

Acknowledgments

- Parts of this presentation are based on the work of many of my students, especially Ramji Beera, Ramanathan Balachandran, Srihari Padmanabhan, Subhesh Pradhan (and others)
- National Science Foundation and other agencies for their support of MavHome, Graph mining and other projects
- Some slides are borrowed from various sources (web and others)

© Sharma Chakravarthy

Need for Graph Mining

- Association rule mining, decision trees and others mining approaches
 - mine transactional data
 - Do not make use of any structural information
- Graph based mining techniques are used for mining data that are structural in nature
 - chemical compounds, complex proteins, VLSI circuits, social networks, ...
 - as mapping them to other representations is not possible or will lead to loss of structural information

Need for Graph Mining

- > Significant work in this area includes
 - Subdue substructure discovery algorithm (Cook & Holder),
 - HDB-Subdue (Chakrvarthy, Padmanabhan),
 - Apriori graph mining (AGM) (Inokuchi, Washio, and Motoda),
 - the frequent subgraph (FSG) technique (Karypis & Kuramochi), and
 - gSpan approach (J. Han), also SPIN (Huan, Wang, Prins, and Yang)
- PageRank and HITS are also graph based

© Sharma Chakravarthy

Application Domains

- > Chemical Reaction chains
- CAD Circuit Analysis
- Social Networks
- Credit Domains
- Web analysis
- Games (Chess, Tic Tac toe)
- Program Source Code analysis
- Chinese Character data bases
- Geology
- Web and social network analysis

Sharma Chakravarthy

Graph Based Data Mining

- A Graph representation is an intuitive and an obvious choice for a database that has structural information
- > Graphs can be used to accurately model and represent scientific data sets. Graphs are suitable for capturing arbitrary relations between the various objects.
- Graph based data mining aims at discovering interesting and repetitive patterns within these structural representations of data.

Graph Mining: Complexity

- Enumerating all the substructures of a graph has exponential complexity
- Subgraph isomorphism (or subgraph matching) is NP-complete
- However, graph isomorphism although belongs to NP is neither known to be solvable in polynomial time nor NP-complete
- Generating canonical labels is O(|V|!), where V is the number of vertices
- All approaches have to deal with the above in order to be able to work on large data sets
- Different approaches do it differently; scalability depends on the approach and the use of representation

Graph Mining Overview

- > A substructure is a connected subgraph; need to differentiate between substructures and substructure instances
- A connected subgraph is a subgraph of the original graph where there is a path between any two vertices
- A subgraph G_s = (V_s, E_s) of G = (V, E) is induced if E_s contains all the edges of E that connect vertices in V_c
- Directed and undirected edges are possible; multiple edges between two nodes need to be accommodated; cycles need to be handled

© Sharma Chakravarthy

Subdue

- One of the earliest work in Graph based data mining
 - Uses sparse adjacency matrix for graph representation
- Substructures are evaluated using a metric called Minimum Description Length principle based on adjacency matrices
- Capable of matching two graphs, differing by the number of vertices specified by the threshold parameter, inexactly
- Performs hierarchical clustering by compressing the input graph with best substructure in each iteration

Subdue

- Also capable of supervised discovery using positive and negative examples
- > Available main memory limits the largest dataset that can be handled
- > An SQL-based subdue can address scalability
- ➤ A computationally constrained beam-search is used for subgraph generation (pruning the search space)
- > A branch and bound algorithm is used for inexact match

AGM

- > First to propose apriori-type algorithm for graph mining
- > Detects frequent induced subgraphs for a given support
- > Follows apriori algorithm
- > Not much optimization; hence performance is not that good and is not scalable!

© Sharma Chakravarthy

gSpan

- > Avoids candidate generation
- > Builds a new lexicographical ordering among graphs and maps each graph to a unique minimum DFS code as its canonical label
- > Seems to outperform FSG
- > Amenable to parallelization
- > Does not handle cycles and multiple edges

Comparison					
	Subdue	FSG	AGM	gSpan	HDBSubdue
Graph Mining	✓	√	√	√	✓
Multiple edges	✓	×	×	×	✓
Hierarchical reduction	✓	×	×	×	✓
Cycles	✓	✓	✓	×	✓
Evaluation metric	MDL	Frequency	Support, Confidence	Frequency	DMDL (frequency)
Inexact graph match With threshold	✓	×	×	×	×
Memory limitation	✓	✓	✓	✓	×
© Sharma Chakravarthy					56

Scalability Issues

- > Subdue is a main memory algorithm.
- Good performance for small data sizes
- > Entire graph is constructed before applying the mining algorithm
- ➤ Takes a very long time to even to initialize for 1600K edges and 800K vertices graph
- > Scalability is an issue

© Sharma Chakravarthy

SQL-Based Graph Mining

- We have mapped the Subdue algorithm using SQL (HDB-Subdue)
 - Handles multiple edges between nodes
 - Handles cycles/loops
 - Performs Hierarchical reduction
 - Dveloped DMDL tailored to databases
- > Can handle graphs of Millions of edges and vertices
- > DB-FSG does frequent subgraph mining
- > Working on inexact matching

© Sharma Chakravarthy

58