A“ Lo
he University of Texas .
ARLINGTON.

“Lav

Tutorial Outline
Graph Mining Approaches
Graph Mining Techniques
FSG (Chapter 6.5) " AGM
= fSG
SQL-Based Graph Mining
Sharma Chakravarthy
Information Technology Laboratory = DB-FSG (may be)
Computer Science and Engineering Department ini . :
The University of Texas at Arlington, Arlington, TX 76009 Graph. mm"?q ap.pllcatlons
Email: sharma@cse.uta.edu = Email classification
URL: http://itlab.uta.edu/sharma f
Course URL: http://wweb.uta.edu/faculty/sharmac Conclusions
References
A Sharma Chak = W Sharma Chakra
Acknowledgments [FSG [

» Parts of this presentation are based on the work of
many of my students, especially Ramji Beera,
Ramanathan Balachandran, Srihari Padmanabhan,
Subhesh Pradhan (and others)

> National Science Foundation and other agencies
for their support of MavHome, Graph mining
and other projects

» Some slides are borrowed from various sources
(web and others)

2y Sharma Chak

Aims at discovering interesting sub-graph(s) that
appear frequently over the entire set of graphs in
contrast to discovering a interesting sub-graph(s)
that appear within a single graph (or a forest) as in
Subdue/HDB-Subdue

It is designed along the lines of Apriori algorithm.

2y Sharma Chakra

Problem Definition T

» discovering all connected subgraphs that occur
frequently over the entire set of graphs.

= Subdue: best n are output (n is user defined)
» vertex : corresponds to an entity
» edge : correspond to a relation between two entities

=\ Sharma Chakravarthy

Definitions g &

» Gs will be an induced subgraph of G if Vs is a subset of V and
Es contains all the edges of E that connect vertices in Vs.

» Two graphs G1 = (V1,;E1) and G2 = (V2,E2) are isomorphic if
they are topologically identical to each other, that is, there is
a mapping from V1 to V2 such that each edge in E1 is
mapped to a single edge in E2 and vice versa

» An automorphism : an isomorphism mapping where G1 = G2
(on the same graph).

=\ Sharma Chakravarthy

Example of Frequent sub-graph discovery @b

Input: Graph Transactions Output: Frequent Connected Subgraphs

/ S /) — / E Support = 100%
i

/ S % S Support = 66%
i !

’ E —_— Support = 66%

=\ Sharma Chakravarthy

Graph Definitions

(a) Labeled Graph (b) Subgraph (c) Induced Subgraph

}ﬁ. “Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 & |

Example (from wiki)

Two functions for mapping
+ The two graphs shown below are isomorphic, ~ Vertexes and edges are used.
despite their different looking drawings ~ L-abels need to be mapped as well.

An isomorphism

Representing Transactions as Graphs

e Each transaction is a clique of items

» The star graph S_4 has six automorphisms: (1, 2, 3,
4)[(1l 3[2[4)l (2I 1' 31 4)' (21 3[1I 4)[(3I 11 21 4)' (31
2,1, 4), illustrated above.

an automorphism is an
isomorphism from a

AUTOMORPHISM
mathematical object to itself

| |)
4 4 4
Multiple mappings exist unlike 3 b 3
Itemset due to graph representation 5 ;
i
3 2 3
4 4 4
B i i
| b)

G) “IathsOn e

2y Sharma Chaki thy

Sepld S between G and H TID =1: A
fla)=1 i
@ @) fb) =6 Translzctlon ltems
' =8 C
&—@ oS 1 BABCD
. flg)=5 2 {A,B,E} —— B
00 f(h) = 2 3 {B,C}
0!) f(lj)=4 4 {A,B,D,E}
fuy=7 5 {8,C.D} .
* The formal notion of "isomorphism", e.g., of "graph isomorphism", captures the E
informal notion that some objects have "the same structure" if one ignores individual D
distinctions of "atomic" components of objects in question
% St Chakravarth F’J Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 b
Automorphism Definitions

» The canonical label of a graph G = (V;E), cl(G) :
unique code (e.g., string) that is invariant on the
ordering of the vertices and edges in the graph.

Two graphs will have the same canonical label if
they are isomorphic
= We will use this and discuss it later!

\%

» Canonical labels are useful to (i) compare two
graphs (ii) establish a complete ordering of a set of
graphs in a unique and deterministic way, regardless
of the original vertex and edge ordering.

2y Sharma Chakra

Challenges

e Node may contain duplicate labels
e Support and confidence
— How to define them?
e Additional constraints imposed by pattern
structure
— Support and confidence are not the only constraints
— Assumption: frequent subgraphs must be connected

Example: Dataset

G1 G2 G3 G4
e Apriori-like approach:
(a,b,p) | (a,b,q) | (a,b,r) | (b,e,p) | (b,c,a) | (b,c,r) (d,e,r)
— Use frequent k-subgraphs to generate frequent (k+1) G1 1 0 0 0 1 0
subgraphs G2 1 0 0 0 0 0 0
o G3 0 0 1 1 0 0 0
oWhat is k7 ca | 0 0 0 0 0 0 0
)@Tan,snembuch, Kumar Introduction to Data Mining 4/1812004 o }ﬁ. “Tan,Steinbach, Kumar Introduction to Data Mining 41182004 I |
Challenges... Example
° Support. ‘ Minimum support count = 2 ‘

— number of graphs that contain a particular subgraph

e Apriori principle still holds
— But testing for apriori property is very expensive

e Level-wise (Apriori-like) approach:
— Vertex growing: used by AGM
k is the number of vertices
— Edge growing: used by FSG
+ k is the number of edges

)@Tan,swmbuch, Kumar Introduction to Data Mining 4/18/2004 dh

k=1

Frequent @ @ @ @ @

Subgraphs

k=2
requent

Subgraphs . P . . P .

k=3 © (®) @---©
Candidate . '
Subgraphs !

(Pruned candidate)

}r’) Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004 b

FSG is more challenging

» Complexity

= Finding support is difficult on graphs as compared to
itemsets (cannot do group by)

- Need subgraph isomorphism

= Number of candidate subgraphs is far larger (than in
market basket analysis)

- An itemset can be arranged in more ways as a graph
- An edge label may appear multiple times in a graph

» Apriori still holds for subgraphs

= A k-graph is frequent only if all of its (k-1)-subgraphs
are frequent

<
A Sharma Chaki thy

Algorithm fsg(D; t)

: F(1) = detect all frequent 1-subgraphs in D
: F(2) = detect all frequent 2-subgraphs in D
tk=3
: while F (k-1) = NULL ; do
C(k) = fsg-gen(F(k-1))
for each candidate G(k) in C(k) do

G(k).count=0

for each transaction T in D do

if candidate G(k) is included in transaction T then

10: G(k).count++
11: F(k) = {G(k) in C(k) | G(k).count >=t|D| }
12: k++
13: return F(1);F(2); ;F(k-2)

LOeNIULREWNR

2y Sharma Chakra

Apriori-Based, Breadth-First Search

M- H B

© FSG (Kuramochi and Karypis ICDM’01)
© generates new graphs with one more edge

© In contrast, when you join two itemsets, you get an
itemset!

FSG Algorithm

» Two graphs P and Q are joinable if the join of the two graphs
produces a non-empty set

» Two graphs P and Q are joinable if P n Q is a graph with size
|P| -1 or share a common “core” with size P-1

Multiplicity of Candidates

»Case 1: identical vertex labels

Multiplicity of Candidates LC2
» Case 3: Core multiplicity
@—a ‘a
a—(a I
| b—a—a it},—fa‘ N\,

b—a

b—a—@

b —\!,—'a b 4) b—@

Multiplicity of Candidates

> Case 2: Core contains identical labels

®) @
a4+ @) —
(a /ag
(a) (a)

Core: The (k-1) subgraph that is common
between the joint graphs

¢

Key Features Of FSG T

» Uses sparse graph representation that minimizes storage
and computation

» Increases the size of frequent subgraphs by adding one
edge at a time (apriori)

» Uses canonical labeling to uniquely identify subgraphs

» ONLY undirected edges; it cannot handle multiple edges
and cycles
= (Unlike subdue)

FSG Components

» Candidate Generation
» Graph Isomorphism
» Interestingness metric

Frequency is considered to be an interestingness
metric. That is, the frequent sub-graph that appears
in most graph databases is considered interesting

Key Aspects

» interested in subgraphs that are connected
> allow the graphs to be labeled

> both vertices and edges may have labels associated
with them which are not required to be unique.

PAS Sharma Chakra

Graph Isomorphism

» FSG uses canonical labeling for isomorphism.

» Canonical labeling assigns a unique code for each
substructure and two substructures have the same
canonical code only if the substructures are isomorphic.

» Canonical labeling is an easier and faster way of finding
the isomorphic substructures, but it suffers from the fact
that canonical labeling cannot be used for graphs that
have multiple edges between the vertices and cycles

FSG T

» Input to FSG

Set of graphs (transactions)
Labeled edges and vertices
Edges are undirected

No inexact match

Subdue can take a single connected graph or a forest of
graphs

Edges can be directed or undirected

Both edges and vertices can have labels

Multiple edges between nodes is supported

Cycles are supported

PAS Sharma Chakra 28

Algorithm fsg(D; t) T

1: F(1) = detect all frequent 1-subgraphs in D
2: F(2) = detect all frequent 2-subgraphs in D
3:k=3

4: while F (k-1) = NULL ; do

5: C(k) = fsg-gen(F(k-1))

6: for each candidate G(k) in C(k) do

7: G(k).count=0

8: for each transaction Tin D do

9: if candidate G(k) is included in transaction T then
10: G(k).count++

11: F(k) = {G(k) in C(k) | G(k).count >=t|D] }

12: k++

13: return F(1);F(2); covereen ;F(k-2)

PAS Sharma Chakravarth 29

Joining of two k-subgraphs

a c a e w8 c a ¢ B . . R .
N Join a o e o .
a aa a a a a a
a B a b @ b oa b & o a a
o el o G5 b b ©
G Gy G a3 I 64 &

(a) By vertex labeling (b) By multiple automorphisms of a single core

Join
"
B a a b5 a a Toa atb 4 a
af] af e
a a a ab a a
Ak @ a T a ab a a
& =

a
The first cote Hf The second core Hj

(¢) By multiple cores

PAS Sharma Chakravarth

Candidate generation

» Candidates are the substructures which would be
searched and counted in the given graph databases

» create a set of candidates of size k+1, given frequent k-
subgraphs.

» by joining two frequent k-subgraphs (using downward
closure property)

» must contain the same (k-1)-subgraph (common core)
» Self-join required for unlabeled graphs

PAS Sharma Chakravarth

Join

Algorithm 3 lkg-jwiui(ii , (é 41 (Join)

I: ¢ & the edge appears only in (f'}f nat in HE

2: ¢y — the edge appears only (fé\ 1ot in 41

3 M — generate all antomorphisms of ik

5 B =)

5t for each antomorphism o € M do

g B gy {all possible candidates of size k 4+ 1 ereated from a set of e, e, B+ and 0|
7 return B*!

PAS Sharma Ch:

"'7';/L,€3b
Key computational steps in
candidate generation
» core identification

» Joining

» using the downward closure property

2y Sharma Chak thy

“Lav

Speeding automorphism computation

» cache previous automorphisms associated with each
core

> look them up instead of performing the same
automorphism computation again.

» saved list of automorphisms is discarded once Ck+1
has been generated.

2y Sharma Chakra

“Lav

Core ldentification

for each frequent k-subgraph, store the canonical labels of its
frequent (k-1)-subgraphs

Cores are the intersection of these lists.

complexity : quadratic on |F(k)|

inverted indexing scheme

for each frequent (k-1)subgraph, maintain a list of child k-subgraphs.
form every possible pair from the child list of every (k-1) frequent
subgraph.

complexity of finding an appropriate pair of subgraphs: square of the
number of child k-subgraphs (which is much smaller)

2y Sharma Chak thy

Downward Closure gy &

» uses canonical labeling to substantially reduce
the complexity of the checking whether or not a
candidate pattern satisfies the downward closure
property of the support condition

A Sharma Chakra 6

Canonical labels g &

» Canonical labels are computed for subgraphs
= Complexity O(|V|!)

» These labels are used for subgraph comparison
(instead of isomorphism)

Canonical labeling T

v0 vl

-- --

--
» A number of optimizations are proposed to reduce ;‘i - X Y v oa b
H V2 b
the complexity from O(|V|!) . — via .
v2 b
b
» But once computed, they can be cached and used abe xy ey cab yx
quickly for comparison
% W Sharma Chakravarthy = W © Sharma Chakravarthy
Canonical Labeling g & Why using canonical labeling is important? £
tg vy Mg My my vy
oo 06000 .)
w ol 1 w v v » use the canonical label repeatedly for comparison
vl N without recalculation.
vy 0 [1 o ol . . .
@ " . i » by regarding canonical labels as strings, we get the
v v ! total order of graphs.
(a) G° by ey ¥ N , o i
~000000 1 01 011 0001 00010" aaa 2 xy > sort them in an array
> Different orderings of the vertices will give rise to different codes » index by binary search efficiently.
» Try every possible permutation of the vertices and choose the ordering which
> gives lexicographically the largest, or the smallest code.
> O(IvIh)

»

For the above, the canonical orderings are 0000001111100100001000
and aaazyx which needs different ordering of vertices!
= (v3v1v2v4v5Vv0)and (vl vO v2) respectively!

= ¥ Sharma Chakravarthy 38

o ¥ © Sharma Chakravarthy 10

10

Canonical label optimizations

» Vertex invariants — do not change across
isomorphism mappings (e.g., degree or label of a
vertex)

» Do not asymptotically change the computational
complexity; in practicce it is useful

2y Sharma Chaki

Invariants

» degrees and labels of a vertex
= Partition into disjoint groups

- Each partition has vertices with the same label and
degree

» the labels and degrees of their adjacent vertices
(neighbor lists)

» information about their adjacent partitions

2 Sharma Chakravartk
H }('L b }('L b
i Lal H H i Lal
Vertex Invariants & Vertex degree and label as invariant (G
Ugovy wa ova vl vp U3 v vl v3 vy va
» attributes or properties assigned to a vertex which do a_a b a a a a b 0o o a b
not change across isomorphism mappings. Yo 9 ¥ vea roylrpomoa T
» partition the vertices into equivalence classes such that :' r' ! . o , : : :3 : ":
all the vertices assigned to the same partition have the P v b w bl
same values for the vertex invariants. oM pe Mmoo P
aaabyxx

» only maximize over those permutations that keep the
vertices in each partition together.

2y Sharma Chaki

Find canonical label of each partition based on an invariant,
compute its canonical label and concatenate it.

Instead of 4! Or 24 label computations for this, only 2 are needed!
only 1! * 2= 2 permutations although the total permutations 4! = 24.

aaabyxx

2 Sharma Chakravarth

11

Invariants T=»
» degrees and labels of a vertex
= Partition into disjoint groups

- Each partition has vertices with the same label and
degree

» the labels and degrees of their adjacent vertices
(neighbor lists)

» information about their adjacent partitions

2y Sharma Chak thy

Invariants T=»
» degrees and labels of a vertex
= Partition into disjoint groups

- Each partition has vertices with the same label and
degree

» the labels and degrees of their adjacent vertices
(neighbor lists)

> lterative partitioning (generalization of neighbor
lists)

= Use p(v) and I(e)

= W Sharma Chakravart
. . Lab {Lab

Neighbor lists Iterative Partitioning

U3 Uy vy g vy vg Uy Uy vy g vg vy : : e

bbb boaa bbb boaa p(v): identifier of a partition
wo| v wo | wlulw (.8.5), (y.3,8), (.5, 1) 1(e): label of the incident edge to the neighbor vertex v
wbfy] utbly ¥y (v, ,b), (3,0, (3, 3, 0]
wbly v z vbly v T iz, 1,00, (3,00, (g, 5, b)
wab|y v 2 wbly v z (1,8, 00, (v, 3,0), (2,1, 1)
v a - v x (x.3.1)
w0 : v 0 2z (2.8,b) z

a ” Po PLPE Pa P

* (Ule); d(v); [(v))
*l(e) is the label of the incident edge e,
*d(v) is degree of the adjacent vertex v, and
«l(v) is its vertex label.

« same partition if and only if nl(«) = nl(v)

e reduce from 4! x 2! to 2! (11 * 21 % 11 % 11 * 1),

2y Sharma Chak thy

mom " mom o9

A Sharma Chakravart 8

12

&S

Frequency Counting

» for each frequent subgraph, keep a list of transaction
identifiers that support it.

» to compute the frequency of G(k+1), first compute the
intersection of the TID lists of its frequent k-subgraphs.

» If the size of the intersection is below the support,
G(k+1) is pruned - subgraph isomorphism computations
avoided

» Otherwise use subgraph isomorphism on the set of
transactions in the intersection of the TID lists.

Apriori-based method y
» Experiment Result

-Chemical Compound Dataset, which contains 340
compounds,24 different atoms (vertices)

M port M
% Sharma Chakravarth: 19 %
Chemical compound data set 5 : 5
P — Conclusions —
Support Running Time[d with Optimizations Largest Frequent
T Degree-Label | Imverted | Partition | Neighbor Tterative Pattern | Candidates Patterns
(4] | Patitioning | Index | Ordering | List | Partitioning | Size &' c F o .
108 6 1 3 3 S] o » Graph mining is a powerful approach needed by
a0 8 4 3 4 1 1168 T . .
80 b 13 6 5 5 1 1612 13 many real-world appllcatlons
75 il 15 7 6 6 11 1869 1590 . L.
7 6| o 10 d o w1 » There is need for both Subdue class of mining
6.5 138 59 17 9 9 12 219 1932 .
1) I % " nloom W ows algorithms and frequent subgraph class of
55 5987 1691 112 18 u 13 3076 2602 I th
5.0 24324 a7 870 33 2 14 4058 3608 a gorl ms
4.5 — 55083 4196 40 ki 15 5533 4084 .- . . .
Wl - - | 1 - 5 0 » Scalability is an extremely important issue
35 — — — 697 152 20 14838 13816
w| - N - aur7 | om| e s » Our approach to using SQL has yielded very
25 — — — 9329 537 1 33660 31047 . o .
wl | - wor | m | s i promising scalability results (800K vertices and

340 compounds, 24 unique element names, 66 element types, 4 bonds
Avg Tx size is 27.4 edges, 27 vertices; largest 214V214E, 2GB ram
Amount of time taken by FSG to find all frequently occurring subgraphs

PAS Sharma Chakravarth

1600K edges)

PAS Sharma Ch:

13

Comparison S

Subdue FSG AGM gSpan HDBSubdue
Graph Mining v v v v v
Multiple edges v x x x v
Hierarchical v x x x v
reduction
Cycles v v v x v
Evaluation metric MDL Frequency | Support, | Frequency DMDL

Confidence (frequency)

Inexact graph match v x x x X
With threshold
Memory limitation v v v v x

A
X4

Sharma Chakravarth;

