| Data Mining<br>Anomaly Detection |                             |           |   |
|----------------------------------|-----------------------------|-----------|---|
| L                                | ecture Notes for Chap       | ter 10    |   |
| Introduction to Data Mining      |                             |           |   |
| Tan, Steinbach, Kumar            |                             |           |   |
|                                  |                             |           |   |
| © Tan,Steinbach, Kumar           | Introduction to Data Mining | 4/18/2004 | 1 |

## **Anomaly/Outlier Detection** • What are anomalies/outliers? The set of data points that are considerably different than the remainder of the data • Variants of Anomaly/Outlier Detection Problems Given a database D, find all the data points $\boldsymbol{x} \in \mathsf{D}$ with anomaly scores greater than some threshold t Given a database D, find all the data points $\boldsymbol{x} \in \mathsf{D}$ having the topn largest anomaly scores f(x) Given a database D, containing mostly normal (but unlabeled) data points, and a test point **x**, compute the anomaly score of **x** with respect to D Applications: - Credit card fraud detection, telecommunication fraud detection, network intrusion detection, fault detection C Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004 (#)

















## **Outliers in Lower Dimensional Projection**

- In high-dimensional space, data is sparse and notion of proximity becomes meaningless
  - Every point is an almost equally good outlier from the perspective of proximity-based definitions
- Lower-dimensional projection methods

Introduction to Data Mining

 A point is an outlier if in some lower dimensional projection, it is present in a local region of abnormally low density

© Tan,Steinbach, Kumar

4/18/2004

(#)

## **Density-based: LOF approach**

- For each point, compute the density of its local neighborhood
- Compute local outlier factor (LOF) of a sample *p* as the average of the ratios of the density of sample *p* and the density of its nearest neighbors
- Outliers are points with largest LOF value



In the NN approach,  $p_2$  is not considered as outlier, while LOF approach finds both  $p_1$  and  $p_2$  as outliers

4/18/2004

(#)

