction support above a certain thresh-old, called minsupport. Call those combinations largeitemsets, and all other combinations that do not meetthe threshold small itemsets.Syntactic constraints further constrain the admissiblecombinations. For example, if only rules involving anitem Ix in the antecedent are of interest, then it issu�cient to generate only those combinations thatcontain Ix.2. For a given large itemset Y = I1I2 . . .Ik, k � 2,generate all rules (at the most k rules) that use itemsfrom the set I1; I2; . . . ; Ik. The antecedent of eachof these rules will be a subset X of Y such thatX has k � 1 items, and the consequent will be theitem Y � X. To generate a rule X =) Ij j c,where X = I1I2 . . .Ij�1Ij+1 . . .Ik, take the supportof Y and divide it by the support of X. If the ratiois greater than c then the rule is satis�ed with thecon�dence factor c; otherwise it is not.Note that if the itemset Y is large, then every subsetof Y will also be large, and we must have availabletheir support counts as the result of the solution ofthe �rst subproblem. Also, all rules derived fromY must satisfy the support constraint because Ysatis�es the support constraint and Y is the unionof items in the consequent and antecedent of everysuch rule.Having determined the large itemsets, the solutionto the second subproblem is rather straightforward. Inthe next section, we focus on the �rst subproblem. Wedevelop an algorithm that generates all subsets of agiven set of items that satisfy transactional supportrequirement. To do this task e�ciently, we use someestimation tools and some pruning techniques.3 Discovering large itemsetsFigure 1 shows the template algorithm for �nding largeitemsets. Given a set of items I, an itemset X + Y of 2



items in I is said to be an extension of the itemset X ifX \ Y = ;. The parameter dbsize is the total numberof tuples in the database.The algorithmmakesmultiple passes over the database.The frontier set for a pass consists of those itemsets thatare extended during the pass. In each pass, the supportfor certain itemsets is measured. These itemsets, calledcandidate itemsets, are derived from the tuples in thedatabase and the itemsets contained in the frontier set.Associated with each itemset is a counter that storesthe number of transactions in which the correspondingitemset has appeared. This counter is initialized to zerowhen an itemset is created.procedure LargeItemsetsbeginlet Large set L = ;;let Frontier set F = f;g;while F 6= ; do begin�� make a pass over the databaselet Candidate set C = ;;forall database tuples t doforall itemsets f in F doif t contains f then beginlet Cf = candidate itemsets that are extensionsof f and contained in t; �� see Section 3.2forall itemsets cf in Cf doif cf 2 C thencf .count = cf .count + 1;else begincf .count = 0;C = C + cf ;endend�� consolidatelet F = ;;forall itemsets c in C do beginif count(c)/dbsize > minsupport thenL = L + c;if c should be used as a frontier �� see Section 3.3in the next pass thenF = F + c;endendend Figure 1: Template algorithmInitially the frontier set consists of only one element,which is an empty set. At the end of a pass, the support

for a candidate itemset is compared with minsupport todetermine if it is a large itemset. At the same time,it is determined if this itemset should be added to thefrontier set for the next pass. The algorithm terminateswhen the frontier set becomes empty. The supportcount for the itemset is preserved when an itemset isadded to the large/frontier set.We did not specify in the template algorithm whatcandidate itemsets are measured in a pass and whatcandidate itemsets become a frontier for the next pass.These topics are covered next.3.1 Number of passes versus measurementwastageIn the most straightforward version of the algorithm,every itemset present in any of the tuples will bemeasured in one pass, terminating the algorithm inone pass. In the worst case, this approach will requiresetting up 2m counters corresponding to all subsets ofthe set of items I, where m is number of items in I.This is, of course, not only infeasible (m can easilybe more than 1000 in a supermarket setting) but alsounnecessary. Indeed, most likely there will very fewlarge itemsets containing more than l items, where l issmall. Hence, a lot of those 2m combinations will turnout to be small anyway.A better approach is to measure in the kth pass onlythose itemsets that contain exactly k items. Havingmeasured some itemsets in the kth pass, we need tomeasure in (k + 1)th pass only those itemsets that are1-extensions (an itemset extended by exactly one item)of large itemsets found in the kth pass. If an itemset issmall, its 1-extension is also going to be small. Thus,the frontier set for the next pass is set to candidateitemsets determined large in the current pass, and only1-extensions of a frontier itemset are generated andmeasured during a pass.1 This alternative representsanother extreme | we will make too many passes overthe database.These two extreme approaches illustrate the tradeo�between number of passes and wasted e�ort due tomeasuring itemsets that turn out to be small. Certainmeasurement wastage is unavoidable | if the itemsetA is large, we must measure AB to determine if it islarge or small. However, having determined AB tobe small, it is unnecessary to measure ABC, ABD,ABCD, etc. Thus, aside from practical feasibility, ifwe measure a large number of candidate itemsets in apass, many of them may turn out to be small anyhow|1A generalization of this approach will be to measure all upto g-extensions (g > 0) of frontier itemsets in a pass. Thefrontier set for the next pass will then consist of only thoselarge candidate itemsets that are precisely g-extensions. Thisgeneralization reduces the number of passes but may result insome itemsets being unnecessarily measured. 3



wasted e�ort. On the other hand, if we measure a smallnumber of candidates and many of them turn out to belarge then we need another pass, which may have notbeen necessary. Hence, we need some careful estimationbefore deciding whether a candidate itemset should bemeasured in a given pass.3.2 Determination of candidate itemsetsOne may think that we should measure in the currentpass only those extensions of frontier itemsets that areexpected to be large. However, if it were the case andthe data behaved according to our expectations and theitemsets expected to be large indeed turn out to belarge, then we would still need another pass over thedatabase to determine the support of the extensions ofthose large itemsets. To avoid this situation, in additionto those extensions of frontier itemsets that are expectedto be large, we also measure the extensions X + Ij thatare expected to be small but such that X is expectedto be large and X contains a frontier itemset. We donot, however, measure any further extensions of suchitemsets. The rationale for this choice is that if ourpredictions are correct and X + Ij indeed turns out tobe small then no superset of X+Ij has to be measured.The additional pass is then needed only if the data doesnot behave according to our expectation and X + Ijturns out to be large. This is the reason why notmeasuring X + Ij that are expected to be small wouldbe a mistake | since even when the data agrees withpredictions, an extra pass over the database would benecessary.Expected support for an itemsetWe use the statistical independence assumption toestimate the support for an itemset. Suppose that acandidate itemset X+Y is a k-extension of the frontieritemset X and that Y = I1I2 . . . Ik. Suppose that theitemset X appears in a total of x tuples. We knowthe value of x since X was measured in the previouspass (x is taken to be dbsize for the empty frontieritemset). Suppose that X + Y is being considered asa candidate itemset for the �rst time after c tuplescontainingX have already been processed in the currentpass. Denoting by f(Ij) the relative frequency of theitem Ij in the database, the expected support �s for theitemset X + Y is given by�s = f(I1)� f(I2) � . . .� f(Ik)� (x� c)=dbsizeNote that (x� c)=dbsize is the actual support for X inthe remaining portion of the database. Under statisticalindependence assumption, the expected support for X+Y is a product of the support for X and individualrelative frequencies of items in Y .

If �s is less than minsupport, then we say that X + Yis expected to be small; otherwise, it is expected to belarge.Candidate itemset generation procedureAn itemset not present in any of the tuples in thedatabase never becomes a candidate for measurement.We read one tuple at a time from the database andcheck what frontier sets are contained in the tuple read.Candidate itemsets are generated from these frontieritemset by extending them recursively with other itemspresent in the tuple. An itemset that is expected to besmall is not further extended. In order not to replicatedi�erent ways of constructing the same itemset, itemsare ordered and an itemset X is tried for extension onlyby items that are later in the ordering than any of themembers of X. Figure 2 shows how candidate itemsetsare generated, given a frontier itemset and a databasetuple.procedure Extend(X: itemset, t: tuple)beginlet item Ij be such that 8Il 2 X; Ij � Il;forall items Ik in the tuple t such that Ik > Ij do beginoutput(XIk);if (XIk) is expected to be large thenExtend(XIk , t);endend Figure 2: Extension of a frontier itemsetFor example, let I = fA;B;C;D;E; Fg and assumethat the items are ordered in alphabetic order. Furtherassume that the frontier set contains only one itemset,AB. For the database tuple t = ABCDF , the followingcandidate itemsets are generated:ABC expected large: continue extendingABCD expected small: do not extend any furtherABCF expected large: cannot be extended furtherABD expected small: do not extend any furtherABF expected large: cannot be extended furtherThe extension ABCDF was not considered becauseABCD was expected to be small. Similarly,ABDF wasnot considered because ABD was expected to be small.The itemsets ABCF and ABF , although expected tobe large, could not be extended further because thereis no item in t which is greater than F . The extensionsABCE and ABE were not considered because the itemE is not in t. 4



3.3 Determination of the frontier setDeciding what itemsets to put in the next frontierset turns out to be somewhat tricky. One may thinkthat it is su�cient to select just maximal (in terms ofset inclusion) large itemsets. This choice, however, isincorrect | it may result in the algorithmmissing somelarge itemsets as the following example illustrates:Suppose that we extended the frontier set AB asshown in the example in previous subsection. However,both ABD and ABCD turned out to be large at theend of the pass. Then ABD as a non-maximal largeitemset would not make it to the frontier | a mistake,since we will not consider ABDF , which could be large,and we lose completeness.We include in the frontier set for the next pass thosecandidate itemsets that were expected to be small butturned out to be large in the current pass. To see thatthese are the only itemsets we need to include in thenext frontier set, we �rst state the following lemma:Lemma. If the candidate itemset X is expected tobe small in the current pass over the database, then noextension X + Ij of X, where Ij > Ik for any Ik in Xis a candidate itemset in this pass.The lemma holds due to the candidate itemsetgeneration procedure.Consequently, we know that no extensions of theitemsets we are including in the next frontier set havebeen considered in the current pass. But since theseitemsets are actually large, they may still produceextensions that are large. Therefore, these itemsetsmust be included in the frontier set for the next pass.They do not lead to any redundancy because none oftheir extensions has been measured so far. Additionally,we are also complete. Indeed, if a candidate itemset waslarge but it was not expected to be small then it shouldnot be in the frontier set for the next pass because,by the way the algorithm is de�ned, all extensions ofsuch an itemset have already been considered in thispass. A candidate itemset that is small must not beincluded in the next frontier set because the supportfor an extension of an itemset cannot be more than thesupport for the itemset.3.4 Memory ManagementWe now discuss enhancements to handle the fact that wemay not have enough memory to store all the frontierand candidate itemsets in a pass. The large itemsetsneed not be in memory during a pass over the databaseand can be disk-resident. We assume that we haveenough memory to store any itemset and all its 1-extensions.Given a tuple and a frontier itemset X, we generatecandidate itemsets by extending X as before. However,it may so happen that we run out of memory when we

are ready to generate the extension X+Y . We will nowhave to create space in memory for this extension.procedure ReclaimMemorybegin�� �rst obtain memory from the frontier setwhile enough memory has not been reclaimed doif there is an itemset X in the frontier setfor which no extension has been generated thenmove X to disk;elsebreak;if enough memory has been reclaimed then return;�� now obtain memory by deleting some�� candidate itemsets�nd the candidate itemset Uhaving maximum number of items;discard U and all its siblings;let Z = parent(U );if Z is in the frontier set thenmove Z to disk;elsedisable future extensions of Z in this pass;end Figure 3: Memory reclamation algorithmFigure 3 shows the memory reclamation algorithm. Zis said to be the parent of U if U has been generated byextending the frontier set Z. If U and V are 1-extensionsof the same itemset, then U and V are called siblings.First an attempt is made to make room for the newitemset by writing to disk those frontier itemsets thathave not yet been extended. Failing this attempt, wediscard the candidate itemset having maximumnumberof items. All its siblings are also discarded. The reasonis that the parent of this itemset will have to be includedin the frontier set for the next pass. Thus, the siblingswill anyway be generated in the next pass. We mayavoid building counts for them in the next pass, but theelaborate book-keeping required will be very expensive.For the same reason, we disable future extensions of theparent itemset in this pass. However, if the parent isa candidate itemset, it continues to be measured. Onthe other hand, if the parent is a frontier itemset, it iswritten out to disk creating more memory space.It is possible that the current itemset that caused the 5



memory shortage is the one having maximum numberof items. In that case, if a candidate itemset needs tobe deleted, the current itemset and its siblings are theones that are deleted. Otherwise, some other candidateitemset has more items, and this itemset and its siblingsare deleted. In both the cases, the memory reclamationalgorithm succeeds in releasing su�cient memory.In addition to the candidate itemsets that wereexpected to be small but turn out to be large, thefrontier set for the next pass now additionally includesthe following:� disk-resident frontier itemsets that were not extendedin the current pass, and� those itemsets (both candidate and frontier) whosechildren were deleted to reclaim memory.If a frontier set is too large to �t in the memory, westart a pass by putting as many frontiers as can �t inmemory (or some fraction of it).It can be shown that if there is enough memory tostore one frontier itemset and to measure all of its 1-extensions in a pass, then there is guaranteed to beforward progress and the algorithm will terminate.3.5 Pruning based on the count of remainingtuples in the passIt is possible during a pass to determine that a candidateitemset will eventually not turn out to be large, andhence discard it early. This pruning saves both memoryand measurement e�ort. We refer to this pruning as theremaining tuples optimization.Suppose that a candidate itemset X + Y is anextension of the frontier itemset X and that the itemsetX appears in a total of x tuples (as discussed inSection 3.2, x is always known). Suppose that X + Yis present in the cth tuple containing X. At the time ofprocessing this tuple, let the count of tuples (includingthis tuple) containing X + Y be s.What it means is that we are left with at most x� ctuples in which X + Y may appear. So we comparemaxcount =(x � c + s) with minsupport � dbsize. Ifmaxcount is smaller, then X + Y is bound to be smalland can be pruned right away.The remaining tuples optimization is applied as soonas a \new" candidate itemset is generated, and it mayresult in immediate pruning of some of these itemsets.It is possible that a candidate itemset is not initiallypruned, but it may satisfy the pruning condition aftersome more tuples have been processed. To prune such\old" candidate itemsets, we apply the pruning testwhenever a tuple containing such an itemset is processedand we are about to increment the support count for thisitemset.

3.6 Pruning based on synthesized pruningfunctionsWe now consider another technique that can prune acandidate itemset as soon as it is generated. We referto this pruning as the pruning function optimization.The pruning function optimization is motivated bysuch possible pruning functions as total transactionprice. Total transaction price is a cumulative functionthat can be associated with a set of items as a sum ofprices of individual items in the set. If we know thatthere are less than minsupport fraction of transactionsthat bought more than � dollars worth of items, we canimmediately eliminate all sets of items for which theirtotal price exceeds � . Such itemsets do not have to bemeasured and included in the set of candidate itemsets.In general, we do not know what these pruning func-tions are. We, therefore, synthesize pruning functionsfrom the available data. The pruning functions we syn-thesize are of the formw1Ij1 + w2Ij2 + . . . + wmIjm � �where each binary valued Iji 2 I. Weights wi areselected as follows. We �rst order individual items indecreasing order of their frequency of occurrence in thedatabase. Then the weight of the ith item Iji in thisorderwi = 2i�1�where � is a small real number such as 0.000001. Itcan be shown that under certain mild assumptions2a pruning function with the above weights will haveoptimal pruning value | it will prune the largestnumber of candidate itemsets.A separate pruning function is synthesized for eachfrontier itemset. These functions di�er in their valuesfor � . Since the transaction support for the item XYcannot be more than the support for itemset X, thepruning function associated with the frontier set X canbe used to determine whether an expansion ofX shouldbe added to the candidate itemset or whether it shouldbe pruned right away. Let z(t) represent the value ofthe expressionw1Ij1 + w2Ij2 + . . . + wmIjmfor tuple t. Given a frontier itemset X, we need aprocedure for establishing �X such that count(t j tuplet contains X and z(t) > �X) < minsupport.Having determined frontier itemsets in a pass, we donot want to make a separate pass over the data justto determine the pruning functions. We should collect2For every item pair Ij and Ik in I, if frequency(Ij) <frequency(Ik), then for every itemset X comprising items in I,it holds that frequency(IjX) < frequency(IkX). 6



information for determining � for an itemset X whileX is still a candidate itemset and is being measuredin anticipation that X may become a frontier itemsetin the next pass. Fortunately, we know that only thecandidate itemsets that are expected to be small arethe ones that can become a frontier set. We need tocollect � information only for these itemsets and not allcandidate itemsets.A straightforward procedure for determining � foran itemset X will be to maintain minsupport numberof largest values of z for tuples containing X. Thisinformation can be collected at the same time as thesupport count for X is being measured in a pass.This procedure will require memory for maintainingminsupport number of values with each candidateitemset that is expected to be small. It is possibleto save memory at the cost of losing some precision(i.e., establishing a somewhat larger value for � ). Ourimplementation uses this memory saving technique, butwe do not discuss it here due to space constraints.Finally, recall that, as discussed in Section 3.4, whenmemory is limited, a candidate itemset whose childrenare deleted in the current pass also becomes a frontieritemset. In general, children of a candidate itemset aredeleted in the middle of a pass, and we might not havebeen collecting � information for such an itemset. Suchitemsets inherit � value from their parents when theybecome frontier.4 ExperimentsWe experimented with the rule mining algorithm usingthe sales data obtained from a large retailing company.There are a total of 46,873 customer transactions inthis data. Each transaction contains the departmentnumbers from which a customer bought an item ina visit. There are a total of 63 departments. Thealgorithm �nds if there is an association betweendepartments in the customer purchasing behavior.The following rules were found for a minimumsupport of 1% and minimum con�dence of 50%. Ruleshave been written in the form X =) Ij(c; s), where cis the con�dence and s is the support expressed as apercentage.[Tires] ) [Automotive Services] (98.80, 5.79)[Auto Accessories], [Tires] )[Automotive Services] (98.29, 1.47)[Auto Accessories] ) [Automotive Services] (79.51, 11.81)[Automotive Services] ) [Auto Accessories] (71.60, 11.81)[Home Laundry Appliances] )[Maintenance Agreement Sales] (66.55, 1.25)[Children's Hardlines] )[Infants and Children's wear] (66.15, 4.24)[Men's Furnishing] ) [Men's Sportswear] (54.86, 5.21)

In the worst case, this problem is an exponentialproblem. Consider a database ofm items in which everyitem appears in every transaction. In this case, therewill be 2m large itemsets. To give an idea of the runningtime of the algorithm on actual data, we give belowthe timings on an IBM RS-6000/530H workstation for�nding the above rules:real 2m53.62suser 2m49.55ssys 0m0.54sWe also conducted some experiments to asses thee�ectiveness of the estimation and pruning techniques,using the same sales data. We report the results of theseexperiments next.4.1 E�ectiveness of the estimation procedureWe measure in a pass those itemsets X that areexpected to be large. In addition, we also measureitemsets Y = X + Ij that are expected to be smallbut such that X is large. We rely on the estimationprocedure given in Section 3.2 to determine what theseitemsets X and Y are. If we have a good estimationprocedure, most of the itemsets expected to be large(small) will indeed turn out to be large (small).We de�ne the accuracy of the estimation procedurefor large (small) itemsets to be the ratio of the numberof itemsets that actually turn out to be large (small) tothe number of itemsets that were estimated to be large(small). We would like the estimation accuracy to beclose to 100%. Small values for estimation accuracy forlarge itemsets indicate that we are measuring too manyunnecessary itemsets in a pass | wasted measuremente�ort. Small values for estimation accuracy for smallitemsets indicate that we are stopping too early inour candidate generation procedure and we are notmeasuring all the itemsets that we should in a pass |possible extra passes over the data.Figure 4 shows the estimation accuracy for large andsmall itemsets for di�erent values of minsupport. Inthis experiment, we had turned o� both remaining tupleand pruning function optimizations to isolate the e�ectof the estimation procedure. The graph shows thatour estimation procedure works quite well, and thealgorithm neither measures too much nor too little ina pass.Note that the accuracy of the estimation procedurewill be higher when the data behaves according to theexpectation of statistical independence. In other words,if the data is \boring", not many itemsets that wereexpected to be small will turn out to be large, and thealgorithm will terminate in a few passes. On the otherhand, the more \surprising" the data is, the lower willbe the estimation accuracy and the more passes it willtake our algorithm to terminate. This behavior seems 7



to be quite reasonable | waiting longer \pays o�" inthe form of unexpected new rules.We repeated the above experiment with both theremaining tuple and pruning function optimizationsturned on. The accuracy �gures were somewhat better,but closely tracked the curves in Figure 4.
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count. Figure 5 shows the e�ciency of the remainingtuple optimization technique for these two types ofitemsets. For the new itemsets, the pruning e�ciencyis the ratio of the new itemsets pruned to the totalnumber of new itemsets generated. For the old itemsets,the pruning e�ciency is the ratio of the old candidateitemsets pruned to the total number of candidateitemsets added to the candidate set. This experimentwas run with the pruning function optimization turnedo�. Clearly, the remaining tuple optimization prunesout a very large fraction of itemsets, both new and old.The pruning e�ciency increases with an an increase inminsupport because an itemset now needs to be presentin a larger number of transactions to eventually makeit to the large set. The candidate set contains itemsetsexpected to be large as well as those expected to besmall. The remaining tuple optimization prunes mostlythose old candidate itemsets that were expected to besmall; Figure 4 bears out that most of the candidateitemsets expected to be large indeed turn out to belarge. Initially, there is a large increase in the fractionof itemsets expected to be small in the candidate set asminsupport increases. This is the reason why initiallythere is a large jump in the pruning e�ciency for oldcandidate itemsets as minsupport increases.Figure 5 also shows the e�ciency of the pruning func-tion optimization, with the remaining tuple optimiza-tion turned o�. It plots the fraction of new itemsetspruned due to this optimization. The e�ectiveness ofthe optimization increases with an increase in minsup-port as we can use a smaller value for � . Again, wenote that this technique alone is also quite e�ective inpruning new candidate itemset.We also measured the pruning e�ciencies for new andold itemsets when both the remaining tuple and pruningfunction optimizations were turned on. The curves forcombined pruning tracked closely the two curves for theremaining tuple optimization. The pruning functionoptimization does not prune old candidate itemsets.Given the high pruning e�ciency obtained for newitemsets just with the remaining tuple optimization, itis not surprising that there was only slight additionalimprovementwhen the pruning function was also turnedon. It should be noted however that the remaining tupleoptimization is a much cheaper optimization.5 Related WorkDiscovering rules from data has been a topic of activeresearch in AI. In [11], the rule discovery programs havebeen categorized into those that �nd quantitative rulesand those that �nd qualitative laws.The purpose of quantitative rule discovery programsis to automate the discovery of numeric laws of thetype commonly found in scienti�c data, such as Boyle's 8



law PV = c. The problem is stated as follows[14]: Given m variables x1; x2; . . . ; xm and k groupsof observational data d1; d2; . . . ; dk, where each di isa set of m values | one for each variable, �nd aformula f(x1; x2; . . . ; xm) that best �ts the data andsymbolically reveals the relationship among variables.Because too many formulas might �t the given data,the domain knowledge is generally used to provide thebias toward the formulas that are appropriate for thedomain. Examples of some well-known systems in thiscategory include ABACUS[5], Bacon[7], and COPER[6].Business databases reect the uncontrolled real world,where many di�erent causes overlap and many patternsare likely to co-exist [10]. Rules in such data are likelyto have some uncertainty. The qualitative rule discoveryprograms are targeted at such business data and theygenerally use little or no domain knowledge. Therehas been considerable work in discovering classi�cationrules: Given examples that belong to one of the pre-speci�ed classes, discover rules for classifying them.Classic work in this area include [4] [9].The algorithm we propose in this paper is targetedat discovering qualitative rules. However, the ruleswe discover are not classi�cation rules. We haveno pre-speci�ed classes. Rather, we �nd all therules that describe association between sets of items.An algorithm, called the KID3 algorithm, has beenpresented in [10] that can be used to discover the kindof association rules we have considered. The KID3algorithm is fairly straightforward. Attributes are notrestricted to be binary in this algorithm. To �nd therules comprising (A = a) as the antecedent, where a isa speci�c value of the attribute A, one pass over thedata is made and each transaction record is hashed byvalues of A. Each hash cell keeps a running summary ofvalues of other attributes for the tuples with identicalA value. The summary for (A = a) is used to deriverules implied by (A = a) at the pass. To �nd rules bydi�erent �elds, the algorithm is run once on each �eld.What it means is that if we are interested in �nding allrules, we must make as many passes over the data as thenumber of combinations of attributes in the antecedent,which is exponentially large. Our algorithm is linear innumber of transactions in the database.The work of Valiant [12] [13] deals with learningboolean formulae. Our rules can be viewed as booleanimplications. However, his learnability theory dealsmainly with worst case bounds under any possibleprobabilistic distribution. We are, on the other hand,interested in developing an e�cient solution and actualperformance results for a problem that clearly has theexponential worst case behavior in number of itemsets.There has been work in the database communityon inferring functional dependencies from data, and

e�cient inference algorithms have been presented in[3] [8]. Functional dependencies are very speci�cpredicate rules while our rules are propositional innature. Contrary to our framework, the algorithmsin [3] [8] consider strict satisfaction of rules. Due tothe strict satisfaction, these algorithms take advantageof the implications between rules and do not considerrules that are logically implied by the rules alreadydiscovered. That is, having inferred a dependencyX ! A, any other dependency of the form X + Y ! Ais considered redundant and is not generated.6 SummaryWe introduced the problem of mining association rulesbetween sets of items in a large database of customertransactions. Each transaction consists of items pur-chased by a customer in a visit. We are interested in�nding those rules that have:� Minimum transactional support s | the union ofitems in the consequent and antecedent of the ruleis present in a minimum of s% of transactions in thedatabase.� Minimum con�dence c | at least c% of transactionsin the database that satisfy the antecedent of the rulealso satisfy the consequent of the rule.The rules that we discover have one item in theconsequent and a union of any number of items in theantecedent. We solve this problem by decomposing itinto two subproblems:1. Finding all itemsets, called large itemsets, that arepresent in at least s% of transactions.2. Generating from each large itemset, rules that useitems from the large itemset.Having obtained the large itemsets and their trans-actional support count, the solution to the second sub-problem is rather straightforward. A simple solution tothe �rst subproblem is to form all itemsets and obtaintheir support in one pass over the data. However, thissolution is computationally infeasible | if there are mitems in the database, there will be 2m possible itemsets,and m can easily be more than 1000. The algorithm wepropose has the following features:� It uses a carefully tuned estimation procedure todetermine what itemsets should be measured in apass. This procedure strikes a balance between thenumber of passes over the data and the number ofitemsets that are measured in a pass. If we measurea large number of itemsets in a pass and many of themturn out to be small, we have wasted measuremente�ort. Conversely, if we measure a small number of 9



itemsets in a pass and many of them turn out to belarge, then we may make unnecessary passes.� It uses pruning techniques to avoid measuring certainitemsets, while guaranteeing completeness. These arethe itemsets that the algorithm can prove will notturn out to be large. There are two such pruningtechniques. The �rst one, called the \remaining tupleoptimization", uses the current scan position andsome counts to prune itemsets as soon as they aregenerated. This technique also establishes, while apass is in progress, that some of the itemsets beingmeasured will eventually turn out to be large andprunes them out. The other technique, called the\pruning function optimization", synthesizes pruningfunctions in a pass to use them in the next pass.These pruning functions can prune out itemsets assoon as they are generated.� It incorporates bu�er management to handle the factthat all the itemsets that need to be measured ina pass may not �t in memory, even after pruning.When memory �lls up, certain itemsets are deletedand measured in the next pass in such a way that thecompleteness is maintained; there is no redundancyin the sense that no itemset is completely measuredmore than once; and there is guaranteed progress andthe algorithm terminates.We tested the e�ectiveness of our algorithm by ap-plying it to sales data obtained from a large retailingcompany. For this data set, the algorithm exhibited ex-cellent performance. The estimation procedure exhib-ited high accuracy and the pruning techniques were ableto prune out a very large fraction of itemsets withoutmeasuring them.The work reported in this paper has been done inthe context of the Quest project [1] at the IBM Al-maden Research Center. In Quest, we are exploring thevarious aspects of the database mining problem. Be-sides the problem of discovering association rules, someother problems that we have looked into include the en-hancement of the database capability with classi�cationqueries [2] and queries over large sequences. We believethat database mining is an important new applicationarea for databases, combining commercial interest withintriguing research questions.Acknowledgments. We thank Mike Monnelly for hishelp in obtaining the data used in the performanceexperiments. We also thank Bobbie Cochrane, BillCody, Christos Faloutsos, and Joe Halpern for theircomments on an earlier version of this paper.References[1] Rakesh Agrawal, Tomasz Imielinski, and Arun
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