A“ Lo
he University of Texas .
ARLINGTON.

Tutorial Outline

“Lav

» Graph Mining Approaches
= Subdue
Graph Mining Techniques * AGM
Subdue " e
» SQl-Based Graph Mining
= HDB-Subdue
= DB-FSG (may be)
Sharma Chakravarthy > Graoh mini licati
Information Technology Laboratory raph mining applications
Computer Science and Engineering Department = Email classification
The Un1vers1ty];)rfn;l;iel:f:;::ﬁ:gg:zﬁ;g:gton, TX 76009 » Multilayer Network Analysis
URL: http://itlah.li/ta.edu/sharma » Conclusions
Course URL: http://wweb.uta.edu/faculty/sharmac
» References
A Sharma Chak = W Sharma Chakra
Acknowledgments &= &=

» Parts of this presentation are based on the work of
many of my students, especially Ramji Beera,
Ramanathan Balachandran, Srihari Padmanabhan,
Subhesh Pradhan (and others)

> National Science Foundation and other agencies
for their support of MavHome, Graph mining
and other projects

» Some slides are borrowed from various sources
(web and others)

2y Sharma Chak

Need for Graph Mining

» Association rule mining, decision trees and others
mining approaches
= mine transactional data
= Do not make use of any structural information

» Graph based mining techniques are used for
mining data that are structural in nature

= chemical compounds, complex proteins, VLSI
circuits, social networks, ...
= as mapping them to other representations is not

possible or will lead to loss of structural
information

)
2y Sharma Chakra

gLab . . . {Lab
Need for Graph Mining C Application Domains [
» Significant work in this area includes

= Subdue substructure discovery algorithm (Cook & » Chemical Reaction chains

Holder), » CAD Circuit Analysis
= HDB-Subdue (Chakrvarthy, Padmanabhan), > Social Networks
= Apriori graph mining (AGM) (Inokuchi, Washio, > Credit Domains

and Motoda), > Web analysis
= the frequent subgraph (FSG) technique (Karypis & » Games (Chess, Tic Tac toe)

Kuramochi), and » Program Source Code analysis
= gSpan approach (J. Han), also SPIN (Huan, Wang, > Chinese Character data bases

Prins, and Yang) > Geology

» PageRank and HITS are also graph based > Web and sacial network analysis
oz _LNE&ML\(LNQC_ b Graph Based Data Mining Cer
A N
TI’ .‘i: . %, | » A Graph representation is an intuitive and an
‘T/ir"\h:j\'ffl - obvious choice for a database that has structural
i s i o information
L L v
Protein AT T > Graphs can be used to accurately model and
, represent scientific data sets. Graphs are
co suitable for capturing arbitrary relations
Protein represented Application: between the various objects.

using Graph / N

To determine which amino
acid chain dominates in a
particular protein

» Graph based data mining aims at discovering
interesting and repetitive patterns within these
structural representations of data.

“Lab

Graph Mining: Mapping

Entities/objects - Vertices

Object’s attributes — Vertex label

Relations between — Edges between vertices
objects

Type of relation —- edge label

Substructure — Connected subgraph
Substructure — Set of vertices & edges in
Instance input graph that match graph

representation of data

PAS Sharma Chak

Graph Mining: Complexity g &

Enumerating all the substructures of a graph has
exponential complexity

Subgraph isomorphism (or subgraph matching) is
NP-complete

However, graph isomorphism although belongs
to NP is neither known to be solvable in
polynomial time nor NP-complete

Generating canonical labels is O(|V|!), where V is
the number of vertices

All approaches have to deal with the above in
order to be able to work on large data sets
Different approaches do it differently; scalability
depends on the approach and the use of
representation

)
PAS Sharma Chakra

Graph Mining Overview

» A substructure is a connected subgraph; need to
differentiate between substructures and
substructure instances

» A connected subgraph is a subgraph of the
original graph where there is a path between any
two vertices

» A subgraph G, = (V,, E,) of G = (V, E) is induced if
E, contains all the edges of E that connect
vertices in V,

» Directed and undirected edges are possible;
multiple edges between two nodes need to be
accommodated; cycles need to be handled

Subdue e

One of the earliest work in Graph based data

mining

= Uses sparse adjacency matrix for graph
representation

Substructures are evaluated using a metric called
Minimum Description Length principle based on
adjacency matrices

Capable of matching two graphs, differing by the
number of vertices specified by the threshold
parameter, inexactly

Performs hierarchical clustering by compressing
the input graph with best substructure in each
iteration

PAS Sharma Chakra

Subdue x &
» Typically, used for unsupervised discovery of
interesting substructures

» Also capable of supervised discovery using
positive and negative examples

> Available main memory limits the largest
dataset that can be handled

» An SQL-based subdue can address scalability

» A computationally constrained beam-search
is used for subgraph generation (pruning the
search space)

» A branch and bound algorithm is used for
inexact match

<
A Sharma Chak thy

FSG

FSG is used for frequent subgraph discovery

Given a graph dataset G = {G1, G2, G3, - - -}, it discovers all
connected subgraphs that are found in at least the support
threshold percent of the input graphs

Uses a (sparse) adjacency matrix for graph representation

A canonical label is generated by flattening the adjacency matrix of
a graph (optimization)

At each iteration FSG generates candidate subgraphs by adding
one edge to the previous iteration’s frequent subgraph
(optimization)

Graph isomorphism is checked by comparing canonical labels
(optimization)

2y Sharma Chakra

AGM

» First to propose apriori-type algorithm for graph
mining

» Detects frequent induced subgraphs for a given
support

» Follows apriori algorithm

» Not much optimization; hence performance is not
that good and is not scalable!

2y Sharma Chak thy

gSpan e
Avoids candidate generation

Builds a new lexicographical ordering among graphs
and maps each graph to a unique minimum DFS
code as its canonical label

Seems to outperform FSG
Amenable to parallelization
Does not handle cycles and multiple edges

A Sharma Chakra 16

3Lab

Subdue Example

* Came from Al
» Examples are different from what we normally
see in mining

Input Database Substructure S$1 Compressed Database
A (graph form)
E @ shaps”
L obioct]
Ad LT DO
E g E object

;

Subdue Substructure Discovery System Lab

» Subdue Substructure discovery system is a graph-based data mining system
that discovers interesting and repetitive patterns within graph
representations of data.

» Itaccepts as input a forest and identifies the substructure that best
compresses the input graph using the minimum description length (MDL)
principle.

» Itis capable of identifying both exact and inexact (isomorphic) substructures
within a graph

» Ituses a branch and bound algorithm for inexact matches (substructures that
vary slightly in their edge and vertex descriptions).

= ¥ Sharma Chakravarthy

Best substructure output by Subdue

Substructure:
Graph(4v3e):
V1 object
v 2 object
v 3 triangle
v 4 square
ul2over

ul 3 shape
u2 4 shape

=\ Sharma Chakravarthy 8

Subdue T

» Unsupervised learning

= Subdue finds the most prevalent substructure from a
set of unclassified input graphs

» Supervised learning
= Subdue finds discriminating patterns from a set of
classified (positive — G+ and negative — G- graphs)
» Hierarchical conceptual clustering
= Compresses G with S and iterate

» Incremental Subdue?

=\ Sharma Chakravarthy 20

Subdue

» Inferring graph grammars and graph primitives
from examples

» Applications
= Data mining
= Pattern recognition
= Machine learning

MDL Principle

» Theory to minimize description length (DL) of
data (graph)

» information theoretic approach

» Has been shown to be good across domains

» Evaluates substructures based on their ability to
compress the DL of a graph

» Description length = DL(S) + DL(G/S)
= Depends upon the representation

= Substructure that best compresses the original is
chosen

Graph Representation

» Subdue represents data as labeled graph.
» Vertices represent objects or attributes
» Edges represent relationships between objects
» Input: Labeled graph
» Output: Discovered patterns and instances and
their compression value.
» A substructure is a connected subgraph
» Graph isomorphism is used to identify similar (not
merely exact) substructures

MDL Principle

» Best theory: minimizes description length of data

» Evaluate substructure based ability to compress DL of
graph

» Description length = DL(S) + DL(G|S)

101001000101 101 101001011100 g
-
>

MDL Principle (cont.) y

&

Input (partial)
Minimizes description length (MDL) of data » Theinputis a file, with all the vertex labels, vertex
Substructures are evaluated based on their ability to compress the numbers, edges (using vertex numbers) and the edge
DL of the entire graph directions
» MDL = description length of the original graph / description length V1A
of the compressed graph v2B
v3C
MDL - DL(G) v4D
DL(S) + DL(G|S) d12ab
» High MDL value is desirable ! di13ac
d24bd
» DL(G) — Description length of the input graph d43dc
> DL(S) — Description length of sub graph » ‘d’ stands for a directed edge and ‘u’ stands for
> — Descripti i ; - ;
:I,La(gr! ‘?as Eee;f]”s‘fft';;tljt"eg;h of the input graph where the sub undirected. ‘e’ stands for directed.
= W Sharma Chakravarth = W Sharma Chakravart
. y &3 Lab

PAS Sharma Chakravarth

Create a substructure for each unique vertex

Expand each substructure by adding an edge (and may be
a vertex)

Maintain beam number of substructures for expansion
Halting conditions
= Discovered substructures > limit

= List maintaining the substructures to be expanded
becomes empty

= Max size of substructure to be discovered is reached

PAS Sharma Chakravart 28

Output

» Output
Substructure: MDL value = 1.21789, instances = 2
Graph (4v,4e):

V1A aec
v2C

v3B ab A
V4D de
dl2ac
RN ORO.
d42dc bd
d34bd
% Sharma Chakravarthy 29

Subdue Algorithm

aph, idth, MaxBest, ize, Limit)
ParentlList = {}; ChildList = {}; BestList = {}
ProcessedSubs = 0
Create a substructure from each unique vertex label and its single-vertex instances; insert the resulting
substructures in ParentList
while ProcessedSubs <= Limit and ParentList is not empty do
while ParentList is not empty do
Parent = RemoveHead(ParentList)
Extend each instance of Parent in all possible ways; Group the extended instances into Child
substructures
foreach Child do
if SizeOf(Child) <= MaxSubSize then
Evaluate the Child //by using MDL
Insert Child in ChildList in order by value //highest to lowest MDL value
if Length(ChildList) > BeamWidth then Destroy the substructure at the end of ChildList
ProcessedSubs = ProcessedSubs + 1
Insert Parent in BestList in order by value
if Length(BestList) > MaxBest then Destroy the substructure at the end of BestList
Switch ParentList and ChildList
return BestList

2 Sharma Chakravarth

Subdue Parameters

» Threshold determines the amount of variation permissible in the
vertex and edge descriptions during inexact graph match.

> Nsubs determines the maximum number of substructures that are
returned as the set of best substructures

» Beam determines the maximum number of substructures that are
retained for expansion in the next iteration of the discovery algorithm

» Minsize constrains the size of substructures returned as best to be
equal to or more than the specified parameter value

» Limit is a upper bound on the number of substructures detected

2y Sharma Chaki thy

Algorithm (Contd.)

1. Create substructure for each unique vertex label

Substructures:
triangle triangle (4), square (4),
on left circle (1), rectangle (1)
squaree—> circle
on l
recthed A
¢ ‘ £ e . o ®
on) left OM . left O) [~] h
triangle—= triangle—=triangle AAA srap YY)
on on on ! E E

left left
square — square — square

Sharma Chakravarth

2.

A -
£ o . _ gl
Algorithm (Contd.) AAA o= %

eft e
square —» square square

Expand best substructure by an edge or
edge+neighboring vertex
Substructures:
R R P pap e pparhg)
triangle : triangle :
1 on I
square& circle : square :
on]) i
1 left . 1
rectangle ———— h square > circle :
on eft O eft O : square rectangle !
triangle— triangle—triangle ! on l on 1 :
1
on on on tri i]
: rectangle riangle .
1 I
| I
U

Graph Match

» Exact Graph match
» Inexact Graph match

Exact graph match is likely to be restrictive for real life
applications.

= ¥ Sharma Chakravarthy

Algorithm (cont.)

Keep only best substructures on queue (specified
by beam width)

Terminate when queue is empty or #discovered
substructures >= limit

Compress graph and repeat to generate
hierarchical description

Constrained to run in polynomial time

=\ Sharma Chakravarthy

Inexact Graph Match g &

» Some variations may occur between instances
» Want to abstract over minor differences

» Difference = cost of transforming one graph to
make it isomorphic to another

» Match if cost/size < threshold

=\ Sharma Chakravarthy 36

Inexact Graph Match T

» Minimum graph edit distance

cumulative cost of graph changes required to
transform the first graph into a graph isomorphic to
the second graph.

» Uses Branch and bound algorithm

Y VvV

v Vv

Hierarchical Reduction T

Input is a labeled graph

A substructure is connected subgraph

A substructure instance is a subgraph isomorphic to substructure definition
Multiple iterations can create hierarchy

2 Sharma Chakravarth

Variants of Subdue g &

Hierarchical reduction

Concept learner using positive and negative
examples

Similarity detection in social networks

Y Vv

Inductive learning
Partitioned and parallel approaches
Database approach to some of the above

YV V V V

2y Sharma Chaki thy

b

Supervised Concept Learning Using Subd(f@9

> Need for non-logic-based relational concept learner
SubdueCL

» Accept positive and negative graphs as input examples

= Find hypotheses that describes positive examples and not
negative examples

2 Sharma Chakravarth

10

SubdueCL

» Find substructure compressing positive graphs, but
not negative graphs

» Find substructure covering positive graphs, but not
negative graphs

» Learn multiple rules

2y Sharma Chak thy

Concept Learning SUBDUE y

Positive graph G+

Negative graph G-

Concept:

Alternative set covering measure

v

Y V VY

= Error (substructure) = #PosExNotCovered + #NegExCovered
#PosEx + #NegEx

= For a substructure to be good, Error should be minimum

= Hence, Value (of a substructure) = 1 — Error

» Coverage: A substructure covers an example if the substructure
matches a subgraph of the example

2y Sharma Chakra

Concept Learning Subdue y &

» Positive graph G+, Negative graph G-
» Find substructure that compresses instances
but not (or more than) negative instances

= Value (G+, G-, S) = DL(S) + DL(G+|S) + DL(G-) — DL(G-|S)

» One of the limitations of this compression-based
concept learner is that it only looks for substructures
which compress the entire positive graph more than
the entire negative graph.

» Therefore, it is biased to look for a substructure that
offers more compression as compared to a
substructure that covers a greater number of positive
examples.

2y Sharma Chak thy

Hypotheses detection using coverage y

Main(Gp, Gn, Beam, Limit)
H={};
repeat
repeat
BestSub = SubdueCL(Gp, Gn, Beam, Limit)
if BestSub = {}
then Beam m= Beam * 1.1
until (BestSub <> {})
Gp =Gp -{pin Gp | BestSub covers p}
H=H + BestSub
until Gp = {}
return H
end

2y Sharma Chakra

11

SubdueCL(Gp, Gn, Limit, Beam) “Tab
ParentList = (All substructures of one vertex in Gp) mod Beam o
repeat

Bestlist = {}

Exhausted = TRUE

= Limit

while ((i>0) and (Parentlist # {}))
Childist = {}
foreach substucture in ParentList

&

Empirical Results

» Comparison with ILP (inductive logic programming)
systems

» Non-relational domains from UCI repository

C = Expand(Substructure) N N n
if CoversOnePos(G.0p) Golf Vote Diabetes | Credit TicTacToe
then BestList = BestList U {C}
ChildList = (ChildList U C) mod Beam SubdueCL Algorlthm FOIL 66.67 93.02 70.66 66.16 100.00
i=i—-1
endfor Progol 33.33 76.98 51.97 44 .55 100.00
ParentList = ChildList mod Beam
endwhile
oo - {1 and Parentist = SubdueCL | 66.67 94.88 64.21 71.52 100.00
then Exhausted = FALSE
Limit = Limit * 1.2
until (Exhausted = TRUE)
reu frsBeste) » Subdue has also been extended for multiple classes
= W Sharma Chakravarth = W Sharma Chakravart
(Lab . (Lab
Example _ g5 Graph-based Anomaly Detection kopos}—
» Anomalous substructure detection
PC8 = Examine entire graph
= Report unusual (low MDL compression) substructures
- low count
N NEG % é E - lower MDL
shape
@' w - lower compression in subsequent passes
on
shape . . s
@bjecd size * count can be used as a heuristic
on
= W Sharma Chakravarth = W Sharma Chakravart 3

12

Graph-based Anomaly Detection (opos"

» Anomalous subgraph detection
= Partition graph into distinct, separate structures
(subgraphs)
= Determine how anomalous each subgraph is compared
to others
- How early compressed?
- How much compression?

PAS Sharma Chakravarth 19

Problem Definition

» discovering all connected subgraphs that occur

frequently over the entire set of graphs.
= Subdue: best n are output (n is user defined)

» vertex : corresponds to an entity
» edge : correspond to a relation between two entities

PAS Sharma Chakra

FSG

= Aims at discovering interesting sub-graph(s) that
appear frequently over the entire set of graphs in
contrast to discovering a interesting sub-graph(s)
that appear within a single graph (or a forest) as in
Subdue/HDB-Subdue

= |tis designed along the lines of Apriori algorithm.

PAS Sharma Chakravarth

Example of Frequent sub-graph discovery

Input: Graph Transactions Output: Frequent Connected Subgraphs

Support = 100%

HoA
A
LAY

Support = 66%

PAS Sharma Chakra

13

H% Yt o] (Lab . . (P
Definitions Conclusions
> Gs will be an induced subgraph of G if Vs is a subset of V and Graph mining is a povyerful approach needed by
Es contains all the edges of E that connect vertices in Vs. many real-world applications
There is need for both Subdue class of mining
> Two graphs G1 = (V1;E1) and G2 = (V2;E2) are isomorphic if algorithms and frequent subgraph class of
they are topologically identical to each other, that is, there is algorithms
a mapping from V1 to V2 such that each edge in E1 is e . .
map[’:gd t% a single edge in £2 and vice versga Scalability is an extremely important issue
Our approach to using SQL has yielded very
» An automorphism : an isomorphism mapping where G1 = G2 promising scalability results (800K vertices and
(on the same graph). 1600K edges)
= W Sharma Chakravarth = W Sharma Ch
L1 . (75 Comparison =5
Example (from Wlkl) h Subdue FSG AGM gSpan HDBSubdue
* The two graphs shown below are isomorphic, Graph Mining v v v v v
despite their different Jooking drawings
Graph G Graph H tﬁe:x:goépahr:znli Multiple edges v x x x v
fla)=1 Hierarchical v x x x v
ovo flb)=6 reduction
&—@ 22)) = § Cycles v v v x v
eo 2% :g Evaluation metric MDL Frequency Support, Frequency DMDL
@ 0, 1(i) = 4 Confidence (frequency)
f0)=7
Inexact graph match
« The formal notion of "isomorphism", e.g., of "graph isomorphism", captures the With threshold v * * * *
informal notion that some objects have "the same structure” if one ignores individual
distinctions of "atomic" components of objects in question Memory limitation v v v v x
= W Sharma Chakravarth; = W Sharma Chakra 56

Scalability Issues

» Subdue is a main memory algorithm.

» Good performance for small data sizes

» Entire graph is constructed before applying the
mining algorithm

» Takes a very long time to even to initialize for
1600K edges and 800K vertices graph

» Scalability is an issue

SQL-Based Graph Mining Co
We have mapped the Subdue algorithm using SQL (HDB-
Subdue)
= Handles multiple edges between nodes
= Handles cycles/loops
= Performs Hierarchical reduction
= Dveloped DMDL tailored to databases

Can handle graphs of Millions of edges and vertices

DB-FSG does frequent subgraph mining
Working on inexact matching

15

