Aﬂw University of Texas
ARLINGTON..
Data Mining

FP-Tree Approach
(A radically different approach)

Sharma Chakravarthy
Information Technology Laboratory (IT Lab)
Computer Science and Engineering Department
The University of Texas at Arlington, Arlington, TX

Email: sharma@cse.uta.edu
URL: http://itlab.uta.edu/sharma

Compact Representation of Frequent ltemsets

» FP-growth (Frequent Pattern growth)
= avoids repeated scans of the database (used in Apriori) by
using a compressed representation of the transaction database
using a data structure called FP-tree
= Avoids candidate itemset explosion
= Constructs FP-tree once and uses it in a recursive divide- and-
conquer approach to mine the frequent itemsets

null

Figure 6.25. An FP-tree representation for the data set shown in Figure 6.24 with a different item
__ ordering scherme.

12/13/2020 = W © Sharma Chakravarthy H 3

Compact Representation of Frequent Itemsets

»In practice, the number of frequent itemsets produced
from transaction data can be very large, when
= the database is dense i.e. many items per transaction on
average
= the number of transactions is large
= the min_sup is set too low

»We will look at methods that
= use the properties of the itemset lattice and the support
function
= compress the collection of frequent itemsets into a more
manageable size
= Allow us to derive all frequent itemsets from the compressed
representation

12/13/2020 = ¥ © Sharma Chakravarthy H‘ 2

Compact Representation of Frequent Itemsets

FP-tree is a compressed representation of the transaction database
Each transaction is mapped onto a path in the tree

Each node contains an item and the support count corresponding to
the number of transactions with the prefix corresponding to the path
from root

Nodes having the same item label are cross-linked: this helps finding
the frequent itemsets ending with a particular item

v VYV

Figure 6.25. An FP-tree representation for the data set shown in Figure 6.24 with a different item
ordering scheme.

12/13/2020 = W © Sharma Chakravarthy H 4

FP-Tree Construction

T:D I{t:rgi ® In the first pass, 1-its t support is d and only
2 B c D} frequent 1-itemsets (F1) are retained. Infrequent items
3 | (ACDE} are discarded.

4 {AD.E} ® items in each transaction are ordered using frequency
g ,iAéBécg) in descending order (why?)

7 { Y(;\)' } Most frequent items are likely to be in more prefixes

8 {A,B,C} = It can also be used in ascending order; Tree constructed will be

9 {A,B,D} different and depends on the order in which Txs are used to

10 {B:C:E} construct the tree

® Lexicographic order of items is not used
Horizontal data format

Item | frequency
Vertical data format is A
Also possible/used in B 7
other algorithms C 6
D 5
E 3
FTan,Ste\nbach‘ Kumar Introduction to Data Mining 4/18/2004 b

FP-Tree Construction (at the end)

o=}
o

I(t:rg; Transaction Descending
- Database frequency

{B,C,D}
AoDE null Q
{AD,E}
L(OB2
{8.C} e -
{A.B,C}

{AB,C}

{AB.C.D}

{AB.,D} sOf
{B,C.E} ! .

©OND O A WN

o

Header table
ltem | Pointer

Pointers are used to assist
frequent itemset generation

moow>

|@Tan5|embach, Kumar Introduction to Data Mining 4/18/2004 d |

FP-tree construction (second pass)

null
After reading TID=1: /CD

TID| ltems A1)

{AB} 5
{B,C,D} B:1

{A,C,D,E}

{A.D.E} After reading TID=2:
{AB,C} "

{A,?A(}:,D} A1 (S /'Q\le
(AB,C} Q/
{AB.D} B () O ¢l

{B.C,E}
Ol

Introduction to Data Mining 4/18/2004 b |

ull

© 0o ~NO U WN -

=y
o

FTan,Stembach‘ Kumar

FP-Tree for ascending frequency
> If the transactions share a significant number of items, FP-
tree can be considerably smaller as the common subset of
the items is likely to share paths

» Notice any difference between this and previous tree?

» More bushy because less paths share prefixes due to
ascending order!

Figure 6.25. An FP-tree representation for the data set shown in Figure 6.24 with a different item
———— ordering scheme.

UMA.)73

Observations

»The size of an FP-tree is typically smaller than the size of the
uncompressed data because many transactions share a few
items in common

»You can think of best and worst case for the tree pattern and
size

»The size of the FP-tree also depends on how the items are
ordered

» Ascending and descending orders can make a huge difference
» Additional list of items and pointers are used.

» It may not be possible to hold the FP-tree in memory

12/13/2020 o © Sharma Chakravarthy H‘ 9

)

Mining Frequent Patterns

» To find all frequent itemsets ending with given last
item (e.g. e), we first need to compute the support of the
item
- This is given by the sum of support counts of all nodes labeled
with the item (o(E)=3)
- found by following the cross-links connecting the nodes with the
same item
= |f last item is found frequent, FP-growth next iteratively
looks for all frequent itemsets ending with given item
- Of length-2 suffix (DE,CE,BE, and AE),
- and recursively with length-3 suffix, length-4 suffix until no
more frequent itemsets are found
» Conditional FP-tree is constructed for each different suffix
to speed up the computation

12/13/2020 = W © Sharma Chakravarthy E 1

Mining Frequent Patterns

»How do we get all frequent patterns from the FP-Tree?
»A “divide and conquer” strategy is used
»Explores the tree in a bottom-up manner.

» Intuitively:
1. Find all frequent patterns containing one of the items
2. Then find all frequent patterns containing the next item
(suffix) but NOT containing the previous one
3. Repeat 2) until we are out of items

» Start from the bottom of the header table

» Extract path corresponding to e

12/13/2020 = W > Sharma Chakravarthy H‘ 10

Frequent itemset generation in FP-growth

% E is frequent!
a8 (Y D b2
el (JmmmArmm e 3‘/ c:2
QO it
d:1 7/
=m0

e1r=" " ent et
() Paths containing node &

(b) Paths containing node d

null null null
Q Q)
a8 />‘ b:2 a8 /}) l
N j L bi2 a8
b5 (F7 -0 c2 o]
Retle
57" cul b:5
30
(c) Paths containingnode ¢ (d) Paths containing node b (e) Paths containing node a

Figure 6.26. Decomposing the frequent itemset generation problem into multiple subproblems, where
each subproblem involves finding frequent itemsets endingin e, d, ¢, b, and a.

Mining Frequent Patterns

Here min_sup is 2

TID Items
Prefix paths endingin e
3 {a,c,d, e} null
4 {a,d, e}
10 {b,c,e}

12/13/2020 = W © Sharma Chakravarthy H‘ 13

Frequent itemset generation in FP-growth

a8
c1 ¢
a1)
eﬂ(Z’"' o1 o1 d:1 dit
(a) Prefix paths ending in e (b) Conditional FP-tree for e
/<> null null
= I
10 O
v a2
a1 W
(c) Prefix paths ending in de (d) Conditional FP-tree for de
null O null
a2
j @
il (Fmmmmmm O et a2
(e) Prefix paths ending in ce (f) Prefix paths ending in ae

Figure 6.27. Example of applying the FP-growth algorithm to find frequent itemsets ending in e.

Mining Frequent Patterns

»Because {e} is frequent, the algorithm has to solve the sub
problems of finding frequent itemsets ending in e.

»That is, de, ce, be, and ae (where do we get this from?)

» For that, we convert the prefix paths into a conditional FP-tree,
which is structurally similar to a FP-Tree, except it is used to
find frequent itemsets ending with a particular suffix.

» Itis done as follows.

» This process is repeated for itemsets endingind, c, b, and a

12/13/2020 = W © Sharma Chakravarthy H‘ 14

Example of Conditional FP-Tree ending in e

TID Items
Conditional FP-tree for e
3 {a,c,d,e}
4 (a,d, e} null
10 (b, ce}

12/13/2020 = W © Sharma Chakravarthy H

Example of Conditional FP-Tree ending in e

Prefix paths ending in e

null null

» To obtain the conditional FP-Tree for e from the prefix sub-
tree ending in e, remove the nodes containing e (as this
information is no longer needed)

12/13/2020 A © Sharma Chakravarthy H 17

Example of Conditional FP-Tree ending in e

Conditional FP-treefor e

Prefix paths endingin de Conditional FP-tree for de

null null null

a2

» Use the conditional FP-tree for e to find frequent itemsets
ending in de, ce, and ae (be is not considered as bis not in the
conditional FP-tree for e)

» For each item, find the prefix paths from conditional tree for
e, generate the conditional FT-tree, and continue recursively

12/13/2020 = W © Sharma Chakravarthy H‘ 19

=
El

Example of Conditional FP-Tree ending in e

Items

0o~ an N

(A8}
{B,C,D}

{A.CD.E}

{AD.E}

{A.B.C}
(A(';'%)m Conditional FP-tree for e
{:gjg; null null

» Now remove infrequent items (nodes) from the prefix paths. In this
example, b has a support of 1 (note this really means bhas a support of 1).
» That is, there is only 1 tx containing b and e

12/13/2020 = W © Sharma Chakravarthy H‘ 18

Example of Conditional FP-Tree ending in e

Given the example tree below, FP-growth looks for itemsets
ending in e first, followed by, d, b, and finally a

Suffix Frequent Itemsets

€ (epqdep @ d ey oepae
(). (c.dy, (b, ¢, dy, ga,c,dy, gb,dy, ga,b, d}. (a,dy

d
¢ (b abe.ag
bbby

a

M

» Since every transaction is mapped onto a path in the FP-tree,
we can derive the frequent itemsets ending with a particular
item by examining only the paths containing the item’s nodes

12/13/2020 = W © Sharma Chakravarthy H 20

Summary

» A divide and conquer algorithm is used to generate
frequent itemsets

» At each recursive step. A conditional FP-tree is constructed
by updating the frequency counts along the prefix paths
and removing all infrequent items

»Because the subproblems are disjoint, FP-growth will not
generate any duplicates

»Uses a compact representation and efficient generation of
frequent itemsets

»For certain transaction data sets, FP-growth outperforms
the standard Apriori algorithm by several orders of
magnitude

12/13/2020 o © Sharma Chakravarthy H 21

Thank You !!!

For more information visit:
http://itiab.uta.edu

Spring 2019 = W

H CSE 6331

Discussion

12/13/2020 o © Sharma Chakravarthy H‘ 22

