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ABSTRACT

HDB-SUBDUE, A RELATIONAL DATABASE APPROACH TO GRAPH MINING

AND HIERARCHICAL REDUCTION

Publication No.

SRIHARI PADMANABHAN, M.S.

The University of Texas at Arlington, 2005

Supervising Professor: Sharma Chakravarthy

Data mining aims at discovering interesting and previously unknown patterns from

data sets. Transactional mining (association rules, decision trees etc.) can be effectively

used to find non-trivial patterns in categorical and unstructured data. For applications

that have an inherent structure (e.g., chemical compounds, proteins) graph mining is

appropriate, because mapping the structured data into other representations would lead

to loss of structure. The need for mining structured data has increased in the past few

years. Graph mining uses graph theory principles to perform mining. Database mining of

graphs aims at mining structured graph data stored in relational database tables using

SQL queries. Various kinds of data such as Social network data, Protein, and other

Bioinformatics data can be effectively represented as graphs. Graph mining has been

successful in the areas of counter terrorism analysis, credit card fraud detection, drug

discovery in pharmaceutical industry etc.

The focus of this thesis is to apply relational database techniques to accommodate

all aspects of graph mining. Our primary goal is to address scalability of graph mining

iv



to very large data sets, not currently addressed by main memory approaches. This thesis

addressed the most general graph representation including multiple edges between any

two vertices, and cycles. This thesis extends previous work (EDB-subdue) in a number

of ways: improved substructure representation to avoid false positives during frequency

counting, unconstrained substructure expansion with pseudo duplicate elimination for

expanding multiple edges, canonical ordering of substructures for getting true count,

hierarchical reduction for producing abstract pattern and generalization of DMDL that

includes the presence of multiple edges in a subgraph. We also extend the substructure

pruning to include ties when selecting top beam substructures.

v



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Subdue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Structural Data Representation . . . . . . . . . . . . . . . . . . . 5

2.1.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Hierarchical Reduction . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 Inexact Graph match . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 FSG - Frequent Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Canonical labeling . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 gSpan - graph based Substructure patternmining . . . . . . . . . . . . . 9

2.3.1 DFS Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 AGM - Apriori based Graph Mining . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Candidate Generation . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 DB-Subdue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 EDB-Subdue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3. OVERVIEW OF HDB-SUBDUE . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Graph Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vi



3.2 Generalization of Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Limitations of this approach . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4. DESIGN ISSUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Need for new substructure instance representation . . . . . . . . . . . . . 25

4.1.1 Limitation of extensions . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.2 Connectivity map . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Unconstrained expansion and Elimination Of Duplicate Instances . . . . 27

4.3 Canonical Label ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Multiple Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 Significance of Edge numbers . . . . . . . . . . . . . . . . . . . . 34

4.5 Handling Cycles in input graph . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Database Minimum Description Length . . . . . . . . . . . . . . . . . . . 36

4.6.1 Number of substructure vertices . . . . . . . . . . . . . . . . . . . 39

4.6.2 Non Zero Rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6.3 Instance counting . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Hierarchical Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.7.1 Identifying the best substructure . . . . . . . . . . . . . . . . . . 43

4.7.2 Compressing the input graph . . . . . . . . . . . . . . . . . . . . 44

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5. IMPLEMENTATION DETAILS . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 Pseudo-duplicate Elimination . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Substructure pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2.1 Analytic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2 Top N with ties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Database Minimum Description Length . . . . . . . . . . . . . . . . . . . 52

vii



5.4 Hierarchical Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6. PERFORMANCE EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Graph Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Writing Log File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4.1 Without cycles and multiple edges . . . . . . . . . . . . . . . . . 64

6.4.2 Dataset with multiple edges and cycles . . . . . . . . . . . . . . . 66

6.4.3 Hierarchical Reduction . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4.4 Module Running times . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5.1 Inplace deletes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5.2 Correlated Queries . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5.3 Using Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . 81

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

BIOGRAPHICAL STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

viii



LIST OF FIGURES

Figure Page

2.1 Frequent Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 gSpan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Example Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Avoiding spurious count . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Pseudo duplicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Acetylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 2 edge substructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.7 DMDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.8 Hierarchical reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Graphs without cycles and multiple edges . . . . . . . . . . . . . . . . . . 65

6.2 Graphs without cycles and multiple edges . . . . . . . . . . . . . . . . . . 67

6.3 Graphs with cycles and multiple edges . . . . . . . . . . . . . . . . . . . . 68

6.4 Graphs with cycles and multiple edges . . . . . . . . . . . . . . . . . . . . 70

6.5 Sample graphs for Hierarchical reduction . . . . . . . . . . . . . . . . . . 70

6.6 Hierarchical Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.7 Module running times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

ix



LIST OF TABLES

Table Page

2.1 Canonical Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Canonical Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 DFS code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Summary of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Vertex table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Edge table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Oneedge table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Instance 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Sub Fold 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Updated Sub Fold 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Instanceiter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 EDB-Subdue instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 HDB-Subdue instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Instance table - Before canonical ordering . . . . . . . . . . . . . . . . . . 28

4.4 Unsorted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Sorted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6 Old Ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.7 New Ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.8 Sorted Ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.9 Instance table - After canonical ordering . . . . . . . . . . . . . . . . . . 31

4.10 Before ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

x



4.11 After ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.12 Oneedge table with multiple edges . . . . . . . . . . . . . . . . . . . . . . 33

4.13 Instance table without Vertex invariants . . . . . . . . . . . . . . . . . . . 35

4.14 Instance table with Vertex invariants . . . . . . . . . . . . . . . . . . . . 36

4.15 Instance table after canonical ordering . . . . . . . . . . . . . . . . . . . . 36

4.16 Adj matrix of (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.17 Adj matrix of (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.18 Subfold 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.19 Subfold 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.20 Subfold 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.21 Instance 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.22 Unique vertex number groups . . . . . . . . . . . . . . . . . . . . . . . . 42

4.23 Sub Fold 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.24 BestInstances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.25 Vertex table before . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.26 Edge table before . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.27 Vertex table after . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.28 Edge table after . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Instance table - Before canonical ordering . . . . . . . . . . . . . . . . . . 46

5.2 Unsorted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Old Ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Sorted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 New Ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Sorted Ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.7 Instance table - After canonical ordering . . . . . . . . . . . . . . . . . . 49

5.8 Instance table - After Pseudo Elimination . . . . . . . . . . . . . . . . . . 50

xi



5.9 Sorted DMDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.10 Using Rownum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.11 Sorted DMDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.12 BestInstances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.13 Vertex table before . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.14 Oneedge - Before . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.15 Compressed 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.16 Vertex table-After . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.17 Oneedge-After . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Instances discovered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.3 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4 Instances discovered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.6 Performance of In-place delete Vs Join query (Time Unit: Seconds) . . . 78

6.7 Performance of Correlated queries (Time Unit: Seconds) . . . . . . . . . 79

6.8 Performance using Indexes (Time Unit: Seconds) . . . . . . . . . . . . . . 80

xii



CHAPTER 1

INTRODUCTION

With the advent of automated data collection tools, massive amounts of data are

being generated. As the cost per gigabyte is diminishing, the data being stored is in-

creasing. It is important to extract useful knowledge from these stored data to aid in

decision-making. Data mining tasks help in discovering non-trivial patterns that are

difficult to find manually. Data mining is one of the steps in Knowledge Discovery in

Databases (KDD). The steps in KDD are

1. Data collection,

2. Data cleaning and transformation,

3. Choosing the data mining function (summarization, classification, regression, asso-

ciation, clustering)

4. Data Mining,

5. Visualization of results.

Data mining has been a topic of research for quite some time [1, 2, 3] with much of

the work on discovering association rules from transactional data represented as (binary)

relations. Transactional data mining is widely used in detecting patterns from unstruc-

tured data. A popular example is the market basket analysis. For applications that

have an inherent structure (e.g., chemical compounds, proteins, social networks) graph

mining is appropriate as compared to other techniques as mapping them into other rep-

resentations would lose the inherent structure. We employ the principles of graph theory

to achieve graph mining. The ability to mine over graphs is important, as graphs are

capable of representing complex relationships. Graph mining uses the natural structure

1



2

of the application domain and mines directly over that structure (unlike others where

the problem has to be mapped to transactions or other representations.) Several graph

mining approaches are introduced in this chapter.

Subdue [4] is a mining approach that works on graph representation. Subdue iden-

tifies concepts describing interesting and repetitive substructures within the structural

data. Subdue uses the principle of minimum description length (or MDL) to evaluate the

substructures. The minimum description length principle [5] states that the best theory

to describe a set of data is a theory that minimizes the description length of the whole

data set. Subdue constructs the whole graph and stores it in the form of an adjacency

matrix in main memory and then mines by iteratively expanding each vertex into larger

subgraphs. Main memory data mining algorithms typically face two problems with re-

spect to scalability. Graphs could be larger than the main memory available and hence

cannot be loaded into main memory or the algorithm could be computationally expensive

and the space required for computation is more than the available main memory.

This has motivated the development of graph mining algorithms using SQL and

stored procedures using Relational database management systems (RDBMSs). Represen-

tation of a graph, generation of larger subgraphs, checking for exact and inexact matches

of subgraphs are not straightforward in SQL. The input (which is a graph) has to be

represented using relations and operations have to use joins (or other relational opera-

tions) for mining repetitive substructures. DBMS version of Subdue (DB-Subdue [6, 7])

was developed for the DB2 database. It explains the mapping of substructures to tuples

in the database. DB-Subdue was the first attempt to support graph mining using an

RDBMS. The goal was to demonstrate the feasibility and scalability of the approach and

the test results confirmed that it can easily scale to very large graphs (largest tested

graph had 800,000 vertices and 1600,000 edges).
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Although DB-Subdue solved the scalability problem, it did not deal with a general

form of a graph which can have multiple edges between any two vertices, and cycles

as well. It also did not have the equivalent of MDL but used count (or frequency)

for determining the best substructure. Only exact matches (of subgraphs) were identi-

fied. The frequency metric used for substructure evaluation does not distinguish between

two overlapping substructures having the same number of edges and vertices and the

same number of instances. Host variables are used for exchanging data (extracted using

cursors) between the database and the host programming language. DB2 does not sup-

port declaring an array of host variables and hence the generalization for the algorithm

could not be achieved. Separate host variables had to be declared for each pass. The

DB-Subdue algorithm handles only exact matches between subgraphs. In most of the

real-life applications, such as discovering chemical compounds or other domains, there

are very few scenarios in which exact graph matches are suitable.

EDB-Subdue [6, 8] extends DB-Subdue and it overcomes some of the limitations

of DB-Subdue. EDB-Subdue achieved generalization of the algorithm by using Oracle

database which supports the declaration of array of host variables. It also introduced

DMDL (Database Minimum Description Length), which follows the trend of Subdue

MDL and discriminates substructures with same signature. DB-Subdue does not have

the capability to handle cycles in the input graph. EDB-Subdue can detect cycles and

it attaches an arbitrary number to the vertex that creates the cycle, to avoid repeated

expansions on the vertex that creates the cycle. It also partially explored inexact graph

matching in C code using cursors. EDB-Subdue constrains the substructure expansion

to avoid duplicate substructure instance generation, and in that process it fails to expand

multiple edges between vertices. It uses extension concept to represent direction of edges.

Since extensions did not have terminating vertex information of edges, false positives were
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introduced during frequency counting. EDB-Subdue also did not perform hierarchical

reduction.

The focus of this thesis is to handle multiple edges, cycles, and hierarchical re-

duction to deal with a general graph. In this thesis we use unconstrained substructure

expansion with duplicate elimination, to explore all possible expansions and expand mul-

tiple edges. In HDB-Subdue we introduce connectivity attributes which have complete

information about the edges with vertex number invariant and connectivity information.

Cursors were used in EDB-Subdue for selecting user specified number (beam) of inter-

esting substructures in each iteration. We also avoid the use of cursors and instead use

SQL based Analytic functions to implement the beam.

The rest of this thesis is organized as follows. CHAPTER 2 discusses the back-

ground and related work in the field of graph-based data mining and the various ap-

proaches used for mining structural data. CHAPTER 3 provides the overview of HDB-

Subdue. CHAPTER 4 discusses the design issues for the new functionalities and enhance-

ments that have been added to EDB-Subdue. CHAPTER 5 presents implementation

details of all the issues that are explained in the design chapter. CHAPTER 6 presents

performance evaluation including comparison with the Subdue algorithm. CHAPTER 7

concludes the thesis and identifies potential future work.



CHAPTER 2

RELATED WORK

During the past decade, the field of data mining has emerged as a novel field of

research, investigating interesting research issues and developing challenging real-life ap-

plications [1]. In this section we briefly describe some of the ongoing research activity in

the area of graph mining. Some of the works are Subdue, FSG (Frequent SubGraph dis-

covery), gSpan (graph-based Substructure pattern mining), AGM (Apriori-based Graph

Mining), DB-Subdue and EDB-Subdue.

2.1 Subdue

Subdue is one of the earliest works in graph based data mining. It uses adjacency

matrix for representing graphs. Apart from doing exact graph match, Subdue [4] has

the capability of matching two graphs, differing by the number of vertices specified by

the threshold parameter, inexactly. Subdue also has the ability to handle multiple edges

between vertices and also handles cycles in the input graph.

2.1.1 Structural Data Representation

The substructure discovery system represents data as a labeled graph. Objects in

the data are represented either as vertices or as small subgraphs and the relationships

between them are represented as edges. A substructure is a connected subgraph within

a graph. An instance of the substructure in the graph is a set of vertices and edges that

have the same vertex labels, edge labels and edge directions as that of the substructure.

5
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An edge can be either directed or undirected. The substructures are evaluated based on

a metric called Minimum Description Length [9] principle based on adjacency matrices.

2.1.2 Supervised Learning

The Subdue Concept Learner (SubdueCL) [10] is an extension to the Subdue system

aimed at supervised pattern discovery. Positive and negative examples of a phenomenon

being available for input, SubdueCL searches for a pattern that compresses the positive

graphs, but not the negative graphs. For example, given positive graphs describing

criminal networks and negative graphs describing normal social networks, Subdue can

learn patterns distinguishing the two, and these patterns can be used as a predictive

model to identify emerging criminal networks.

2.1.3 Hierarchical Reduction

Cluster analysis [11] or simply clustering, is a data mining technique often used

to identify various groupings or taxonomies in real world databases. The purpose of

applying clustering to a database is to gain a better understanding of the data, in many

cases by highlighting hierarchical topologies. An example of a hierarchical clustering is

the classification of vehicles into groups such as cars, trucks, motorcycles, tricycles, and

so on, which are then further subdivided into smaller groups based on observed traits.

The SUBDUE algorithm compresses the input graph with the best substructure that it

discovers in each iteration. The compression is carried on till the user specified limit is

reached or when there are no more substructures to compress.

Cobweb [12] and Labyrinth [13] are also some of the clustering approaches.
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2.1.4 Inexact Graph match

Though exact graph match comparison discovers interesting substructures, most

of the substructures in the graph may be slight variants of another substructure. In

order to detect these, the algorithm developed by Bunke and Allerman [14] is used where

each distortion is assigned a cost. A distortion is defined as the addition, deletion or

substitution of vertices or edges. The two graphs are said to be isomorphic as long as the

distortion cost difference falls within the user specified threshold. This algorithm is an

exponential algorithm as it compares each vertex with every other vertex in the graph.

The branch and bound approach used by Subdue makes the algorithm computationally

bound as the number of mappings considered are quite less when compared to all the

possible mappings.

2.2 FSG - Frequent Subgraphs

FSG [15] uses graphs to model frequent itemset mining. For example it converts a

basket of items into vertices connecting every vertex to every other vertex by an edge.

Subgraphs that occur frequently over a large number of baskets will form patterns which

include frequent itemsets in the traditional sense. In simple terms FSG can be stated

as follows. Given a graph data set G = {G1, G2, G3, · · · } the problem is to discover

subgraph(s) that occur in most of the graphs in G.

The key features of FSG are:

1. Uses a sparse graph representation

2. Increases the size of frequent subgraphs by adding one edge at a time

3. Uses canonical labeling and graph isomorphism and

4. Involves candidate generation and frequency counting

5. Restricts discovery by finding only the subgraphs that are connected
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The kernel of frequent subgraph mining is candidate generation and subgraph iso-

morphism test. FSG initially enumerates all the frequent single and double edge graphs.

During each iteration it first generates candidate subgraphs whose size is greater than

the previous frequent ones by one edge. Next, it counts the frequency for each of these

candidates, and prunes subgraphs that do no satisfy the support constraint. Discovered

frequent subgraphs satisfy the downward closure property of the support condition which

is used for pruning the lattice of frequent subgraphs. Subgraph isomorphism is achieved

using canonical labeling.

2.2.1 Canonical labeling

Canonical labeling is performed to get a total order of graphs. A canonical label

is a unique code of a given graph [16, 17]. Canonical labels of two graphs should

always be same, as long as the graphs have the same topological structure and the same

labeling of edges and vertices. Computing canonical labels is equivalent to determining

isomorphism between graphs, because if two graphs are isomorphic with each other, their

canonical labels must be identical. The canonical label is generated by using a flattened

representation of the adjacency matrix of a graph. To compute a canonical label of a

graph, all the permutations of its vertices are tried to see which order of vertices gives

the minimum adjacency matrix. To narrow down the search space, the vertices are

partitioned by their degrees and labels using a technique called vertex invariants [16].

Then all possible permutations of vertices inside each partition are generated.

The vertex invariant partitioning for Fig 2.1 is shown in tables Tab 2.1 and Tab

2.2. The matrix on the left gives a label of 000e1e0e0, while the right one has a label of

000e0e1e0. Because e0 < e1 and 000e0e1e0 < 000e1e0e0 by string comparison, the label of

the right matrix becomes the canonical label.
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Figure 2.1 Frequent Subgraphs

Table 2.1 Canonical Label

id d a c b
label v0 v0 v1 v0

partition 0 1 2
d 0 0 0 e1

a 0 0 0 e0

c 0 0 0 e0

b e0 e1 e0 0

Table 2.2 Canonical Label

id a d c b
label v0 v0 v1 v0

partition 0 1 2
a 0 0 0 e0

d 0 0 0 e1

c 0 0 0 e0

b e0 e1 e0 0

2.3 gSpan - graph based Substructure pattern mining

gSpan [18] is one of the approaches that perform frequent graph based data mining

like FSG.

The challenges met by Apriori-like algorithms are:

1. Candidate generation: the generation of size k+1 subgraph candidates from size k

frequent subgraphs is more complicated and costlier than that of itemsets; and

2. Pruning false positives: subgraph isomorphism test is an NP-complete problem,

thus pruning false positives is expensive.

Unlike FSG, gSpan discovers frequent substructures without candidate generation

and false positives pruning. It builds a lexicographic order among graphs, and maps each

graph to a unique minimum DFS code as its canonical label. Based on this lexicographic

order, gSpan adopts the depth-first search strategy to mine frequent connected subgraphs.
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gSpan is a main memory algorithm and if the entire graph does not fit in main

memory, graph-based data projection as in PrefixSpan [19] is applied and then gSpan is

performed.

Figure 2.2 gSpan

2.3.1 DFS Coding

A Depth First Search is conducted on a graph to generate DFS trees. Multiple

DFS trees can exist for a graph because the root vertex can be any arbitrary vertex in

the graph. A DFS code for any tree is a set of 5-tuples (i,j,li,l(i,j),lj), where li and lj

are labels of vertex i and vertex j respectively and l(i,j) is the label of the edge between

them. Tab 2.3 shows the corresponding DFS codes for Fig 2.2. Since a graph can have

more than one DFS tree and hence more than one DFS code we select the Minimum DFS

code as the one that occurs earliest in the lexicographic order and designate it as the

canonical label for the graph. Thus the problem of mining frequent connected subgraphs

is equivalent to mining their corresponding minimum DFS codes. gSpan was shown to

perform better than FSG because it combines the growing and the isomorphism checking

into a single phase.
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Table 2.3 DFS code

Edge 5 Tuple
0 (0,1,X,a,Y)
1 (1,2,Y,b,X)
2 (2,0,X,a,X)
3 (2,3,X,c,Z)
4 (3,1,Z,b,Y)
5 (1,4,Y,d,Z)

2.4 AGM - Apriori based Graph Mining

Apriori based Graph Mining approach [20, 1] mines induced frequent subgraphs

in graph structured transactions. Similar to Market-Basket Analysis, the interestingness

of a subgraph is defined along the support and the confidence of the Apriori algorithm.

The graph represented by using an adjacency matrix can only represent a graph which

includes labeled nodes and is not suitable to represent labeled links and self-loop links.

A preprocessing is applied to convert the general graph transaction data to the graphs

having labeled nodes, unlabeled links and no self-loop links. The rows and the columns

corresponding to the graph nodes in the adjacency matrix are lexicographically ordered in

terms of the node labels to reduce the ambiguity of graph representation. A code, defined

by the non-diagonal elements of the adjacency matrix is taken as the canonical code for

a graph. Once the graphs are represented by the codes of their adjacency matrices, the

codes of the frequent induced subgraphs are derived in A bottom up manner similar to

Apriori algorithm. An induced subgraph is defined by the following definition.

V (G′) ⊆ V (G), E(G′) ⊆ E(G) and (2.1)

∀u, v ∈ V (G′)u, v ⊆ E(G) ⇔ u, v ⊆ E(G′) (2.2)
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where V(G) is the set of all nodes in the graph G, and E(G) is the set of all links

u, v connecting u and v in the graph G, where u, v ⊆ V(G). G’ is an induced subgraph

of G, if G’ has a subset of the nodes of G and all the links between pairs of nodes as

in G. The graph whose frequency exceeds the minimum support is called as a ‘frequent

induced subgraph’.

2.4.1 Candidate Generation

Two frequent induced subgraphs G(Xk) and G(Yk) are joined to generate a can-

didate frequent induced subgraph Zk+1 of size k+1. That is, induced k+1-subgraph is

generated, if both G(Xk) and G(Yk) have the same elements in the matrices except for

the elements of the k-th row and the k-th column. Frequency of each candidate frequent

induced subgraph is counted by scanning the database after generating all the candidates

of frequent induced subgraphs and obtaining their canonical forms. Trie data structure

is used in implementing frequency counting.

2.5 DB-Subdue

The downside in Subdue main memory algorithm is its scalability to large problems.

This has motivated the development of graph mining algorithms using SQL and stored

procedures using Relational database management systems (RDBMSs). The graph input

is represented using relations, and operations use joins (or other relational operations)

for mining repetitive substructures. At the same time, it is necessary that the Relational

approaches avoid manipulations that are known to be inefficient (e.g., correlated sub-

queries, cursors on large relations, in-place updates and deletes from a relation). The

DBMS version of Subdue (DB-Subdue) [6, 7] was developed for the DB2 database using

the C language. The experiments show that it can mine graphs with millions of vertices

and edges with sub-linear growth in the computation time. DB-Subdue has several ap-
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proaches for graph mining, such as the cursor-based approach, the UDF based approach

and the enhanced cursor-based approach. The enhanced cursor-based approach, which

was the last approach implemented, proved that the DB-Subdue scales better for larger

graphs as compared to the main memory version. DB-Subdue started to perform better

than Subdue for input graphs with more than 500 vertices and 1000 edges. It uses pure

SQL statements and indexing techniques to improve the performance of the algorithm.

DB-Subdue was able to mine data sets with 800K vertices and 1600K edges.

2.6 EDB-Subdue

EDB-Subdue [8, 6] is an extension of DB-Subdue and was developed in an effort

to handle certain aspects of graph input like cycles, overlap and inexact graph match

which were not considered in DB-Subdue. DB-Subdue uses frequency as the substructure

evaluation metric. Frequency does not differentiate substructures having same signature

(having same number of vertices and frequency count). Hence, some of the the best

substructures may not be detected because of pruning when the beam is applied based

on the count. EDB-Subdue overcomes this limitation by using a substructure evaluation

metric called DMDL (Database Minimum Description Length).

EDB-Subdue uses cursors to implement the beam for limiting the number of sub-

structures considered for the next pass. Host variables are declared for exchanging data

(extracted using cursors) between the database and the host programming language.

Since DB2 does not support declaring an array of host variables and hence the gener-

alization of DB-Subdue algorithm could not be achieved. Separate host variables and

queries had to be declared for each pass.

EDB-Subdue is implemented using Oracle DBMS. The advantage with the Oracle

database is that it supports declaration of array host variables and hence the general-

ization can be achieved without having to declare separate host variables for each pass.
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This is an improvement over using the DB2 database. EDB-Subdue developed a formula

for evaluating the substructures (termed DMDL) which is able to distinguish the best

substructure among substructures of equal edge length and frequency. Also it handles

inexact graph matching by using cursors and invoking the C subroutine that compares

2 subgraphs for a threshold and return a boolean value. The cursor usage poses some

problems when the size of the graph is very large as this approach involves N 2 compar-

isons.

Tab 2.4 shown below, gives a summary of the approaches discussed above and

their capabilities. We can see that all the main memory approaches have a limitation

on the largest dataset that they can handle, but they offer more capabilities than the

approached based on database. The database approaches are catching up with the main

memory counterparts in terms of the capabilities.

Table 2.4 Summary of Related Work

Subdue FSG AGM DB-Subdue EDB-Subdue
Graph Mining

√ √ √ √ √

Multiple edges
√ × × × ×

Hierarchical Redn
√ × × × ×

Cycles
√ √ √ × √

Eval Metric MDL Frequency Support Frequency DMDL
Inex graph match

√ × × × Partial
Memory limitation

√ √ √ × ×



CHAPTER 3

OVERVIEW OF HDB-SUBDUE

3.1 Graph Representation

In this chapter we will describe how graphs are represented in a database and

expanded one edge at a time. Since databases only have relations, we need to convert

the graph into tuples in a relation. The input which is a connected or a disconnected

graph is read from a flat file and loaded into the database using SQL Loader. The vertices

in the graph are inserted into a relation called Vertices and the edges are inserted into

a relation called Edges. For the graph shown in Fig 3.1, the corresponding vertices and

the edges relations are shown in Tab 3.1 and Tab 3.2.

Figure 3.1 Example Graph

From the vertex and edge relation, a new relation called oneedge as shown in Tab

3.3 is created which will contain all instances of substructures of size one. The oneedge

relation is created because the edges relation does not contain information about the

vertex labels. For a one edge substructure, the edge direction is always from the first

15
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Table 3.1 Vertex table

Vertex No Vertex Name

1 A

2 B

3 C

4 D

5 A

6 B

7 C

8 A

9 B

10 C

Table 3.2 Edge table

Vertex 1 Vertex 2 Edge Label

1 2 AB

1 3 AC

2 4 BD

4 5 DA

5 6 AB

5 7 AC

8 9 AB

8 10 AC

vertex to the second vertex. This is why there are no attributes in the oneedge table

which specify the direction. For a higher edge substructure, we introduce connectivity

attributes to denote the direction of edges between the vertices of the substructure. The

oneedge table is the base table we would be using for generating higher edge substructures.

For each edge in the oneedge table we assign a unique identifier called edge number. We

will discuss the usefulness of edge numbers in the design issues chapter. We remove the

edges from oneedge, which have only one instance, since these substructures will not

expand to have more than one instance in the larger substructures (there may be one

instance substructures produced later when repeated substructures of length i grow to

substructures of length i + 1). This removal of single instance edges is applicable to

exact mach. For inexact matches, single instance edges cannot be removed.

To generate a two edge substructures we join oneedge relation with itself. We term

the resulting two edge substructure table as instance 2. In general, substructures of size i

are generated by joining instance (i-1) relation with oneedge relation. Hence, to generate

three edge substructures (i.e., instance 3), we would join instance 2 and oneedge relations

on the matching vertices. In case of substructures that have 2 or more edges, we would

need attributes to denote the direction of the edges. The From and To (F and T for



17

Table 3.3 Oneedge table

Vertex 1 Vertex 2 Edge No Edge Label Vertex1 Name Vertex2 Name
1 2 1 AB A B
1 3 2 AC A C
2 4 3 BD B D
4 5 4 DA D A
5 6 5 AB A B
5 7 6 AC A C
8 9 7 AB A B
8 10 8 AC A C

short) attributes in the instance n table serve this purpose. An n edge substructure is

represented by n+1 vertex numbers, n+1 vertex labels, n edge numbers, n edge labels

and n From and To pairs. In general, 6n+2 attributes are needed to represent an n-edge

substructure. Note that the edge numbers are not part of the input. Edge numbers are

assigned internally by the system to distinguish between edges between the same vertices

and have the same edge label. Though edge numbers are part of every instance n table,

owing to the space constraint, we will be showing it only in sections where they are

necessary. In HDB-Subdue the size denotes the number of edges in the substructure.

Instance 2 relation for the graph in Fig 3.1 is shown in Tab 3.4.

Table 3.4 Instance 2

V1 V2 V3 VL1 VL2 VL3 E1 E2 EL1 EL2 F1 T1 F2 T2
1 2 4 A B D 1 3 AB BD 1 2 2 3
1 2 3 A B C 1 2 AB AC 1 2 1 3
2 4 5 B D A 3 4 BD DA 1 2 2 3
4 5 6 D A B 4 5 DA AB 1 2 2 3
5 6 7 A B C 5 6 AB AC 1 2 1 3
4 5 7 D A C 4 6 DA AC 1 2 2 3
8 9 10 A B C 7 8 AB AC 1 2 1 3
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Table 3.5 Sub Fold 2

VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2 COUNT DMDL
A B C AB AC 1 2 1 3 3 1.8
A B D AB BD 1 2 2 3 1 0.9
B D A BD DA 1 2 2 3 1 0.9
D A B DA AB 1 2 2 3 1 0.9
D A C DA AC 1 2 2 3 1 0.9

The edge label, which is just a string of text, does not give any information about

the vertex it is originating or terminating from. One can get this information from the

connectivity attributes Fi and Ti, which tell us that the edge i is originating at Fi and

terminating at Ti. Note that the Fi and Ti are relative to the substructure. That is,

the values of the attributes Fi and Ti do not indicate the actual vertex numbers but

the attributes whose value correspond to the vertex numbers. Let us consider the fourth

substructure in the instance 2 table. For edge DA the value of F1 is 1 indicating that

the edge originates from the vertex number stored in V1 which is 4 and T1 is 2 meaning

it terminates at vertex number stored in V2 which is 5. Hence, the edge DA is between

the vertices 4 and 5. Similarly, the edge AB (on the same row) originates from vertex 5

and terminated at vertex 6.

To evaluate a substructure we identify similar substructures and count them. Pro-

jection on the vertex labels, edge labels and connectivity attributes in the instance n table

and a GROUP BY on the same attributes will produce the count of each substructure

and using the count we calculate the DMDL value of each substructure and insert it into

a table called Sub Fold n. Sub Fold 2 is shown in Tab 3.5. We use the term substruc-

tures when we refer to the tuples in Sub Fold n relation, and instances when referring

to the tuples in instance n. Instances include vertex numbers whereas substructures are

described without vertex numbers. Hence a substructure has many instances which vary
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essentially with respect to the vertex numbers that make them unique. Substructures of

count 1 are eliminated from the Sub Fold 2 as they do not contribute to the repeated

higher edge substructures (As we are considering only exact matches; this will not be

the case for inexact matches.) The updated Sub Fold 2 is shown in Tab 3.6. Often

we may be interested only in expanding k best substructures. To achieve this we sort

the Sub Fold n in the descending order of the evaluation metric (DMDL or Count) and

retain only the top k substructures (k corresponds to the beam parameter value). In

order to get at the instances corresponding to the substructures in Sub Fold n, we join

the updated Sub Fold n with Instance n and insert the resulting instances into another

table called InstanceIter n. Only the instances present in InstanceIter n participate in

the next level of expansion.

Table 3.6 Updated Sub Fold 2

VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2 COUNT DMDL
A B C AB AC 1 2 1 3 3 1.8

Table 3.7 Instanceiter 2

V1 V2 V3 VL1 VL2 VL3 E1 E2 EL1 EL2 F1 T1 F2 T2
1 2 3 A B C 1 2 AB AC 1 2 1 3
5 6 7 A B C 5 6 AB AC 1 2 1 3
8 9 10 A B C 7 8 AB AC 1 2 1 3
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3.2 Generalization of Expansion

The InstanceIter 1 relation shown in Tab 3.7 contains all the instances of the

single edge substructure that have been chosen for further expansion. Each single edge

substructure can be expanded to a two-edge substructure on any of the two vertices in

the edge. In general, an n edge substructure can be expanded on n + 1 vertices in the

substructure. All possible single edge substructures are listed in the oneedge relation. So

by making a join with the oneedge relation we can always extend a given substructure

by one edge. In order to make an extension, one of the vertices in the substructure has

to match a vertex in the oneedge relation. The following queries extend a single edge

substructure in all possible ways:

/* Query to expand self edge on vertex 1 */

INSERT INTO instance_2 (

SELECT s.vertex1, s.vertex2, 0, s.vertex1name, s.vertex2name, ’-’,

s.edge1, o.edge, s.edge1name, o.edgename, s.from_1, s.to_1, 1, 1

FROM InstanceIter_1 s,oneedge o

WHERE o.vertex1=s.vertex1 and o.edge<>s.edge1 and o.vertex2=s.vertex1)

/* Query to expand multiple edge from V1 to V2*/

INSERT INTO instance_2 (

SELECT s.vertex1, s.vertex2, 0, s.vertex1name, s.vertex2name, ’-’,

s.edge1, o.edge, s.edge1name, o.edgename, s.from_1, s.to_1, 1, 2

FROM InstanceIter_1 s, oneedge o

WHERE o.vertex1=s.vertex1 and o.edge<>s.edge1 and o.vertex2=s.vertex2)

/* Query to expand multiple edge from V2 to V1*/

INSERT INTO instance_2 (

SELECT s.vertex1, s.vertex2, 0, s.vertex1name, s.vertex2name, ’-’,
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s.edge1, o.edge, s.edge1name, o.edgename, s.from_1, s.to_1, 2, 1

FROM InstanceIter_1 s, oneedge o

WHERE o.vertex1=s.vertex2 and o.edge<>s.edge1 and o.vertex2=s.vertex1)

/* Query to expand self edge on vertex 2 */

INSERT INTO instance_2 (

SELECT s.vertex1, s.vertex2, 0, s.vertex1name, s.vertex2name, ’-’,

s.edge1, o.edge, s.edge1name, o.edgename, s.from_1, s.to_1, 2, 2

FROM InstanceIter_1 s, oneedge o

WHERE o.vertex1=s.vertex2 and o.edge<>s.edge1 and o.vertex2=s.vertex2)

/* Query to expand on V1 to new vertex V3 */

INSERT INTO instance_2 (

SELECT s.vertex1, s.vertex2, o.vertex2, s.vertex1name, s.vertex2name,

o.vertex2name, s.edge1, o.edge, s.edge1name, o.edgename,

s.from_1, s.to_1, 1, 3

FROM InstanceIter_1 s, oneedge o

WHERE o.vertex1=s.vertex1 and o.edge<>s.edge1 and o.vertex2<>s.vertex1

and o.vertex2<>s.vertex2)

/* Query to expand on V2 to new vertex V3 */

INSERT INTO instance_2 (

SELECT s.vertex1, s.vertex2, o.vertex2, s.vertex1name, s.vertex2name,

o.vertex2name, s.edge1, o.edge, s.edge1name, o.edgename,

s.from_1, s.to_1, 2, 3

FROM InstanceIter_1 s, oneedge o

WHERE o.vertex1=s.vertex2 and o.edge<>s.edge1 and o.vertex2<>s.vertex1
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and o.vertex2<>s.vertex2)

/* Query to expand incoming edge on V1 from new vertex V3 */

INSERT INTO instance_2 (

SELECT s.vertex1, s.vertex2, o.vertex1, s.vertex1name, s.vertex2name,

o.vertex1name, s.edge1, o.edge, s.edge1name, o.edgename,

s.from_1, s.to_1, 3, 1

FROM InstanceIter_1 s, oneedge o

WHERE o.vertex2=s.vertex1 and o.edge<>s.edge1 and o.vertex1<>s.vertex1

and o.vertex1<>s.vertex2)

/* Query to expand incoming edge on V2 from new vertex V3 */

INSERT INTO instance_2 (

SELECT s.vertex1, s.vertex2, o.vertex1, s.vertex1name, s.vertex2name,

o.vertex1name, s.edge1, o.edge, s.edge1name, o.edgename,

s.from_1, s.to_1, 3, 2

FROM InstanceIter_1 s, oneedge o

WHERE o.vertex2=s.vertex2 and o.edge<>s.edge1 and o.vertex1<>s.vertex1

and o.vertex1<>s.vertex2)

Since the connectivity attributes are different for each type of expansion we need

separate queries for each kind of expansion. Two kinds of expansion are possible. One in

which both the vertices of the newly added edge are already present in the substructure

instance. Second, in which only one of the vertex of the newly added edge is present

in the substructure instance. Queries 1 to 4 show the expansions corresponding to the

former case. Queries 5 to 8 show the expansion corresponding to the latter case. If

both the vertices of newly added edge are already present in the substructure instance,

then we are expanding a cycle or a multiple edge and therefore we mark the repeating
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vertex number by vertex invariants 0’s and -’s which we will be discussing in detail in the

design chapter. In general for expanding an n edge substructure, we need n2 queries for

matching V1 of oneedge onto V1 of the instance table and comparing V2 of oneedge to

V1, V2..Vn of instance table, then matching V1 of oneedge onto V2 of the instance table

and comparing V2 of oneedge to V1, V2..Vn of instance table and so on. In addition to

that we need n queries for expanding outgoing edges, matching V1 of oneedge onto V1,

V2..Vn of instance table and adding the new vertex V2 of oneedge into the substructure

instance. Also we need n queries for expanding incoming edges, matching V2 of oneedge

onto V1, V2..Vn of instance table and adding the new vertex V1 of oneedge into the

substructure instance. In short to expand n edge substructure to n+1 edge substructure

we need n2+2∗n queries. To avoid the inclusion of an existing edge into the substructure

instance we compare the edge number of the incoming edge with all the edge numbers

of the existing edges in the instance and allow the inclusion only when it is not already

present.

The n edge substructure instances are stored in the InstanceIter n relation. In

order to expand to n+1 edge substructures, an edge is added to the existing n edge

substructure. Therefore, the InstanceIter n relation is joined with the oneedge relation

to add an edge to the substructure. The Sub Fold n relation is in turn generated from

the Instance n relation. For each substructure the DMDL value is computed. Then

we apply user specified beam to retain only best k substructures in Sub Fold n. The

InstanceIter n is then generated which has only the instances of the beam tuples that

will be used for expansion to the next size. The main halting condition for the algorithm

is the user specified parameter termed as MaxSize. Once the algorithm discovers all

the substructures of the MaxSize the program terminates. Another halting condition for

the algorithm is when no substructures are generated for expansion. This can happen
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if all the substructures generated have a count value of 1 in which case they will all be

eliminated.

3.3 Limitations of this approach

There are some limitations of representing a subgraph as a tuple of a relation. The

approach presented in HDB-Subdue uses a tuple to represent a subgraph. This means

that the number of attributes in the relation will grow as the size of the substructure

increases. This may eventually place a limit on the size of the maximum substructure

that can be detected, as there is a limit on the number of columns a relation can have in

a Relational database. It is 1012 for the DB2 database system and 1000 for Oracle 10g.

Since, the instance n would need 6n+2 attributes for describing an n edge substructure,

the algorithm can discover substructures of size 165 at the most. It may vary for other

commercial databases.

3.4 Summary

In this section we discussed how we capture the graph information in database using

relations and how we prune the count one instances to avoid wasteful computation in

future expansions. Also we discussed a generalization for substructure expansion covering

all possible expansion types and we also talked about the limitations of storing graphs

in relational databases.



CHAPTER 4

DESIGN ISSUES

This chapter gives a detailed explanation of the design issues involved in modeling

certain aspects of graph mining. Some of the aspects that will be discussed in this chapter

are unconstrained expansion, Pseudo duplicate elimination, generalization of the DMDL

formula, Handling multiple edges, canonical label ordering, and hierarchical reduction.

We first establish a complete and correct representation of a graph on which the

rest of the computations are performed.

4.1 Need for new substructure instance representation

A substructure is represented by a set of attributes to capture the features of a

graph. EDB-Subdue uses a set of attributes called extensions (in addition to others)

to capture edge information. It captures the direction of the edge by storing the orig-

inating vertex attribute number and uses the default value for the other vertex. An

extension attribute is either positive or negative. If the extension is positive, then the

edge is originating from an existing vertex and terminating in the newly added vertex.

If the extension is negative then the edge is originating from the newly added vertex and

terminating in an existing vertex. Since one attribute is used for representing an edge,

an n-edge substructure is captured with n-1 extension attributes; the direction of the

first edge is assumed to be always from Vertex1 (actually the vertex number in vertex1)

to Vertex2. Tab 4.1 shows all the three edge substructure instances using EDB-Subdue

representation for the graph shown in Fig 4.1. Let us consider the first substructure.

The extension E1 with value 1 says that the second edge is originating in vertex 1 and

25



26

ending in vertex 2 (the value of V2). The extension E2 with value 3 says that the third

edge is originating in vertex 3 and ending in vertex 2 (the value of V4).

Figure 4.1 Avoiding spurious count

4.1.1 Limitation of extensions

A positive EDB-Subdue extension - essentially the vertex number from which the

newly added edge is originating, does not give any information about which vertex it

is terminating at. Let us consider the second substructure instance in Tab 4.1. The

extension 3 says that the edge CD is originating in V3 which is 3. In the third substructure

also extension 3 says that the edge CD is originating in V3 which is 3. But notice that

in the first two substructures the edge CD terminates at the vertex D referred to by the

edge AD but in the third substructure the edge CD terminates at a different D other

than the one referred to by edge AD. But when we project on the vertex labels, edge

labels and extensions we get a count of three instead of two, which is incorrect.

4.1.2 Connectivity map

The discrepancy mentioned in the previous section in EDB-Subdue extensions is

due to the absence of the terminating vertex information. So the solution is to have both

originating and terminating vertex numbers for each edge in the substructure. Table 4.2
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Table 4.1 EDB-Subdue instances

V1 V2 V3 V4 VL1 VL2 VL3 VL4 EL1 EL2 EL3 E1 E2
1 2 3 2 A D C D AD AC CD 1 3
1 4 3 4 A D C D AD AC CD 1 3
1 4 3 2 A D C D AD AC CD 1 3

shows different connectivity map for the third instance differentiating it from the other

two. So when we project on the vertex and edge labels we will get the correct count

which is two in this case.

Table 4.2 HDB-Subdue instances

V1 V2 V3 V4 VL1 VL2 VL3 VL4 EL1 EL2 EL3 F1 T1 F2 T2 F3 T3
1 2 3 - A D C - AD AC CD 1 2 1 3 3 2
1 4 3 - A D C - AD AC CD 1 2 1 3 3 2
1 4 3 2 A D C D AD AC CD 1 2 1 3 3 4

The number referred by the connectivity attributes correspond to the column po-

sition where the vertex occurs and it does not refer to the actual vertex number. Also in

case of cycles or multiple edges when the vertices repeat, we set the repeating vertex’s

vertex number and vertex label to vertex invariant markers, ‘0’ and ‘-’ respectively. This

is explained in detail in the section where we explain how cycles are handled. In the

connectivity map, when referring to a vertex index, we always use the first occurrence of

that vertex and never point to the attributes containing the vertex invariant markers.

4.2 Unconstrained expansion and Elimination Of Duplicate Instances

The substructure expansion in HDB-Subdue is not constrained using a rule on

vertex number as it is done in EDB-Subdue. Hence there is a possibility that the same

substructure is expanded in more than one way. For example let us consider a two edge
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expansion in Fig 4.2. The edge ‘AB’ can grow into ‘AB, CA’ or the edge ‘CA’ can

grow into ‘CA,AB’ as shown in Tab 4.3. These two substructures are essentially the

same substructures but has been grown in two different ways. We term these as pseudo

duplicates as they come out to be duplicates if the vertex and connectivity are rearranged

without changing the graph structure. Similarly ’AD’ can grow into ‘AD, CA’ or ‘CA’

can grow into ‘CA, AD’. In general an n edge substructure (with n=1 vertices) can grow

into an n+1 edge substructure in n+1 (one way from each vertex) ways. If we do not

eliminate the pseudo duplicates, the same substructure will come out as different ones.

Eventually, this will result in some genuine substructures being pruned when we apply

the beam.

Figure 4.2 Pseudo duplicates

Table 4.3 Instance table - Before canonical ordering

Id V1 V2 V3 VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2
1 1 2 3 A B C AB CA 1 2 3 1
2 3 1 2 C A B CA AB 1 2 2 3
3 1 3 4 A C D AD CA 1 3 2 1
4 3 1 4 C A D CA AD 1 2 2 3
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In order to identify that two substructure instances are pseudo duplicates of each

other, vertex numbers and the connectivity attributes are necessary. If two instances

have the same vertex numbers and edge directions then we can identify them as pseudo

duplicates. In SQL we can identify the pseudo duplicates only if the vertex numbers

and connectivity map of all the instances are canonically ordered. Since databases do

not allow rearrangement of columns, to obtain canonical ordering, we have to transpose

the rows of each substructure into columns, sort them and reconstruct them to get the

canonical order.

Owing to the table space constraints, canonical ordering of only the second and

fourth instance are shown below, as the first and third instances are already sorted on

vertex numbers. We project the vertex numbers and vertex names from the instance table

and insert them row wise into a relation called unsorted as shown in Tab 4.4. We also

include the position in which the vertex occurs in the original instance. To differentiate

between the vertices of different instances we carry the primary key Id from the instance

table onto the unsorted table. Next we sort the table on Id and vertex number and insert

it into a table called Sorted as shown in Tab 4.5 with its New attribute pointing to

the new position of the vertex and the attribute Old pointing to the old position of the

vertex.

Table 4.4 Unsorted

Id V VL Pos
2 3 C 1
4 3 C 1
2 1 A 2
4 1 A 2
2 2 B 3
4 4 D 3

Table 4.5 Sorted

Id V VL Old New
2 1 A 2 1
2 2 B 3 2
2 3 C 1 3
4 1 A 2 1
4 3 C 1 2
4 4 D 3 3

Table 4.6 Old Ext

Id EL F T
2 CA 1 2
2 AB 2 3
4 CA 1 2
4 AD 2 3
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Similarly the connectivity attributes are also transposed into a table called Old Ext

as shown in Tab 4.6. Since the sorting on vertex numbers has changed its position we

need to update the connectivity attributes to reflect this change. Therefore we do a 3

way join of Sorted and Old Ext tables on the Old attribute of the Sorted table to get the

updated connectivity attributes which we call New Ext as in Tab 4.7. Next we sort the

New Ext table on Id and the attributes F (From vertex) and T (Terminating vertex).

Table 4.7 New Ext

Id EL F T
2 CA 3 1
2 AB 1 2
4 CA 2 1
4 AD 1 3

Table 4.8 Sorted Ext

Id EL F T
2 AB 1 2
2 CA 3 1
4 AD 1 3
4 CA 2 1

Now that we have the ordered vertex as well as connectivity map tables, we can do

a 2n+1 way join (where n is the current substructure size) of n+1 Sorted tables and n

Sorted Ext tables to reconstruct the original instance in the canonical order.

Table 4.9 shows the substructures after canonically ordering the vertex numbers

and the connectivity attributes. After having the instances ordered, a GROUP BY on

the vertex numbers and the connectivity attributes will bring all the pseudo duplicates

together and we can retain the instance with highest Id value and eliminate the rest. The

choice of highest Id value is arbitrary and one could have chosen smallest Id value too.

The pseudo duplicate identification and removal essentially eliminates identical

graphs represented by two different tuples as they were expanded in different ways.
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Table 4.9 Instance table - After canonical ordering

Id V1 V2 V3 VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2
1 1 2 3 A B C AB CA 1 2 3 1
2 1 2 3 A B C AB CA 1 2 3 1
3 1 3 4 A C D AD CA 1 3 2 1
4 1 3 4 A C D AD CA 1 3 2 1

4.3 Canonical Label ordering

Since the substructure expansion is unconstrained it is likely that two instances

of the same structure start from different initial edge and grow in a different order.

Although these instances are similar they may not group together when counting for

instances. For example consider a two edge substructure ‘AB, AC’ in Fig 3.1. There

are three instances of this substructure as shown in Tab 4.10. When we project by the

vertex and edge labels to count the number of instances of the substructure the second

and third instance will group together resulting in a count of two instead of three. This

is because the first instance started with the edge AB and expanded to ‘AB, AC’ and

other two instances started with AC to grow to ‘AC, AB’.

Table 4.10 Before ordering

V1 V2 V3 VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2
1 2 3 A B C AB AC 1 2 1 3
5 7 6 A C B AC AB 1 2 1 3
8 10 9 A C B AC AB 1 2 1 3

To make the count independent of the order of substructure growth, we rearrange

the vertex and edge labels in lexicographic order so that all instances of same substructure

have their vertex and edge labels occurring in the same order. The sorting is done in the
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same way as it was done in pseudo-duplicate elimination; we transpose the instance table

to unsorted table and Old Ext table. Instead of sorting the unsorted table on the vertex

numbers, we sort it on the vertex label. Then we obtain the New Ext table by joining

Sorted and Old Ext relations. Then we sort the New Ext table on edge label to create

Sorted Ext table. To reconstruct the original instance table we join n+1 copies of Sorted

tables with n copies of Sorted Ext. The resulting instance table will have the vertex

and edge labels occurring in a lexicographic order. The table after canonical ordering is

shown in Tab 4.11. After ordering if we project by vertex and edge labels we would get

the correct substructure count, in this case we would get three.

Table 4.11 After ordering

V1 V2 V3 VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2
1 2 3 A B C AB AC 1 2 1 3
5 6 7 A B C AB AC 1 2 1 3
8 9 10 A B C AB AC 1 2 1 3

Canonical label ordering, although similar to vertex and connectivity ordering,

serves a different purpose. Here we are ordering the instances, so that the instances of the

same substructure, even though grown in different order, would group together when we

do a GROUP BY on the vertex and edge labels and connectivity attributes. In contrast,

canonical vertex and connectivity ordering helped us identify duplicate structures that

were due to the growing of the same structure in different ways.

4.4 Multiple Edges

Most often one can find double or triple bonds occurring in chemical compounds.

The atoms (such as carbon, hydrogen etc.) can be treated as vertices and the double and
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triple bonds can be viewed as multiple edges between the vertices as shown in figure 4.3.

In mining transactional data, the transacting entity would be represented by a vertex and

the transaction by an edge. It likely that multiple transactions might occur between the

same entities. Social networks are also gaining popularity in the applications of graph

mining and often one can find multiple relationships existing between two people. The

examples mentioned above are some of the areas where multiple edges are needed for

representing the relationships accurately. Since EDB-Subdue does not expand multiple

edges HDB-Subdue has been developed in an effort to support multiple edges between

vertices.

Figure 4.3 Acetylene

Table 4.12 Oneedge table with multiple edges

Vertex 1 Vertex 2 Edge No Edge Label Vertex1 Name Vertex2 Name
1 2 1 HC H C
2 3 2 CC C C
2 3 3 CC C C
2 3 4 CC C C
3 4 5 CH C H
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4.4.1 Significance of Edge numbers

The multiple edges between the same pair of vertices have the same starting and

ending vertex number, same connectivity map and may have the same edge label. Hence,

the above by themselves are not adequate to differentiate between multiple edges between

the same nodes. To distinguish between the multiple edges we use edge numbers which are

unique across all the edges. From the edge number one can differentiate two substructures

based on the edge numbers associated with the edges. One-edge table in Tab 4.12 shows

the Edge No attribute with unique edge numbers for multiple edges as well as other

edges. Note that the the edge numbers are added transparently by the system and is not

part of the input.

4.5 Handling Cycles in input graph

A figure similar to one shown in Pseudo duplicate elimination section, but with a

cycle is shown in Fig 4.5. From this figure two valid 3-edge expansions are possible. One

starting with vertex 1, adding vertex 2 (edge AB), adding vertex 3 (edge BC) and then

terminating at vertex 1 (edge CA). Another expansion can start with vertex 2, adding

vertex 3 (edge BC), adding vertex 1 (edge CA) and then terminating at vertex 2 (edge

AB). Both the expansions occur because of HDB-Subdue’s unconstrained expansion.

Figure 4.4 Cycle
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The instance table with these expansions is shown in Tab 4.13. Both these instances

are essentially the same, the second being the duplicate of the first. To identify the

duplicate we would order the vertex numbers and the connectivity attributes canonically.

Even when we order the instances canonically, we would not be able to identify the pseudo

duplicate because the first instance would have the vertex numbers ordered as ‘1 1 2 3’

and the second instance would have the vertex numbers ordered as ‘1 2 2 3’. So a group

by query on the vertex numbers and connectivity attributes will not group these two

instances together.

Table 4.13 Instance table without Vertex invariants

V1 V2 V3 V4 VL1 VL2 VL3 VL4 EL1 EL2 EL3 F1 T1 F2 T2 F3 T3
1 2 3 1 A B C A AB BC CA 1 2 2 3 3 4
2 3 1 2 B C A B BC CA AB 1 2 2 3 3 4

The solution to this problem is to mark each repetition of the vertex by vertex

invariants, ’0’ for a repeating vertex number and a ’-’ for the corresponding vertex label.

For this example, in the first instance the second occurrence of 1 is marked with ’0’ and

its vertex label marked with ’-’. In the second instance the second occurrence of 2 is

marked with ’0’ and its vertex label marked with ’-’. The instance table with vertex

invariant markers is shown in Tab 4.14. Now if we canonically order the instances by

vertex numbers and connectivity attributes the vertex numbers of the first instance, ’1

2 3 0’ will be ordered as ’0 1 2 3’, and the vertex numbers of the second instance ’2 3 1

0’ will be ordered as ’0 1 2 3’ as shown in Tab 4.15. Now when we group by the vertex

numbers and the connectivity attributes we can easily identify that the second instance is

a duplicate of the first and eliminate the second. Observe that the connectivity attributes

do not refer to the columns marked with vertex invariants.
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Table 4.14 Instance table with Vertex invariants

V1 V2 V3 V4 VL1 VL2 VL3 VL4 EL1 EL2 EL3 F1 T1 F2 T2 F3 T3
1 2 3 0 A B C - AB BC CA 1 2 2 3 3 1
2 3 1 0 B C A - BC CA AB 1 2 2 3 3 1

Table 4.15 Instance table after canonical ordering

V1 V2 V3 V4 VL1 VL2 VL3 VL4 EL1 EL2 EL3 F1 T1 F2 T2 F3 T3
0 1 2 3 - A B C AB BC CA 2 3 3 4 4 2
0 1 2 3 - A B C AB BC CA 2 3 3 4 4 2

4.6 Database Minimum Description Length

Database Minimum description length principle (DMDL) is a variant of minimum

description length principle (MDL) [5, 9] used in Subdue. This metric is used to dif-

ferentiate between same signature substructures (substructures having same number of

vertices and frequency of occurrence.) Subdue uses adjacency matrices to represent sub-

structures. Let us consider the example graph shown in Fig 4.5 and its two substructures

of size two and count two are shown in Fig 4.6. The adjacency matrices corresponding to

the two edge substructures are shown in Tab 4.16 and Tab 4.17 respectively. The adja-

cency matrices for the two graphs are different even though they have the same number

of vertices and same number of edges.

Figure 4.5 Example
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Figure 4.6 2 edge substructures

According to the MDL principle, the number of bits needed to encode matrix 1 is

less than the number of bits required to encode matrix 2. This is because that in matrix

1 there is only one non-zero row. But in matrix 2, both the first and second rows have

1’s (two non-zero rows). As a result, two rows have to be represented in the second case

whereas only one row has to be represented in the first case. For the input graph of Fig

4.6, if graph compression is performed using the first substructure the resultant MDL

value is 1.14539 and if the graph is compressed using the second substructure the MDL

value obtained is 1.12849. Therefore, the MDL principle ranks substructure (a) higher

than substructure (b). The MDL formula is shown below:

MDL =
DL(G)

DL(S) + DL(G|S)
(4.1)

In the above formula, lesser the number of bits needed to represent DL (S) + DL

(G|S), better is the substructure.

DMDL is calculated by using the formula,

DMDL =
V alue(G)

V alue(S) + V alue(G|S)
(4.2)
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Table 4.16 Adj matrix of (a)

A B C
A 0 1 1
B 0 0 0
C 0 0 0

Table 4.17 Adj matrix of (b)

A B C
A 0 1 0
B 0 0 0
C 1 0 0

In the above equation, G represents the entire graph, S represents the substructure

and G|S represents the graph after it has been compressed using the substructure S.

Value(G) = graph_vertices + graph_edges

Value(S) = sub_vertices + nonZeroRows

Value(G|S) = (graph_vertices sub_vertices * count + count) +

(graph_edges sub_edges * count)

The graph vertices and graph edges parameters have a value of 15 and 14 respec-

tively for the example graph in Fig 4.5. The substructures (a) and (b) in Fig 4.6 have a

value of 3 for the sub vertices parameter. The nonZeroRows parameter for substructure

(a) has a value of 1 whereas for substructure (b) it is 2. Since both the substructures

occur twice in the input graph the count is 2. If we compute the DMDL value for the

substructures using the formula Eqn 4.2, we would obtain 1.074 for substructure (a) and

1.035 for substructure (b). Therefore HDB-Subdue will rank graph (a) higher than the

graph (b), which follows the same trend as MDL.

The calculation uses counts of nodes and vertices instead of bit representation as

in MDL. However, we have tried to simulate the MDL value in its trend (and not actual

value) to validate the algorithm against the output produced by Subdue. In the following

subsections we will discuss how we calculate the parameters ‘sub vertices, nonZeroRows

and count’ that go into the DMDL formula.
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4.6.1 Number of substructure vertices

The number of substructure vertices (graph vertices) is a parameter in the DMDL

formula that is used to calculate Value(G). In EDB-Subdue this parameter was assumed

to be one plus the number of edges in the substructure, i.e. n+1 vertices for n edges. This

assumption holds true in the absence of multiple edges and cycles. A pair of vertices can

have more than one edge between them and a substructure containing such multiple edges

have fewer vertices than the edges. In case of cycles and self edges n vertices can have

more than n edges between them. In HDB-Subdue a vertex number is allowed to occur at

most once and a repetition is marked by vertex invariant markers. Since the connectivity

map attributes refer only to non-marker vertices, a count on the unique connectivity map

attributes will give us the correct count of the vertices in the substructure. For example

consider the first three edge substructure ‘AB, AB, AB’ from Fig 4.7 shown in Tab 4.18.

This substructure has three edges and since the unique number of connectivity attributes

is two (‘1’ and ‘2’) we can conclude that only two vertices exist in this substructure.

Figure 4.7 DMDL

4.6.2 Non Zero Rows

The DMDL principle attempts to simulate the adjacency matrix representation

by using the number of non-zero rows for computing value(s). When the number of
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Table 4.18 Subfold 3

VL1 VL2 VL3 V4 EL1 EL2 EL3 F1 T1 F2 T2 F3 T3 Count
A B - - AB AB AB 1 2 1 2 1 2 1
A C B - AC AB AB 1 2 1 3 1 3 3

non-zero rows is less the Value(S) in the denominator decreases thereby increasing the

DMDL value. In EDB-Subdue the non-zero rows parameter is calculated by using the

extensions and since in HDB-Subdue we have the connectivity map instead of extensions

we calculate the non-zero rows by counting the unique origin vertices (From n). Table

Tab 4.19 represents the two edge substructures for the example in Fig 4.6. The non-

zero rows for the first substructure is 1, because the origin vertex set contains ‘1,1’ and

non-zero rows for the second substructure is 2, because the origin vertex set contains

‘1,2’.

Table 4.19 Subfold 3

VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2 Count
A B C AB AC 1 2 1 3 2
C A B CA AB 1 2 2 3 2

4.6.3 Instance counting

The count of a substructure represents the number of times it will be used to com-

press the graph. In other words, it denotes the number of vertices that the substructure

removes from the input graph during compression. In EDB-Subdue every instance of a

substructure is assumed to compress the graph. In the presence of multiple edges some

instances compress the same set of vertices and hence in HDB-Subdue we need to change

the way the substructure instances are counted. For example, Tab 4.18 shows three
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three-edge substructures ‘AC, AB, AB’, ‘AC, AB, AB’ and ‘AC, AB, AB’ because of

the presence of three multiple edges between vertex A and B. Although three instances

of this substructure exist we need to count it to be one because all three substructures

compress the same set of vertices. Let us consider the substructure ‘AC, AB, AB’ shown

in Tab 4.20 and see how we obtain the count of its instances. Grouping by the vertex

labels, edge labels and connectivity attributes, we can obtain a count of the instances of

a substructure. The instances of the substructure in Tab 4.20 is shown in Tab 4.21.

Table 4.20 Subfold 3

VL1 VL2 VL3 V4 EL1 EL2 EL3 F1 T1 F2 T2 F3 T3 Count
A C B - AC AB AB 1 2 1 3 1 3 3

Table 4.21 Instance 3

V1 V2 V3 V4 VL1 VL2 VL3 V4 EL1 EL2 EL3 F1 T1 F2 T2 F3 T3
1 3 2 0 A C B - AC AB AB 1 2 1 3 1 3
1 3 2 0 A C B - AC AB AB 1 2 1 3 1 3
1 3 2 0 A C B - AC AB AB 1 2 1 3 1 3

In addition to the above group by, we group again by the vertex numbers of the

instances of a particular substructure. This returns the groups of instances having unique

vertex numbers and is shown in Tab 4.22. This table shows one group with two instances

in it. Finally we count the number of such groups to obtain the updated count. For table

Tab 4.22 if we count the number of groups we would get 1 as the count and we update

the subfold 3 table in Tab 4.20 with the obtained count.
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Table 4.22 Unique vertex number groups

V1 V2 V3 V4 VL1 VL2 VL3 V4 EL1 EL2 EL3 F1 T1 F2 T2 F3 T3
1 3 2 0 A C B - AC AB AB 1 2 1 3 1 3

4.7 Hierarchical Reduction

Hierarchical reduction is the process of compressing the input graph repeatedly to

produce an abstract information. This is particularly useful for recursively identifying

patterns among the patterns. For example in protein data analysis hierarchical reduction

can detect amino acids and also identify how the amino acids group to form polypeptides

and also how polypeptides group to form proteins.

An example of hierarchical reduction is shown in figure 4.8. In the first iteration,

substructure shown within dotted lines in (a) comes out as the best substructure and

each of its instances (there are four of them) is compressed to a node called SUB 1 as

shown in (b). Now this graph becomes the input for the second iteration. After the

second iteration, the substructure shown within dotted lines in (b) comes out as the best

substructure and each of its instances (there are two of them) is compressed to a node

called SUB 2. Now the compressed graph as shown in (c) becomes the input for next

iteration. Since we cannot compress the input graph anymore we stop after the third

iteration. In general each of the best substructure instances after iteration i is compressed

to SUB i.

The following are the tasks involved in each iteration of hierarchical reduction,

1. Identify the best substructure and its instances

2. Compress the input graph using the best substructure instances

3. Submit the compressed graph as input to the next iteration
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Figure 4.8 Hierarchical reduction

4.7.1 Identifying the best substructure

HDB-Subdue uses DMDL or count (given as a configuration parameter) for select-

ing the best substructure to compress the input graph. The substructure which has the

highest DMDL value or highest count can compress the graph better than any other

substructure. Two edge substructures of Fig 4.8 is shown in the Sub Fold table 4.23.

The Sub Fold table is sorted in the descending order of DMDL value (or count in case the

evaluation metric is count) and the first substructure is chosen as the best substructure

to compress the graph. The instances of the best substructure are inserted into a table

called BestInstances shown in Tab 4.24.

Table 4.23 Sub Fold 2

VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2 DMDL
A B C AB AC 1 2 1 3 1.50
A D A AD DA 1 2 2 3 1.09
. . . . . . . . . .



44

Table 4.24 BestInstances

V1 V2 V3 VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2
1 2 3 A B C AB AC 1 2 1 3
4 5 6 A B C AB AC 1 2 1 3
8 9 10 A B C AB AC 1 2 1 3
11 12 13 A B C AB AC 1 2 1 3

4.7.2 Compressing the input graph

To compress the input graph with the instances of the best substructure we need

to remove the vertices and edges corresponding to the instances from the input graph.

Since the input graph is defined by the vertex and edge table, we eliminate the vertices

corresponding to the best substructure from the vertex table and the edges corresponding

to the best substructure are removed from the edge table. The vertex and edge tables

before compression are shown in Tab 4.25 and Tab 4.26 respectively. For each instance

we remove, we add a new vertex SUB i to the vertex table during the ith iteration. The

vertex numbers in the edges going into or out of the compressed instances need to be

updated appropriately with the newly inserted vertex number as the old vertex numbers

no longer exist in the vertex table. The vertex and edge tables after compression are

shown in Tab 4.27 and Tab 4.28 respectively. The updated vertices and edges will

participate in the next iteration until we hit the maximum number of iterations specified

by the user or if there are no more subgraphs to compress.

4.8 Summary

In this chapter we introduced a correct and complete graph representation in

database. We addressed the unconstrained expansion to expand multiple edges and the
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Table 4.25 Vertex table before

Vertex No Vertex Name
1 A
2 B
3 C
4 A
5 B
6 C
7 D
. .

14 D

Table 4.26 Edge table before

Vertex 1 Vertex 2 Edge Label
1 2 AB
1 3 AC
4 5 AB
4 6 AC
4 7 AD
7 8 DA
. . .

11 14 AD
14 1 DA

Table 4.27 Vertex table after

Vertex No Vertex Name
15 SUB 1
16 SUB 1
17 SUB 1
18 SUB 1
7 D
14 D

Table 4.28 Edge table after

Vertex 1 Vertex 2 Edge Label
16 7 AD
7 17 DA
11 18 AD
14 15 DA

technique to eliminate the duplicate instances produced. We also addressed how cycles

are handled in the input graph and the modifications made in DMDL to take multiple

edges and the new graph representation into account. Also we proposed a technique to

perform Hierarchical graph reduction.



CHAPTER 5

IMPLEMENTATION DETAILS

This chapter discusses the implementation details of database minimum descrip-

tion length, substructure pruning, pseudo duplicate removal and hierarchical reduction.

The HDB-Subdue system has been developed using Pro*C [21] precompiler and C lan-

guage, using Oracle database running on a Linux based system. The SQL statements are

embedded in the C code and the precompiler translates each embedded SQL statement

into calls to the Oracle runtime library (SQLLIB).

5.1 Pseudo-duplicate Elimination

The unconstrained expansion in HDB-Subdue introduces pseudo duplicates as ex-

plained in the design section. To eliminate these pseudo duplicates it is necessary to sort

the columns containing vertex numbers and connectivity attributes. We will be referring

to the same example as in design chapter, but for explanatory purpose we would be using

only the third and fourth instances in the instance table Tab 4.3 as shown in Tab 5.1

Table 5.1 Instance table - Before canonical ordering

Id V1 V2 V3 VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2
3 1 3 4 A C D AD CA 1 3 2 1
4 3 1 4 C A D CA AD 1 2 2 3

Since we can only sort the rows using an SQL query, we project out the instance

identifier, vertex number and the column position into a relation called Unsorted. The

46
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instance identifier, edge label and the connectivity attributes are inserted into a relation

called Old Ext. Next, we sort the Unsorted table on the instance identifier and vertex

number and insert the tuples in a relation called Sorted. The queries to do the above

follow.

INSERT into Unsorted(

(SELECT Id,VL1,V1,1 FROM instance_n)

UNION (SELECT Id,VL2,V2,2 FROM instance_n)

. . . .

UNION (SELECT Id,VLn+1,Vn+1,n+1 FROM instance_n))

INSERT into Old_Ext(

(SELECT Id,EL1,F1,T1 FROM instance_n)

UNION (SELECT Id,EL2,F2,T2 FROM instance_n)

. . . .

UNION (SELECT Id,ELn,Fn,Tn FROM instance_n))

The projected values for the instances in the previous table are shown in Tab 5.2

and Tab 5.3 and the Sorted table is shown in Tab 5.4. 2n+1 queries are required to

project out the columns into rows where n is the substructure size.

Table 5.2 Unsorted

Id V VL Pos
3 1 A 1
3 3 C 2
3 4 D 3
4 3 C 1
4 1 A 2
4 4 D 3

Table 5.3 Old Ext

Id EL F T
3 AD 1 3
3 CA 2 1
4 CA 1 2
4 AD 2 3

Table 5.4 Sorted

Id V VL Old New
3 1 A 1 1
3 3 C 2 2
3 4 D 3 3
4 1 A 2 1
4 3 C 1 2
4 4 D 3 3
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After sorting, the column position occupied by the projected vertices changes.

The connectivity attributes still point to the old position. To update the connectivity

attributes with the new vertex positions, a column called new position is needed in the

sorted table. Since the reconstructed instance table will have the vertices appear in the

order as in sorted table, we make use of the in-built rownum attribute and a simple mod

function to generate the new position. For an n edge substructure the new positions are

updated using the following SQL statements. Since mod function returns 0 for the last

column because its rownumber is a multiple of n+1, we use a separate query to update

the correct position of last column.

UPDATE sorted SET rowno = rownum

UPDATE sorted SET new = mod(rowno,n+1)

UPDATE sorted SET new = n+1 WHERE new = 0

Since the sorting alters the original order of the vertices in the unsorted table, the

connectivity attributes also need to be updated to reflect the change. To do that, we use

the following query to join the Sorted and the Old Ext table on the Id and old position

attribute to obtain the new positions, and the resulting New Ext table is shown in Tab

5.5.

INSERT into new_ext

(SELECT o.Id, o.EL,s1.new,s2.new

FROM sorted s1, sorted s2, old_ext o

WHERE o.Id = s1.Id and s1.Id = s2.Id and

o.F = s1.old and o.T = s2.old)

To obtain the canonical order of the connectivity attributes, we sort the New Ext

table on Id, F and T attributes and insert into a relation called Sorted Ext as shown in

Tab 5.6.
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Table 5.5 New Ext

Id EL F T
3 AD 1 3
3 CA 2 1
4 CA 2 1
4 AD 1 3

Table 5.6 Sorted Ext

Id EL F T
3 AD 1 3
3 CA 2 1
4 AD 1 3
4 CA 2 1

To reconstruct the instance table back in canonical order, we do a 2n+1 way join

of n+1 Sorted tables and n Sorted Ext tables. The query to do that is shown below and

the reconstructed table is shown in Tab 5.7.

INSERT into Instance_n(

SELECT S1.Id, S1.V .. Sn+1.V, S1.VL .. Sn+1.VL, O1.EL .. On.EL,

O1.F, O1.T .. On.F, On.T

FROM Sorted S1 .. Sorted Sn+1, Sorted_Ext O1 .. Sorted_Ext On

WHERE S1.Id=S2.Id .. Sn.Id=Sn+1.Id and O1.Id=O2.Id .. On.Id=On+1.Id

and O1.rowno < O2.rowno .. On-1.rowno < On.rowno

and S1.rowno < S2.rowno .. Sn.rowno < Sn+1.rowno)

Table 5.7 Instance table - After canonical ordering

Id V1 V2 V3 VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2
3 1 3 4 A C D AD CA 1 3 2 1
4 1 3 4 A C D AD CA 1 3 2 1

One can identify the set of pseudo duplicates of any instance by grouping by the

vertex numbers and the connectivity attributes. To eliminate the pseudo duplicates of

an instance we insert the Id of an instance that has maximum Id, into a relation called

Pseudo Del. In the next step we eliminate all the instances other than the ones inserted
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in Pseudo Del relation in the previous step. The instance table after eliminating the

pseudo-duplicates is shown in Tab 5.8

INSERT into Pseudo_Del

(SELECT MAX(Id)

FROM Instance

GROUP BY V1 .. Vn+1, F1, T1 .. Fn, Tn HAVING count(*) > 1)

DELETE FROM Instance WHERE id NOT IN (SELECT Id FROM Pseudo_Del)

Table 5.8 Instance table - After Pseudo Elimination

Id V1 V2 V3 VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2
4 1 3 4 A C D AD CA 1 3 2 1

5.2 Substructure pruning

A user specified parameter called beam specifies the number of interesting substruc-

tures to retain in each iteration. Beam is applied on the Sub Fold n table after eliminating

pseudo duplicates and calculating DMDL value for each substructure. Sub Fold n is or-

dered in the descending values of DMDL and the top, beam number of substructures

are inserted into a relation called Beamdel n. All the instances of the beam substruc-

tures in Beamdel n are inserted into another relation called InstanceIter n and only these

instances are used for expanding to the next iteration by adding an edge. Beam is im-

plemented using cursors in EDB-Subdue and for larger graph sizes, use of cursors pose a

memory limitation.
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5.2.1 Analytic Functions

In this thesis we use what are called Analytic Functions [22, 23] for implementing

beam. Analytic functions have been available since Oracle 8.1.6 and are designed to

address such problems as, ’Calculating a running total’, ’Finding percentages within a

group’, ’Top-N queries’, ’Compute a moving average’ and many more. Most of these

problems can be solved using standard PL/SQL, however the performance is often not

what it should be. Analytic Functions add extensions to the SQL language that not only

make these operations easier to code but also make them faster (as they are optimized

by the system) than could be achieved with pure SQL or PL/SQL.

Analytic functions are the last set of operations performed in a query except for the

final ORDER BY clause. All joins and all WHERE, GROUP BY, and HAVING clauses

are completed before the analytic functions are processed. Therefore, analytic functions

can appear only in the select list or ORDER BY clause.

Table 5.9 Sorted DMDL

DMDL

1.412
1.412
1.383
1.383
1.246
1.246
1.101

Table 5.10 Using Rownum

DMDL

1.412
1.412
1.383
1.383

Table 5.11 Sorted DMDL

DMDL

1.412
1.412
1.383
1.383
1.246
1.246
1.101

5.2.2 Top N with ties

There are several approaches for implementing the beam. One is to use cursors

which is used in EDB-Subdue [8]. Second is to make use of the internal row number
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attribute of the Sub Fold n relation. In this approach the Sub Fold n relation is sorted

in the descending order of the DMDL values and a SELECT from this relation with a

WHERE clause, ’WHERE rownum <= beam’ would return the top beam substructures.

The downside of this approach is that it does not handle ties. For example consider the

sorted Sub Fold n relation in Tab 5.9. Assume that we are operating with a beam of

4. The above approach would return the first 4 substructures as in Tab 5.10. Notice

that there is a tie between substructure 1 and 2, and substructure 3 and 4. Ideally we

would want the best 4 substructures inclusive of their ties as in 5.11. In HDB-Subdue, for

calculating DMDL we do not use the adjacency matrix as in Subdue, hence the probability

of occurrence of ties is more. The query using the dense rank analytic function, shown

below, can select the best beam substructure including all its ties.

INSERT INTO Beamdel_n

SELECT VL1..VLn, EL1.. EL2, F1, T1..Fn, Tn, dmdlvalue

FROM ( SELECT VL1..VLn, EL1.. EL2, F1, T1..Fn, Tn, dmdlvalue,

DENSE_RANK() OVER (ORDER BY dmdlvalue desc ) TopN

FROM Sub_Fold_n )

WHERE TopN <= beam

5.3 Database Minimum Description Length

The DMDL formula that was explained in the design chapter is calculated at run

time for each substructure in the Sub Fold n table. This is accomplished by writing a

PL/SQL function. The function is given below and comments are included for explana-

tory purposes but are not part of the actual function.

1: CREATE FUNCTION DMDLVALUE N (from 1 IN NUMBER, to 1 IN NUMBER

· · · from n IN NUMBER, to n IN NUMBER, count NUMBER, graph vertices NUMBER,

graph edges NUMBER, sub edges NUMBER) return NUMBER



53

2: IS /* Variable declarations go below */

3: nonZeroRows NUMBER; found NUMBER; sub vertices NUMBER; sizeG NUMBER;

index1 NUMBER; index2 NUMBER; dmdl value NUMBER(10,5); sizeS NUMBER;

sizeGS NUMBER; extarray extlist := extlist (from 1, from 2 · · · from n);

vertex extlist := extlist (from 1, to 1 · · · from n, to n);

4: BEGIN

5: nonZeroRows := 0; /* Begin Non-zero rows calculation */

6: for index1 IN 1..n loop

7: found := 0;

8: for index2 IN index1 + 1..n loop

9: if extarray(index1) = extarray(index2) then found := 1; end if;

10: end loop;

11: if found = 0 then nonZeroRows := nonZeroRows + 1; end if;

12: end loop; /* End Non-zero rows calculation */

13: sub vertices := 0; /* Begin Substructure vertices counting */

14: for index1 IN 1..n loop

15: found := 0;

16: for index2 IN index1 + 1..n loop

17: if vertex(index1) = vertex(index2) then found := 1; end if;

18: end loop;

19: if found = 0 then sub vertices := sub vertices + 1; end if;

20: end loop; /* End Substructure vertices counting */

21: sizeG := graph vertices + graph edges;

22: sizeS := sub vertices + nonZeroRows;

23: sizeGS := ((graph vertices - (sub vertices * count)) + count)

24: +(graph edges - sub edges * count);

25: dmdl value := (sizeG / (sizeS + sizeGS)); /* DMDL calculation */

26: RETURN(dmdl value);

27: END DMDLVALUE N;

Lines 6 to 12 are used for counting the number of vertices that have an outdegree of

at least one. This parameter helps to simulate the use of adjacency matrix representation

as in Subdue. Lines 14 to 20 are used for counting the number of unique vertices in the

substructure. In the presence of multiple edges and cycles the vertex numbers repeat in
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a substructure. Since the connectivity attributes refer to the same vertex, in case that

vertex repeats itself, a count on the unique connectivity attributes will give the count of

unique vertices in the substructure. The PL/SQL function mentioned above is registered

in the database and is then used in a SQL query that generates the Sub Fold n table.

The query for obtaining the DMDL values for n edge substructure follows.

update Sub_Fold_n

SET dmdlvalue = DMDLVALUE_n(from_1, to_1, .. from_n, to_n,

count, graph_vertices, graph_edges, n)

If the maximum substructure size specified by the input parameter is n, n functions

from DMDLVALUE 1 · · · DMDLVALUE n, one for each substructure size is generated

and registered with the database.

5.4 Hierarchical Reduction

To compress the graph input hierarchically, we need to identify the best substruc-

ture in each iteration and then use that substructure to compress the graph. The com-

pressed graph then becomes the input for the subsequent iteration. In each expansion

stage, we insert a user specified number (BestSubs) of best substructures having highest

DMDL values from Sub Fold n into a relation called Sub Fold. After expanding the sub-

structures till the MaxSize, a substructure having highest DMDL value is picked from

the Sub Fold relation, to compress the graph for that iteration. The first step involves in

selecting all the instances of the best substructure into a relation called BestInstances.

We would be using the same example discussed in the design chapter. The query to do

this is shown below and the relation itself is shown in Tab 5.12. Next we sequentially

process the instances in the BestInstances relation one by one.

INSERT into BestInstances

SELECT i.V1 .. i.Vn+1, i.VL1 .. VL5, i.E1 .. i.En, i.EL1 .. ELn,
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i.F1, i.T1 .. Fn, i.Tn

FROM Sub_Fold s, Instance i

WHERE i.V1=s.V1 and .. i.Vn+1=s.Vn+1 and i.E1=s.E1 and .. i.En=s.En

and i.F1=s.F1 and i.T1=s.T1 and .. i.Fn=s.Fn and i.Tn=s.Tn

and s.dmdlvalue=MAX(dmdlvalue)

Table 5.12 BestInstances

V1 V2 V3 VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2
1 2 3 A B C AB AC 1 2 1 3
4 5 6 A B C AB AC 1 2 1 3
8 9 10 A B C AB AC 1 2 1 3
11 12 13 A B C AB AC 1 2 1 3

To compress the input graph by a substructure, we insert one new vertex into

vertex relation for every instance that is compressed. Next we update in oneedge relation,

the vertex numbers of the edges that go into and out of the compressed instance. We

compress the input graph by substituting one instance at a time. This is done in relations

by processing the first tuple (with rownum = 1) and deleting it and processing the next

tuple, then deleting it and so on. To keep track of the compressed instances and their

corresponding compressing vertex, we insert each instance and its substituted vertex

number and name into a relation called Compressed n, where n is the iteration number

we are operating at. The vertex, oneedge and Compressed n tables are shown in Tab 5.13,

Tab 5.14 and Tab 5.15 respectively. For every instance in the BestInstances relation,

the queries shown below are executed.

{

MAX_VERTEX = MAX_VERTEX + 1
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Table 5.13 Vertex table before

VertexNo VertexName
1 A
2 B
3 C
4 A
5 B
6 C
7 D
. .

14 D

Table 5.14 Oneedge - Before

V1 V2 EdgeNo EL VL1 VL2
1 2 1 AB A B
1 3 2 AC A C
1 4 3 AA A A
4 5 4 AB A B
4 6 5 AC A C
4 7 6 AD A D
. . . . . .

11 14 14 AD A D

Table 5.15 Compressed 1

V1 V2 V3 VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2 V VL
1 2 3 A B C AB AC 1 2 1 3 15 SUB 1
4 5 6 A B C AB AC 1 2 1 3 16 SUB 1
8 9 10 A B C AB AC 1 2 1 3 17 SUB 1
11 12 13 A B C AB AC 1 2 1 3 18 SUB 1

INSERT into VertexTable(VertexNo, VertexName)

VALUES (MAX_VERTEX,’SUB_iterationNumber’)

UPDATE oneedge set V1=MAX_VERTEX

WHERE V1 IN ((SELECT V1 FROM BestInstances WHERE rownum = 1)

UNION (SELECT V2 FROM BestInstances WHERE rownum = 1)

. . . .

UNION (SELECT Vn+1 FROM BestInstances WHERE rownum = 1))

UPDATE oneedge set V2=MAX_VERTEX

WHERE V2 IN ((SELECT V1 FROM BestInstances WHERE rownum = 1)
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UNION (SELECT V2 FROM BestInstances WHERE rownum = 1)

. . . .

UNION (SELECT Vn+1 FROM BestInstances WHERE rownum = 1))

INSERT into Compressed_iterationNumber

SELECT V1 .. Vn+1, VL1 .. VL5, E1 .. En, EL1 .. ELn,

F1, T1 .. Fn, Tn, MAX_VERTEX, ’SUB_iterationNumber’

FROM BestInstances

WHERE rownum = 1

DELETE FROM BestInstances WHERE rownum = 1

}

After compressing all the instances, the Compressed n relation would contain the

vertices and edges of all the compressed instances. We remove the vertices occurring in

the compressed instances from the vertex table and the edges from the oneedge table.

Also we join the vertex table with the oneedge table to update the edges with new vertex

names. The oneedge table can then participate in the next iteration. The queries to

do the above are shown below. Also the vertex table and the oneedge table after one

iteration of hierarchical reduction is shown in Tab 5.16 and Tab 5.17 respectively.

DELETE FROM VertexTable

WHERE VertexNo IN ((SELECT V1 FROM Compressed_iterationNumber)

UNION (SELECT V2 FROM Compressed_iterationNumber)

. . . .

UNION (SELECT Vn+1 FROM Compressed_iterationNumber))

DELETE FROM oneedge
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WHERE EdgeNo IN ((SELECT E1 FROM Compressed_iterationNumber)

UNION (SELECT E2 FROM Compressed_iterationNumber)

. . . .

UNION (SELECT En FROM Compressed_iterationNumber))

Table 5.16 Vertex table-After

VertexNo VertexName
15 SUB 1
16 SUB 1
7 D
17 SUB 1
18 SUB 1
14 D

Table 5.17 Oneedge-After

V1 V2 EdgeNo EL VL1 VL2
15 16 1 AA SUB 1 SUB 1
16 7 2 AD SUB 1 D
7 17 3 DA D SUB 1
17 18 4 AA SUB 1 SUB 1
18 14 5 AD SUB 1 D

5.5 Summary

This chapter addressed the implementation issues that were discussed in the design

chapter. It also presented the SQL queries to achieve the solution that was explained

conceptually in the design chapter and also illustrated how the corresponding tables were

updated in the database. Generalization was also given for each issue that was explained

in this thesis.



CHAPTER 6

PERFORMANCE EVALUATION

This chapter gives an overview of the performance of HDB-Subdue and also com-

pares it with that of Subdue. For graphs without multiple edges and cycles, performance

comparison with EDB-Subdue is also shown. In this chapter we discuss the graph gen-

erator that generated the graphs which were used for testing, the configuration file that

HDB-Subdue uses for reading the input parameters, and about the log file for recording

the running times of different modules, experimental analysis for different kinds of input

data sets and the observations and conclusions drawn from these experiments.

6.1 Graph Generator

This section explains the graph generator used for generating the data sets. The

synthetic graph generator used for generating the input graphs for this thesis was devel-

oped by the AI Lab [24] at the University of Texas at Arlington. The graph generator

accepts many parameters for constructing the graph. The parameters are listed below:

� Graph output filename

� Number of vertices in the graph

� Number of edges in the graph

� Number of unique vertex labels

� Number of unique edge labels

� Number of substructures to embed in the graph

� For each substructure

59
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• Number of instances

• Number of vertices

• For each substructure vertex

. The vertex label. It must be of the form v0, v1 etc..

• Number of edges

• For each substructure edge

. The edge label. It must of the form e0, e1, etc..

. The first vertex to which this edge is attached. An integer

ranging from 0 to (number of substructure vertices - 1)

. The second vertex to which this edge is attached. An integer

ranging from 0 to (number of substructure vertices - 1)

Below is an example of an input to the graph generator.

T20V30E.g

20

30

10

15

2

1

2

v0

v1

1

e0

0

1

3

3

v0

v1

v2

3
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e1

0

1

e1

1

2

e1

2

3

In the above example each parameter is specified on a separate line. The example

contains 20 vertices and 30 edges. There are ten distinct vertex labels and fifteen distinct

edge labels. Two different substructures are embedded in the graph. The first substruc-

ture will appear once. It contains two vertices (labeled v0 and v1). It has one edge

(labeled e0), which goes between the two vertices. The second substructure is embedded

three times. It contains three vertices (labeled v0, v1, and v2). It has three edges, all

labeled e1, connecting the vertices in a triangle. The data set is labeled as T20V30E,

which means that the graph generated from the graph generator has 20 vertices and 30

edges.

The graph generator is a main-memory algorithm and constructs graphs in main

memory before writing it out to a file. The maximum graph size that we generated with

the graph generator is 1.6 million vertices and 3.2 million edges. Since this is a main-

memory algorithm the maximum size graph that it can generate will depend upon the

available system memory.

6.2 Configuration File

A configuration file is useful for automating the process of performance evaluation.

It consists of a number of parameters, which once specified, can be used for running the

algorithm in an unattended mode. It can also be used for executing several data sets
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with different configuration parameters. The different parameters in the configuration

file are:

User Name # Password # Input Table Name # MaxSize # Beam # Iterations

# EvalApproach # BestSubs # Optimize # Debug # LogResults # Ties

User Name, Password : Needed to make a connection to the database

Input Table Name: The name of the relation containing the input graph data set

Max Size: Specifies maximum size of substructure to be discovered (in other words max-

imum number of edges allowed in a substructure)

Beam: Number of substructures to retain in every substructure size

Iterations: Specifies number of passes for Hierarchical reduction

EvalApproach: Substructure evaluation metric. 1 - Count, 2 - DMDL

BestSubs: Number of substructures to be retained in every substructure size, for selecting

the best substructure during hierarchical reduction. If a zero is specified BestSubs will

default to the value of beam.

Optimize: Specifies whether to use indexes on tables often used. 0 - Without Index, 1 -

With Index

Debug: Print the SQL commands executed on STDOUT and errors on STDERR. 0 -

Suppress, 1 - Print

LogResults: Writes out the running times of queries into a text file. 0 - Disable, 1 -

Enable

Ties: Include ties when selecting substructures using beam. 0 - Ignore ties, 1 - Include

ties

For each experiment, the values of all these parameters are specified in a single line in the

order shown above and are separated by a # sign. The program will be invoked as many

times as there are lines in the configuration file. An example entry in the configuration
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file is shown below.

scott # tiger # 50V100E # 5 # 4 # 3 # 2 # 5 # 1 # 1 # 1

6.3 Writing Log File

Graph mining is a time-consuming process and for some data sets it may take

hours to complete. To compare the performance of this approach with others, we run the

Subdue, EDB-Subdue, and HDB-Subdue on the same machine. The running time of each

query is captured in an array and at the completion of each dataset (at the end of every

line in config file) it is written out to a log file, if the log results option is On. If the log

results option is enabled a text file with <input table name>.txt is created in a logfiles

directory; if the file already exists then the execution times are appended to the end of

the file. In addition to the running times, the execution progress for each dataset is also

written at the completion of each expansion iteration. The progress entry contains the

iteration number, number of substructures and instances found in that iteration. Unlike

the log entry which is written at the completion of a dataset, the progress entry is is

written during the execution of the dataset and a ‘tail’ (in UNIX) or similar command

on the <input table name>.txt will the last expansion iteration that completed. Given

below is a sample content of log file with timings shown for iteration 2.

Iter1: Substructures 10 Instances 60 Iter2: Substructures 6 Instances 40 ..

Size1 .. Inst_2 Index_2 Pseudo_2 LabReord_2 SubFold_2 CountUpd_2 .. Total

0.990 1.200 2.230 1.650 0.890 0.975 .. 8.132

Inst n gives the time taken for extending from size n-1 substructure to size n sub-

structure. Index n tells the time it took to create index on the relations, Pseudo n gives

the time taken for eliminating pseudo duplicates on size n substructures, LabReord n

gives the time taken to canonically order the vertex and edge labels, SubFold n gives
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the time taken for creating, counting, and evaluating substructures from instances and

CountUpd n gives the time taken to update the correct count due to the presence of

multiple edges and Total gives the time taken for all the iterations to complete.

6.4 Experimental Results

Experiments were conducted on several data sets of different sizes – from small to

very large to verify the growth of computation time as the data sizes increase. For the

purposes of comparison with Subdue and EDB-subdue, graphs with and without multiple

edges, with and without cycles were used. All of the HDB-Subdue experiments were run

4 times and the first run (cold start) was discarded and the timings from other three

runs were averaged to obtain average running times. All the experiments were performed

on a Linux machine using Oracle9i Release 9.2.0.1.0. The machine was running on dual

processors with 2 GBytes of memory.

6.4.1 Without cycles and multiple edges

The substructures that were embedded are shown in Fig 6.1. The number of

instances embedded is proportional to the size of the dataset. We embedded roughly two

times more substructures when the data set doubles. The graphs were generated by a

synthetic graph generator explained in the earlier graph generator section.

Table 6.1 Parameter Settings

Parameters Subdue EDB-Subdue HDB-Subdue
MaxSize 5 5 5
Beam 4 4 4

Iterations 1 1 1
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Figure 6.1 Graphs without cycles and multiple edges

The parameters used for performing this experiment is shown in Tab 6.1. Addition-

ally we disabled the ties while using beam to limit substructures and also the substructure

evaluation metric was set to DMDL. Subdue, EDB-Subdue and HDB-Subdue discovered

the same substructures with all the embedded instances. The substructures discovered

by Subdue, EDB-Subdue and HDB-Subdue for 1KV2KE dataset is shown below and the

number of substructure instances discovered for each dataset is shown in table Tab 6.2.

Dataset: 1KV2KE

Substructure discovered by Subdue:

Substructure: value = 1.13157, pos instances = 60, neg instances = 0

Graph(4v,4e):

v 1 v1

v 2 v2

v 3 v3

v 4 v4

d 1 2 e1

d 1 3 e2

d 3 2 e3

d 3 4 e4

Substructure discovered by HDB-Subdue:

Vertex1name Vertex2name Vertex3name Vertex4name Vertex5name

- v1 v2 v3 v4

Edge1name Edge2name Edge3name Edge4name

e1 e2 e3 e4

From_1 To_1 From_2 To_2 From_3 To_3 From_4 To_4 count DMDL
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2 3 2 4 4 3 4 5 60 1.13636

Table 6.2 Instances discovered

Dataset Subdue EDB-Subdue HDB-Subdue
50V100E 4 4 4
250V500E 15 15 15
500V1000E 30 30 30
1KV2KE 60 60 60

2.5KV5KE 150 150 150
5KV10KE 300 300 300

7.5KV15KE 450 450 450
10KV20KE 600 600 600
5KV30KE 900 900 900
20KV40KE 1200 1200 1200
50KV100KE 3000 3000 3000
100KV200KE 6000 6000
200KV400KE 12000 12000
400KV800KE 24000 24000
800KV1600KE 48000 48000
1600KV3200KE 96000 96000

The performance comparison is shown in Fig 6.2. The X-axis shows the dataset

and the Y-axis shows the running time in seconds. From the graph we can observe

that Subdue performs well for small data sets, but slows down when the data set grows

more than 2500 vertices and 5000 edges. From this point HDB-Subdue performs better

than Subdue. Also we can notice that EDB-Subdue performs better than HDB-Subdue

because it does not perform pseudo-elimination, canonical ordering and other functions

that HDB-Subdue does.

6.4.2 Dataset with multiple edges and cycles

In this section we have discussed the experiments performed on Subdue and HDB-

Subdue for data sets in which cycles and multiple edges are present. EDB-Subdue is not
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Figure 6.2 Graphs without cycles and multiple edges

compared because it does not handle multiple edges in the input. The embedded sub-

structures are shown in Fig 6.3. The parameter settings used for running the experiments

are shown in Tab 6.3.

Table 6.3 Parameter Settings

Parameters Subdue HDB-Subdue
MaxSize 5 5
Beam 4 4

Iterations 1 1

Subdue and HDB-Subdue discovered the same substructure and all the embedded

instances. The discovered substructure for 1KV2KE dataset is shown below and the

number of instances discovered for each dataset is shown in table Tab 6.4.

Dataset: 1KV2KE

Substructure discovered by Subdue:

Substructure: value = 1.15591, pos instances = 60, neg instances = 0

Graph(4v,5e):

v 1 v5

v 2 v6
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Figure 6.3 Graphs with cycles and multiple edges

v 3 v7

v 4 v8

d 1 2 e5

d 2 3 e6

d 3 4 e7

d 3 4 e7

d 4 2 e8

Substructure discovered by HDB-Subdue:

Vertex1name Vertex2name Vertex3name Vertex4name Vertex5name Vertex6name

- - v5 v6 v7 v8

Edge1name Edge2name Edge3name Edge4name Edge5name

e5 e6 e7 e7 e8

From_1 To_1 From_2 To_2 From_3 To_3 From_4 To_4 From_5 To_5 count DMDL

3 4 4 5 5 6 5 6 6 4 60 1.15964

From the comparison chart shown in Fig 6.4, we can see that HDB-Subdue starts

to outperform Subdue when the input graph size crosses 2500 vertices and 5000 edges as

before. We can also observe that, in the presence of multiple edges, a dataset of same

size takes more time to complete than the dataset without multiple edges. This is due

to the fact that the number of tuples generated and retained in each iteration is more in

the presence of multiple edges and cycles.
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Table 6.4 Instances discovered

Dataset Subdue EDB-Subdue HDB-Subdue
50V100E 4 4 4
250V500E 15 15 15
500V1000E 30 30 30
1KV2KE 60 60 60

2.5KV5KE 150 150 150
5KV10KE 300 300 300

7.5KV15KE 450 450 450
10KV20KE 600 600 600
5KV30KE 900 900 900
20KV40KE 1200 1200 1200
50KV100KE 3000 3000 3000
100KV200KE 6000 6000
200KV400KE 12000 12000
400KV800KE 24000 24000
800KV1600KE 48000 48000

6.4.3 Hierarchical Reduction

In this section we have shown the experiments conducted on Subdue and HDB-

Subdue, for datasets which could be compressed at least two times to show the hierar-

chical reduction. The parameter settings used for running the experiments are shown in

Tab 6.5. The embedded input graphs are shown in Fig 6.5.

Table 6.5 Parameter Settings

Parameters Subdue HDB-Subdue
MaxSize 5 5
Beam 4 4

Iterations 3 3

The substructures discovered by Subdue and HDB-Subdue in each iteration is

shown below. We can see that the best substructure discovered by Subdue and HDB-
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Figure 6.4 Graphs with cycles and multiple edges

Figure 6.5 Sample graphs for Hierarchical reduction

Subdue in each iteration is not the same. This is because of the limitation in the accuracy

of DMDL in HDB-Subdue. Since the DMDL formula is based on measuring the substruc-

ture size rather than measuring byte level storage space, the DMDL value tends to be the

same for many substructures. Since the choice of the best substructure among the many

substructures having ties in the highest DMDL value is arbitrary, the best substructure

selected may not be the one selected by Subdue. We have validated the correctness of

hierarchical compression of HDB-Subdue with many smaller examples and found it to be

correct.
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The choice of best substructure depends upon the value of BestSubs parameter

also. This is because the number of best substructures selected after each expansion

iteration is dependant on the value of BestSubs parameter. For all the experiments in

this section, we have set the value of BestSubs to its default value which is beam. Hence

BestSubs does not influence the choice of the best substructures for these experiments.

Substructure discovered by Subdue:

Iteration 1:

Substructure: value = 1.10491

pos instances = 40, pos examples = 1

neg instances = 0, neg examples = 0

Graph(6v,5e):

v 1 v1

v 2 v2

v 3 v3

v 4 v4

v 5 v6

v 6 v9

d 1 2 e1

d 2 3 e2

d 2 4 e3

d 5 1 e5

d 5 6 e8

Iteration 2:

Substructure: value = 1.06654

pos instances = 20, pos examples = 1

neg instances = 0, neg examples = 0

Graph(6v,6e):

v 1 v10

v 2 v11

v 3 v13

v 4 v14

v 5 v15

v 6 v16

d 1 2 e9

d 1 4 e11

d 3 4 e12

d 3 4 e12

d 4 5 e13

d 4 6 e14
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Iteration 3:

Substructure: value = 1.04056

pos instances = 40, pos examples = 1

neg instances = 0, neg examples = 0

Graph(4v,3e):

v 1 SUB_1

v 2 v5

v 3 v7

v 4 v8

d 1 2 e4

d 1 3 e6

d 1 4 e7

Substructures discovered by HDB-Subdue:

Iteration 1:

Vertex1name Vertex2name Vertex3name Vertex4name Vertex5name Vertex6name

v1 v2 v3 v6 v7 v8

Edge1name Edge2name Edge3name Edge4name Edge5name

e1 e2 e5 e6 e7

From_1 To_1 From_2 To_2 From_3 To_3 From_4 To_4 From_5 To_5 count DMDL

1 2 2 3 4 1 4 5 4 6 60 1.11649

Iteration 2:

Vertex1name Vertex2name Vertex3name Vertex4name

SUB_1 v4 v5 v9

Edge1name Edge2name Edge3name

e3 e4 e8

From_1 To_1 From_2 To_2 From_3 To_3 count DMDL

1 2 1 3 1 4 40 1.05522

Iteration 3:

Vertex1name Vertex2name Vertex3name Vertex4name Vertex5name Vertex6name

- v10 v11 v12 v13 v14

Edge1name Edge2name Edge3name Edge4name Edge5name

e10 e11 e12 e12 e9

From_1 To_1 From_2 To_2 From_3 To_3 From_4 To_4 From_5 To_5 count DMDL

2 4 2 6 5 6 5 6 2 3 20 1.05411

From the experiments shown in Fig 6.6 we can see that HDB-Subdue starts to

outperform Subdue when the input graph size crosses 2500 vertices and 5000 edges,

similar to the graphs without and with cycles and multiple edges.
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Figure 6.6 Hierarchical Reduction

6.4.4 Module Running times

The individual time taken by some of the key modules is shown in Fig 6.7. The

X-axis shows the iteration numbers and the Y-axis shows the logarithm of running time

in seconds. We used the multiple edges and cycles dataset shown in Fig 6.3 with 400,000

vertices and 800,000 edges (400KV800KE). The experiment was run with a beam of 4,

for a maximum substructure size of 5 and for 1 iteration. From the figure we can see

that the time taken for pseudo duplicate elimination dominates the total running time.

Canonical label ordering takes almost 60-70% of the time taken by pseudo elimination.

We can also observe that the time taken by all the modules decrease when we proceed

from one iteration to the other. This is due to the fact that the number of substructure

instances reduce as the size of the substructure increases (corresponds to higher iteration

number).

6.5 Observations

Apart from conducting experiments on various datasets we also observed the per-

formance of different types of queries and their alternative faster queries to do the same
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Figure 6.7 Module running times

function. We also explored the use of index on frequently used tables to improve the

performance of HDB-Subdue.

6.5.1 Inplace deletes

The canonical table contains the instances and their duplicates ordered by the

vertex numbers and the connectivity attributes. Each instance is identified by a unique

identifier attribute called Id. To identify the duplicate instance we do a GROUP BY on

the Id, vertex number and canonical attributes and select the instance with the maximum

Id from each group and insert it in a table called instance N pseudo (The choice of

max Id is arbitrary. One could choose min Id too.) To delete the duplicate instance,

earlier we used an in-place delete query that deletes instances whose Id is not in the

instance N pseudo table. This query took a longer time to complete. So we tried an

alternate query that creates a canonicaltemp table by joining the canonical table with the

instance N pseudo table on the Id attribute. Since this join produces only the instances

we indented to retain, we can drop the canonical table and rename the canonicaltemp

table as the canonical table. The in-place delete and join query are shown below.

IN-PLACE DELETE:
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DELETE FROM canonical_N

WHERE Id NOT IN (SELECT Id FROM instance_N_pseudo)

ALTERNATIVE: Create a new table using a join query

INSERT INTO canonicaltemp (

SELECT c.vertex1, .. c.vertexN+1, c.vertex1name, .. c.vertexN+1name,

c.edge1 .. c.edgeN, c.edge1name, .. edgeN+1name, c.from_1, c.to_1,

.. c.from_N, c.to_N, c.Id

FROM canonical_N c , instance_N_pseudo i

WHERE c.Id = i.Id)

DROP TABLE canonical_N

CREATE TABLE canonical_N AS SELECT * FROM canonicaltemp

The comparison of running time of HDB-Subdue using the In-place query versus

creating a new table using join query is show in Tab 6.6. The table shows the results for

two datasets, one with 200K vertices and 400K edges and the other with 400K vertices

and 800K edges. We can observe from the table that the time taken by the pseudo

duplicate elimination module in each iteration (the entries Pseudo 1, Pseudo 2, etc..) for

join query is much lesser than that of the in-place delete query, corresponding to 85-90%

improvement in iteration 2 and 50-60% on an average in all iterations.

6.5.2 Correlated Queries

A correlated subquery is a subquery that contains a reference to a table that

appears in the outer query. During earlier phase of implementation of this thesis we

used a correlated subquery to delete edges that appear only once, from the one-edge

relation. The beamdel relation contains the edges that appear only once. So a delete
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query identifies those substructures of one-edge that appear in beamdel table and deletes

them. The query is given below.

DELETE FROM oneedge o

WHERE EXISTS (

SELECT *

FROM beamdel b where b.vertex1name = o.vertex1name and

b.vertex2name=o.vertex2name and b.edge1name=o.edgename)

DELETE FROM oneedge o

WHERE edgeno IN (SELECT edgeno

FROM beamdel)

The second query shown above is an alternate non-correlated query which was imple-

mented later, to do the same function. The time taken in seconds for correlated Vs

non-correlated queries with the percentage improvement is shown in Tab 6.7. From this

we can conclude that it is useful to avoid correlated queries and adopt an alternate form

without correlation (a join query) where possible.

6.5.3 Using Indexes

To speed up the execution of the queries, one option is to create an index on the

tables that are repeatedly used. One of the tables on which an index was created is

the one-edge table, because it is joined with instance i during each expansion. We also

created indexes on Sorted and the Sorted Ext tables because we perform a 2n+1 way join

during instance i table reconstruction in pseudo-duplicate elimination step. Contrary to

our expectations the performance of HDB-Subdue did not improve. We used the data set

without multiple edges and cycles shown in Fig 6.1 with a beam of 4 and for one iteration.
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The running times of the individual modules for 15KV30KE dataset and 50KV100KE

dataset without and with indexing is shown in table Tab 6.8. From the total time, we can

see that the performance dropped down by little more than 2%. Usage of index needs to

be carefully analyzed in the future work.

6.6 Summary

This chapter discussed about using the graph generator to generate synthetic graphs

and about the configuration and log file to execute and monitor progress of HDB-Subdue.

We also compared Subdue, EDB-Subdue and HDB-Subdue for correctness and perfor-

mance and observed that all of them produce the same output.
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Table 6.6 Performance of In-place delete Vs Join query (Time Unit: Seconds)

200KE400KE 200KE400KE 400KE800KE 400KE800KE
Module In-place New Table In-place New Table

CreatTab 1 4.24 13.2 5.72 3.98
Iter1 1 253.35 251.77 524.5 523.82
Inst 2 26.75 27.87 62.32 66.63

CreateIndex 2 58.3 53.84 119.06 117.18
Pseudo 2 9474.58 1103.37 36028 2229.14

LabReord 2 513.24 508.76 1015.51 1027.09
SubFold 2 5.35 5.37 10.78 12.11

CountUpd 2 3.37 6.28 12.85 13.74
SubFolInst 2 19.09 15 38.48 34.49

Inst 3 16.31 11.1 29.28 36.28
CreateIndex 3 12.71 14.26 30.63 27.01

Pseudo 3 676.7 284.51 2119.24 590.29
LabReord 3 177.1 171.83 363.21 362.72
SubFold 3 2.11 1.12 4.08 3.54

CountUpd 3 0.58 0.99 2.87 1.08
SubFolInst 3 32.71 35.66 72.97 73.71

Inst 4 18.81 17.3 42.83 42.59
CreateIndex 4 8.93 7.19 23.05 21.75

Pseudo 4 252.31 185.01 641.19 383.53
LabReord 4 59.87 57.6 118.77 116.47
SubFold 4 0.25 0.29 1.9 1.57

CountUpd 4 0.29 0.31 0.36 3.06
SubFolInst 4 37.67 36.93 77.84 76.13

Inst 5 10.05 9.73 22.48 21.32
CreateIndex 5 0.16 0.24 0.22 0.2

Pseudo 5 2.72 3.05 4.97 4.24
LabReord 5 2.42 2.24 3.22 3.32
SubFold 5 1.5 0.12 0.15 0.17

CountUpd 5 1.6 0.14 0.2 0.21
SubFolInst 5 33.56 32.78 70.45 72.08

Total 11740.65 2891.1 41508.69 5941.98
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Table 6.7 Performance of Correlated queries (Time Unit: Seconds)

15KV30KE 15KV30KE 50KV100KE 50KV100KE
Module Non-Correlated Correlated Non-Correlated Correlated

CreatTab 1 3.66 4.64 3.29 7.44
Iter1 1 19.25 77.94 57.38 694.36
Inst 2 0.95 1.06 6.82 4.89

CreateIndex 2 3.13 2.55 11.53 13.39
Pseudo 2 112.6 115.6 758.07 794.78

LabReord 2 34.6 33.06 112.74 113.22
SubFold 2 0.18 0.19 1.12 0.45

CountUpd 2 0.26 0.17 0.52 0.65
SubFolInst 2 0.59 0.81 2.47 4.64

Inst 3 0.89 1.15 5.85 5.28
CreateIndex 3 1.46 1.64 3.03 4.17

Pseudo 3 28.48 27.84 90.2 89.97
LabReord 3 12.63 15.3 52.78 53.49
SubFold 3 0.1 0.11 0.17 0.15

CountUpd 3 0.16 0.11 0.32 0.28
SubFolInst 3 0.84 1.95 8.07 7.85

Inst 4 1.51 1.36 5.04 5.16
CreateIndex 4 2.26 0.78 3.56 3

Pseudo 4 20.6 15.77 44.56 46.09
LabReord 4 3.71 3.8 13.02 13.33
SubFold 4 0.11 0.11 0.22 0.14

CountUpd 4 0.1 0.98 0.78 0.2
SubFolInst 4 1.24 1.13 8.54 9.85

Inst 5 0.92 0.77 2.16 2.16
CreateIndex 5 0.12 0.13 0.13 0.21

Pseudo 5 0.85 0.75 1.18 1.21
LabReord 5 0.48 0.54 0.8 0.85
SubFold 5 0.54 0.13 0.13 0.1

CountUpd 5 0.11 0.13 0.09 0.11
SubFolInst 5 0.96 0.97 8.43 8.14

Total 251.92 319.62 1204.41 1885.72
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Table 6.8 Performance using Indexes (Time Unit: Seconds)

15KE30KE 15KE30KE 50KE100KE 50KE100KE
Module Without With Without With

CreatTab 1 3.91 4.64 4.26 7.44
Iter1 1 70.52 77.94 670.81 694.36
Inst 2 0.86 1.06 10.84 4.89

CreateIndex 2 0 2.55 0 13.39
Pseudo 2 119.09 115.6 764.24 794.78

LabReord 2 32.61 33.06 116.35 113.22
SubFold 2 1.78 0.19 1.35 0.45

CountUpd 2 0.21 0.17 0.55 0.65
SubFolInst 2 2.6 0.81 2.25 4.64

Inst 3 1.65 1.15 6.34 5.28
CreateIndex 3 0 1.64 0 4.17

Pseudo 3 25.39 27.84 91.76 89.97
LabReord 3 13.31 15.3 49.79 53.49
SubFold 3 0.77 0.11 0.19 0.15

CountUpd 3 0.11 0.11 0.29 0.28
SubFolInst 3 1.15 1.95 6.11 7.85

Inst 4 1.83 1.36 10.39 5.16
CreateIndex 4 0 0.78 0 3

Pseudo 4 16.85 15.77 43.82 46.09
LabReord 4 6.95 3.8 16.18 13.33
SubFold 4 0.13 0.11 0.57 0.14

CountUpd 4 0.09 0.98 0.22 0.2
SubFolInst 4 1.29 1.13 9.83 9.85

Inst 5 1.94 0.77 9.2 2.16
CreateIndex 5 0 0.13 0 0.21

Pseudo 5 0.59 0.75 0.94 1.21
LabReord 5 0.47 0.54 0.89 0.85
SubFold 5 0.12 0.13 0.13 0.1

CountUpd 5 0.1 0.13 0.13 0.11
SubFolInst 5 0.99 0.97 6.39 8.14

Total 311.41 319.62 1844.1 1885.72



CHAPTER 7

CONCLUSION AND FUTURE WORK

In this thesis we have addressed several enhancements to the earlier graph-based

data mining algorithm (EDB-Subdue), developed using relational databases. The dif-

ferent enhancements addressed in this thesis include, detection of all possible patterns

including multiple edges using unconstrained expansion and performing hierarchical re-

duction. A scheme for eliminating duplicates generated during expansion was also de-

signed and implemented. Changes were made to the substructure evaluation metric,

DMDL, to account for the multiple edges and new substructure representation. The

previous work had an option to select top beam substructures having the highest DMDL

value. But the ties in the DMDL value was not taken into account. In this thesis we

explored the use of Oracle’s analytic functions to select the top beam substructures with

all its ties. All the enhancements were performed using pure SQL statements to improve

the performance of the algorithm. Graph mining was run on data sets that have 1600K

vertices and 3200K edges. All the enhanced algorithms were validated and tested to

achieve the desired scalability.

7.1 Future work

The current substructure expansion algorithm does not impose any constraint to

avoid duplicate instance generation. It might be possible to design a constraint using

the edge numbers to avoid duplicate instances. Then it should be possible to skip the

duplicate elimination step. But still, we would need to do the label reordering step

because the substructure frequency counting needs the labels to be in canonical order.

81
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In the calculation of the substructure evaluation metric, DMDL, we use the counts

of vertices and edges instead of bit representation as in MDL. Also for calculating the

numerator of the DMDL formula, Value(S), we add up number of vertices and number

of edges in the input graph. But in the denominator, for calculating Value(S) we add

number of vertices in the substructure and non-zero rows parameter instead of the number

of edges. This essentially allows us to simulate the MDL value in its trend (and not actual

value) to validate the algorithm against the output produced by Subdue. In the future,

DMDL could be modified to take the byte level storage space the substructure instances

occupy. The storage space should be obtained at run time because all the text based

columns (vertex and edge labels) are declared as VARCHAR.

In this thesis we tried to improve the performance of the queries by creating Indexes

on frequently accessed tables. We created index on oneedge table because we join the

InstanceIter table with oneedge table in each expansion iteration to grow substructures

from smaller sizes to larger sizes. We also created indexes on Sorted table (which holds

the vertices sorted on vertex numbers) and Sorted Ext table (which holds the edge in-

formation sorted on connectivity attributes) because they are joined in 2n+1 way when

we reconstruct the instance table in canonical order. However, we did not observe any

improvement with the use of indexes. This perhaps need to be revisited to establish the

role of indexes for this class of computation.

The current substructure discovery algorithm identifies only exact graph matches.

That is, it requires all the instances of a substructure to have the same number of graph

vertices and edges with matching edge and vertex labels. There are applications where a

dissimilarity of few vertices can be tolerated. In our algorithm since we order the vertex

and edge labels canonically, it would directly contribute to the inexact graph match, be-

cause most of the inexact graph match algorithms depend on canonical labeling. Another

improvement would be to extend database graph mining to perform concept learning and
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classification. Scalability and performance can be improved through partitioned and in-

cremental approaches. The incremental approach will mine the data only on the new

data that is added rather than mining the whole graph again after the addition is made.
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